
Currency Specification

New Edition: June 2000
Version 1.0

Copyright 1997, Cyborg Systems, Inc.
Copyright 1997, International Business Machines Corporation
Copyright 1997, System Software Associated, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents
1

1

1

2

2

1-1

1-1

1-2
-2

1-3

-3
-3

-3

-4
1-4

-4
-4

-1

2-1

2-2

2-2
-2

-4
Preface .

About the Object Management Group

What is CORBA? .

Associated OMG Documents .

Acknowledgments .

1. Overview .

1.1 Introduction .

1.2 Compliance Points .
1.2.1 Mandatory and Optional Requirements Met . . 1

1.3 Relationship to Other Specifications

1.3.1 Common Business Objects and Business
Object Facility . 1

1.3.2 Electronic Payment . 1

1.3.3 Externalization Service 1

1.3.4 Relationship Service . 1
1.3.5 Query Service .

1.3.6 Objects by Value. 1
1.3.7 Fit with OMA . 1

2. Modules and Interfaces . 2

2.1 Introduction .

2.2 Currency Modules .

2.2.1 Purpose .
2.2.2 Overview . 2

2.2.3 Abstractions . 2
Currency v1.0 June 2000 i

Contents

2-5
-5

2-6

-6
2-6

2-6
2-7

2-7
2-8

10
-10

11
12

-14
-15

19
-22

-25

-25
-25

-26
-28

-29
-29

29
29

30
30

0
30
2.2.4 Semantics .
2.2.5 Security . 2

2.3 FbcCurrency Module .

2.3.1 Module Interfaces and Values 2
2.3.2 Typedefs .

2.3.3 Conversion Types .
2.3.4 Rounding Types .

2.3.5 Exceptions .
2.3.6 Values .

2.3.7 Money Value . 2-
2.3.8 ExchangeRate Value . 2

2.3.9 State Identifier Interface 2-
2.3.10 CurrencