
ConcurrencyServiceSpecification

Version1.0
NewEdition:April 2000

Copyright 1994 Emeraude
Copyright 2000 Object Management Group, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

iii
iii

iv

iv

1-1

1-1

1-2
1-2
1-2
-2
-3
-3
-3
-3
-3

1-4
-4

1-6

1-6

1-7

-1

2-1
2-3
Preface .

About the Object Management Group .
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .

1.2 Basic Concepts of Concurrency Control.
1.2.1 Clients and Resources.
1.2.2 Transactions as Clients
1.2.3 Locks . 1
1.2.4 Lock Modes . 1
1.2.5 Lock Granularity. 1
1.2.6 Conflict Resolution . 1
1.2.7 Conflict Resolution for Transactions 1
1.2.8 Lock Duration. 1

1.3 Locking Model .
1.3.1 Lock Modes . 1
1.3.2 Multiple Possession Semantics

1.4 Two-Phase Transactional Locking

1.5 Nested Transactions .

2. Modules and Interfaces . 2

2.1 CosConcurrencyControl Module
2.1.1 Types and Exceptions
Concurrency Service V1.0 April 2000 i

Contents

2-4

2-4

2-5

2-6
2.2 LockCoordinator Interface .

2.3 LockSet Interface .

2.4 TransactionalLockSet Interface .

2.5 LockSetFactory Interface .
ii Concurrency Service V1.0 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Concurrency Service V1.0 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Concurrency Service V1.0 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Concurrency Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Concurrency Service V1.0 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Concurrency Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Concurrency Service V1.0 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of theConcurrency Service
specification:

• Digital Equipment Corporation

• Electronic Data Systems

• Emeraude

• Groupe Bull

• ICL plc

• Thomson CSF - Syseca
Concurrency Service V1.0 Interface Style Consistency April 2000 ix

x Concurrency Service V1.0 April 2000

ServiceDescription 1
to an
by

ncy

the

ide
or
trol
Contents

This chapter contains the following topics.

1.1 Overview

The purpose of the Concurrency Control Service is to mediate concurrent access
object such that the consistency of the object is not compromised when accessed
concurrently executing computations.

The Concurrency Control Service consists of multiple interfaces that support both
transactional and non-transactional modes of operation. The user of the Concurre
Control Service can choose to acquire locks in one of two ways:

• On behalf of a transaction (transactional mode.) The Transaction Service drives
release of locks as the transaction commits or aborts.

• By acquiring locks on behalf of the current thread (that must be executing outs
the scope of a transaction). In this non-transactional mode, the responsibility f
dropping locks at the appropriate time lies with the user of the Concurrency Con
Service.

Topic Page

“Overview” 1-1

“Basic Concepts of Concurrency Control” 1-2

“Locking Model” 1-4

“Two-Phase Transactional Locking” 1-6

“Nested Transactions” 1-7
Concurrency Service V1.0 April 2000 1-1

1

l
lock
k

are

e
tify
a

e to

that

ons
ned

en
t

. To
a
ts
en
e

cks.
The Concurrency Control Service ensures that transactional and non-transactiona
clients are serialized. Hence a non-transactional client that attempts to acquire a
(in a conflicting mode) on an object that is locked by a transactional client will bloc
until the transactional client drops the lock.

1.2 Basic Concepts of Concurrency Control

1.2.1 Clients and Resources

The Concurrency Control Service enables multipleclientsto coordinate their access to
sharedresources. Coordinating access to a resource means that when multiple,
concurrent clients access a single resource, any conflicting actions by the clients
reconciled so that the resource remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to th
clients of the Concurrency Control Service to define resources and to properly iden
potentially conflicting uses of those resources. In a typical use, an object would be
resource, and the object implementation would use the concurrency control servic
coordinate concurrent access to the object by multiple clients.

1.2.2 Transactions as Clients

The Concurrency Control Service differentiates between two types of client: a
transactional client and a non-transactional client. Conflicting access by clients of
different types is managed by the Concurrency Control Service, thereby ensuring
clients always see the resource in a consistent state.

The Concurrency Control Service does not define what a transaction is. Transacti
are defined by the Transaction Service. The Concurrency Control Service is desig
to be used with the Transaction Service to coordinate the activities of concurrent
transactions.

The Transaction Service supports two modes of operation: implicit and explicit. Wh
operating in the implicit mode, a transaction is implicitly associated with the curren
thread of control. When executing in the explicit mode, a transaction is specified
explicitly by the reference to the coordinator that manages the current transaction
simplify the model of locking supported by the Concurrency Control Service when
transactional client is operating in the implicit transaction mode, transactional clien
are limited to a single thread per transaction (nested transactions can be used wh
parallelism is necessary) and that thread can be executing on behalf of at most on
transaction at a time.

1.2.3 Locks

The Concurrency Control service coordinates concurrent use of a resource using lo
A lock represents the ability of a specific client to access a specific resource in a
particular way. Each lock is associated with a single resource and a single client.
Coordination is achieved by preventing multiple clients from simultaneously
1-2 Concurrency Service V1.0 April 2000

1

lict.
a

ata

that

set

(and
t it

ce
a
lock

d

d by
ied.
possessing locks for the same resource if the activities of those clients might conf
To achieve coordination, a client must obtain an appropriate lock before accessing
shared resource.

1.2.4 Lock Modes

The Concurrency Control Service defines severallock modes, which correspond to
different categories of access. Having a variety of lock modes allows more flexible
conflict resolution. For example, providing different modes for reading and writing
allows a resource to support multiple concurrent clients that are only reading the d
of the resource. The Concurrency Control Service also definesintention locksthat
support locking at multiple levels of granularity.

1.2.5 Lock Granularity

The Concurrency Control Service does not define the granularity of the resources
are locked. It defines alock set, which is a collection of locks associated with a single
resource. It is up to clients of the Concurrency Control Service to associate a lock
with each resource. Typically, if an object is a resource, the object would internally
create and retain a lock set. However, the mapping between objects and resources
lock sets) is up to the object implementation; the mapping could be one to one, bu
could also be one to many, many to many, or many to one.

1.2.6 Conflict Resolution

A client obtains a lock on a resource using the Concurrency Control Service. The
service will grant a lock to a client only if no other client holds a lock on the resour
that would conflict with the intended access to the resource. The decision to grant
lock depends upon the modes of the locks held or requested. For example, a read
conflicts with a write lock. If a write lock is held on a resource by one client, a rea
lock will not be granted to another client.

1.2.7 Conflict Resolution for Transactions

The decision to grant a lock also depends upon the relationships among the
transactions that hold or request a lock. In particular, if the transactions are relate
nesting (nested transactions), a lock may be granted that would otherwise be den

1.2.8 Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed
(either committed or aborted). This policy supports serializability of transactional
operations. Using the two phase commit protocol, locks held by a transaction are
automatically dropped when the transaction completes.
Concurrency Service V1.0 Basic Concepts of Concurrency Control April 2000 1-3

1

lity
ange

ion.

l
g
rop

sets

e

on-
l
in

ith

nd

on
this
There are also situations where levels of isolation that are weaker than serializabi
are acceptable, such as when an application does not want other applications to ch
an object while reading it and does not refer to the object again within the transact
In these circumstances, it is acceptable to release locks before the containing
transaction completes, hence the duration will be shorter than the containing
transaction.

To manage the release of the locks held by a transaction, the Concurrency Contro
service defines a lock coordinator. Lock sets that are related (for example, by bein
created by a resource manager for resources of the same type) and that should d
their locks together when a transaction commits or aborts may share a lock
coordinator. It is up to clients of the concurrency control service to associate lock
together and to release the locks when a transaction commits or aborts.

1.3 Locking Model

This section covers a number of important issues that relate to the locking model
supported by the Concurrency Control Service. For a complete discussion of thes
issues the reader is directed to one of the standard texts on the subject1.

The Lock Modes section applies to clients that operate in both transactional and n
transaction modes. The Multiple Possession Semantics, Two-Phase Transactiona
Locking, and Nested Transaction sections are relevant only to clients that operate
transactional mode.

1.3.1 Lock Modes

1.3.1.1 Read, Write, and Upgrade Locks

The Concurrency Control service definesread (R) andwrite (W) lock modes that
support the conventional multiple readers, one writer policy. Read locks conflict w
write locks, and write locks conflict with other write locks.

In addition, the Concurrency Control service defines anupgrade(U) mode. An
upgrade mode lock is a read lock that conflicts with itself. It is useful for avoiding a
common form of deadlock that occurs when two or more clients attempt to read a
then update the same resource. If more than one client holds a read lock on the
resource, a deadlock will occur as soon as one of the clients requests a write lock
the resource. If each client requests a single upgrade lock followed by a write lock,
deadlock will not occur.

1.SeeConcurrency Control and Recovery in Database Systemsby P.A. Bernstein, V.
Hadzilacos, and N. Goodman, orTransaction Processing: Concepts and Techniquesby J.N.
Gray and A. Reuter.
1-4 Concurrency Service V1.0 April 2000

1

ncy
e
cur.

e

een

base

ng
le.
lient

e, the
)
ith
1.3.1.2 Intention Read and Intention Write Locks

The granularity of the resources locked by an application determines the concurre
within the application. Coarse granularity locks incur low overhead (since there ar
fewer locks to manage) but reduce concurrency since conflicts are more likely to oc
Fine granularity locks improve concurrency but result in a higher locking overhead
since more locks are requested. Selecting a suitable lock granularity is a balance
between the lock overhead and the degree of concurrency required. Using the
Concurrency Control service, an application can be developed to use coarse or fin
granularity locks by defining the associated resources appropriately.

In addition, the Concurrency Control service supports variable granularity locking
using two additional lock modes,intention read(IR) and intention write(IW). These
additional lock modes are used to exploit the natural hierarchical relationship betw
locks of different granularity.

For example, consider the hierarchical relationship inherent in a database: a data
consists of a collection of files, with each file holding multiple records. To access a
record, a coarse grain lock may be set on the database, but at the cost of restricti
other clients from accessing the database. Clearly, this level of locking is unsuitab
However, only setting a lock on the record is also inappropriate, because another c
might set a lock on the file holding the record and delete or modify the file.

Using variable granularity locking, a client first obtains intention locks on the
ancestor(s) of the required resource. To read a record in the database, for exampl
client obtains an intention read lock (IR) on the database and the file (in this order
before obtaining the read lock (R) on the record. Intention read locks (IR) conflict w
write locks (W), and intention write locks (IW) conflict with read (R) and write (W)
locks.

1.3.1.3 Lock Mode Compatibility

Table 1-1 Lock Compatibility

Granted
Mode

Requested Mode

IR R U IW W

Intention
Read (IR)

*

Read (R) * *

Upgrade (U) * * *

Intention
Write (IW)

* * *

Write (W) * * * * *
Concurrency Service V1.0 Locking Model April 2000 1-5

1

* is
that
ting
cy
ck
first
that

le

can
kept
n a

all of

ck is
be

re
lock
o

on
In
the
on

the
te

sed

e

Table 1-1 defines the compatibility between the various locking modes (the symbol
used to indicate when locks conflict). When a client requests a lock on a resource
cannot be granted because another client holds a lock on the resource in a conflic
mode, the client must wait until the holding client releases its lock. The Concurren
Control Service enforces a queueing policy such that all clients waiting for a new lo
are serviced in a first in, first out order, and subsequent requests are blocked by the
request waiting to be granted the lock, unless the requesting client is a transaction
is a member of the same transaction family as an existing holder of the lock.

1.3.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model called multip
possession semantics. In this model, a client can hold multiple locks on the same
resource simultaneously. The locks can be of different modes. In addition, a client
hold multiple locks of the same mode on the same resource; effectively, a count is
of the number of locks of a given mode that have been granted to the client. Whe
client holds locks on a resource in more than one mode, other clients will not be
granted a lock on the resource unless the requested lock mode is compatible with
the modes of the existing locks.

In contrast, using the conventional locking model,2 when a client holding a lock on a
resource requests a lock on the same resource in a stronger mode, the existing lo
promoted from the weaker mode to the stronger mode (once the stronger lock can
granted without causing a conflict). Since lock modes form only a partial order, the
will not always be a stronger mode; in cases where neither mode is stronger, the
will be promoted to the weakest mode that is at least as strong as either of the tw
modes.

1.4 Two-Phase Transactional Locking

The Concurrency Control Service provides primitives to support transaction-durati
locking. Transaction duration locking is a special case of strict two-phase locking.
the first phase (the growing phase), a transaction obtains locks that are kept until
second phase (the shrinking phase), at which point they are released. A transacti
must not release locks during the first phase, and must not obtain new locks during
second phase, otherwise concurrent computations may be able to view intermedia
results of the transaction.

Two-phase locking is sufficient to guarantee serializability, hence this technique is u
by transactions. During the normal execution of a transaction, no locks will be
automatically dropped before the end of the transaction. When the transaction
completes, the Concurrency Control Service must be informed so that the locks th
transaction holds may be released. While releasing locks, no new locks may be
obtained by the transaction.

2.SeeNotes On Data Base Operating Systemsin Operating Systems: An Advanced Course
(ed. Bayer, Graham, and Seegmuller) by J.N. Gray for further information.
1-6 Concurrency Service V1.0 April 2000

1

n’s
se

t the

oth:
ht

ction
rce

ction
ds
nnot

ot

This

lock

ith

ests a
ted
red to

drop
ck

f

at is
w

When a transaction holds a lock that is no longer needed to ensure the transactio
serializability, or if a weaker level of isolation is acceptable, it is permissible to relea
the lock. The Concurrency Control Service therefore provides an operation that
releases individual locks. This operation should be used with caution to ensure tha
isolation level is appropriate for the application.

1.5 Nested Transactions

Lock conflicts within a transaction family are treated somewhat differently than
conflicts between unrelated transactions. The underlying principle is the same for b
transactions must not be able to observe the effects of other transactions that mig
later abort. Unrelated transactions can abort independently; therefore, one transa
must not be permitted to acquire a lock that conflicts with a lock on the same resou
held by an unrelated transaction.

Nesting imposes abort dependencies among related transactions. A parent transa
cannot abort without causing all of its children to abort. A child transaction that en
successfully cannot abort without causing its parent to abort. A transaction that ca
abort without causing another related transaction to abort (according to these
guidelines and logical deductions) is said to be committed relative to that other
transaction.

These dependencies make it possible to relax the rule that two transactions cann
acquire locks of conflicting modes on the same resource, without breaking the
underlying principle. No partial effects can be observed and committed if all
transactions that have done work cannot abort without the observer being aborted.
property translates into a simple rule for nested locking: if all transactions holding
locks on a resource are committed with respect to a transaction trying to acquire a
on the resource, no conflict exists.

The multiple possession model (see previous section) facilitates the use of locks w
nested transactions. In this model, multiple related transactions may hold locks of
conflicting modes on a resource at the same time. When a nested transaction requ
lock, it is granted if all of the transactions holding locks on the resource are commit
relative to the requestor. Both the requestor and previous holders are then conside
hold locks on the resource.

A child transaction can acquire a lock on a resource locked by its parent and then
that lock without causing its parent to lose its lock. A transaction cannot drop a lo
that it did not acquire itself. The lock possession semantics also require that each
transaction acquire locks on its own behalf. It is improper to take locks on behalf o
another transaction or to depend on locks held by other transactions.

Other approaches to nested transactions3 treat a resource as being locked by a single
transaction at a time. When a nested transaction requests a lock on a resource th
already locked by an ancestor transaction, the nested transaction becomes the ne

3.SeeNested Transactions: An Approach To Reliable Distributed Computingby J.E.B. Moss
for further information.
Concurrency Service V1.0 Nested Transactions April 2000 1-7

1

s is

ock
owner of the lock. When a nested transaction commits, ownership of all of its lock
transferred to its parent. When a nested transaction aborts, ownership of its locks
reverts to the previous owners. The Concurrency Control service performs these l
transfers automatically. The multiple possession semantics model is functionally
equivalent to this model, but it supports simpler interfaces.
1-8 Concurrency Service V1.0 April 2000

Modulesand Interfaces 2
s the

rted
t

nal

ient
Contents

This chapter contains the following topics.

2.1 CosConcurrencyControl Module

The Concurrency Control Service is defined by theCosConcurrencyControl
module, which provides interfaces that support both transactional and non-
transactional modes of operation. This section defines the interfaces and describe
operations they support.

• The interfaces provide two modes of operation that correspond to those suppo
by the Transaction Service; in both modes, locks are identified by the lock se
they are associated with and the mode of the lock.

• A client of the Concurrency Control Service may operate in an implicit mode
such that locks are acquired on behalf of the current transaction (for transactio
clients) or current thread (for non-transactional clients).

• For transactional clients, a second alternative is possible that involves the cl
identifying the transaction by means of a reference to the transaction’s
coordinator object (the explicit mode of operation).

Topic Page

“CosConcurrencyControl Module” 2-1

“LockCoordinator Interface” 2-4

“LockSet Interface” 2-4

“TransactionalLockSet Interface” 2-5

“LockSetFactory Interface” 2-6
Concurrency Service V1.0 April 2000 2-1

2

sed

l

r

Locks are acquired on lock sets. Two sets of operations are provided by the
LockSetFactory interface to create lock sets, one creates a lock set that can be u
by clients operating in the implicit mode (theLockSet interface), the other creates a
lock set for explicit mode transactional clients (theTransactionalLockSet interface).
In addition, theLockCoordinator interface is provided to allow a client to release al
locks held by a specific transaction.

The following sections define the types and exceptions common to both types of
interface, the interfaces themselves, and describes the responsibilities of a user fo
managing transaction-duration locks.

OMG IDL for the CosConcurrencyControl module.

#include <CosTransactions.idl>
module CosConcurrencyControl {

 enum lock_mode {
 read,
write,
upgrade,
intention_read,
intention_write

 };

 exception LockNotHeld{};

 interface LockCoordinator
 {
 void drop_locks();
 };

 interface LockSet
 {
 void lock(in lock_mode mode);
 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface TransactionalLockSet
 {
 void lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 boolean try_lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
2-2 Concurrency Service V1.0 April 2000

2

rce.
 void unlock(in CosTransactions::Coordinator current,
 in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in CosTransactions::Coordinator current,
 in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface LockSetFactory
 {
 LockSet create();
 LockSet create_related(in LockSet which);
 TransactionalLockSet create_transactional();
 TransactionalLockSet create_transactional_related(in
 TransactionalLockSet which);
 };
};

2.1.1 Types and Exceptions

The types and exceptions described in this section apply to both theLockset and
TransactionalLockset interfaces.

module CosConcurrencyControl {
 enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
 };

exception LockNotHeld{};

lock_mode

The lock_mode type represents the types of lock that can be acquired on a resou

LockNotHeld

The LockNotHeld exception is raised when an operation to unlock or change the
mode of a lock is called and the specified lock is not held.
Concurrency Service V1.0 CosConcurrencyControl Module April 2000 2-3

2

d

, this
ly be

sets

e the

then

e

2.2 LockCoordinator Interface

The LockCoordinator interface enables a transaction service to drop all locks hel
by a transaction. TheLockSet andTransactionalLockSet interfaces create
instances of theLockCoordinator for each transaction. TheLockCoordinator
interface provides a single operation:

interface LockCoordinator {
 void drop_locks();
};

drop_locks

Releases all locks held by the transaction. This call is designed to be used by
transactional clients when a transaction commits or aborts. For nested transactions
operation must be called when the nested transaction aborts, but the call need on
made once for a transaction family when that family commits (recall that nested
transaction commits are handled implicitly by the Concurrency Control service).

2.3 LockSet Interface

For clients operating in the implicit mode, locks are acquired and released on lock
which are defined by means of theLockSet interface. TheLockSet interface only
provides operations to acquire and release locks on behalf of the calling thread or
transaction. The interface does not provide support for transactional clients that us
explicit Transaction Service interfaces.

interface LockSet {
 void lock(in lock_mode mode);

 boolean try_lock(in lock_mode mode);

 void unlock(in lock_mode mode)
. raises(LockNotHeld);

 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);

 LockCoordinator get_coordinator(in
 CosTransactions::Coordinator which);
};

When calls to acquire or release locks are made outside the scope of a transaction
it is assumed that the client is operating in thenon-transactionalmode (the
concurrency control implementation must use the appropriate Transaction Servic
operation to determine whether the current thread is executing on behalf of a
transaction).
2-4 Concurrency Service V1.0 April 2000

2

the
ock

rn

n

ck

ame
nt,

hile

ck,

ks
lock

Acquires a lock on the specified lock set in the specified mode. If a lock is held on
same lock set in an incompatible mode by another client then the operation will bl
the calling thread of control until the lock is acquired. If a call that is on behalf of a
transactional client is blocked and the transaction is aborted then the call will retu
with the Transactions::TransactionRolledBack exception.

try_lock

Attempts to acquire a lock on the specified lock set. If the lock is already held in a
incompatible mode by another client then the operation returns a FALSE result to
indicate that the lock could not be acquired.

unlock

Drops a single lock on the specified lock set in the specified mode (recall that a lo
can be held multiple times in the same mode). Calls to drop a lock that is not held
result in theLockNotHeld exception being raised

change_mode

Changes the mode of a single lock (recall that multiple locks may be held on the s
lock set). If the new mode conflicts with an existing mode held by an unrelated clie
then thechange_mode operation blocks the calling thread of control until the new
mode can be granted. Like the lock call, if the client is a transaction and it aborts w
the thread of control if blocked then theTransactions::TransactionRolledBack
exception will be raised. Similarly, when a call is made to change the mode of a lo
but the lock is not held in the specified mode, theLockNotHeld exception will be
raised.

get_coordinator

Returns the lock coordinator associated with the specified transaction.

2.4 TransactionalLockSet Interface

TheTransactionalLockSet interface provides operations to acquire and release loc
on a lock set on behalf of a specific transaction. The operations that make up the
TransactionalLockSet interface are:

interface TransactionalLockSet {
 void lock(in CosTransactions::Coordinator which,
 in lock_mode mode);

 boolean try_lock(in CosTransactions::Coordinator which,
 in lock_mode mode);

 void unlock(in CosTransactions::Coordinator which,
 in lock_mode mode)
 raises(LockNotHeld);
Concurrency Service V1.0 TransactionalLockSet Interface April 2000 2-5

2

n

p

lock
 void change_mode(in CosTransactions::Coordinator which,
 in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);

 LockCoordinator get_coordinator(in
 CosTransactions::Coordinator which);
};

The operations provided by theTransactionalLockSet interface operate in an
identical manner to the equivalent operations provided by theLockSet interface. The
interfaces differ in that for theTransactionalLockSet interface the identity of the
transaction is passed explicitly as a reference to the coordinator for the transactio
instead of implicitly through an association with the calling thread.

2.5 LockSetFactory Interface

Lock sets are created using theLockSetFactory interface.

interface LockSetFactory {
 LockSet create();
 LockSet create_related(in LockSet which);

 TransactionalLockSet create_transactional();
 TransactionalLockSet
 create_transactional_related(in
 TransactionalLockSet which);
};

This interface provides two sets of operations that return newLockSet and
TransactionalLockSet instances.

create

Creates a new lock set and lock coordinator.

create_related

Creates a new lock set that is related to an existing lock set. Related lock sets dro
their locks together.

create_transactional

Creates a new transactional lock set and lock coordinator for explicit mode
transactional clients.

create_transactional_related

Creates a new transactional lock set that is related to an existing lock set. Related
sets drop their locks together.
2-6 Concurrency Service V1.0 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Basic Concepts of Concurrency Control
	1.2.1 Clients and Resources
	1.2.2 Transactions as Clients
	1.2.3 Locks
	1.2.4 Lock Modes
	1.2.5 Lock Granularity
	1.2.6 Conflict Resolution
	1.2.7 Conflict Resolution for Transactions
	1.2.8 Lock Duration

	1.3 Locking Model
	1.3.1 Lock Modes
	1.3.2 Multiple Possession Semantics

	1.4 Two-Phase Transactional Locking
	1.5 Nested Transactions

	2. Modules and Interfaces
	2.1 CosConcurrencyControl Module
	2.1.1 Types and Exceptions

	2.2 LockCoordinator Interface
	2.3 LockSet Interface
	2.4 TransactionalLockSet Interface
	2.5 LockSetFactory Interface

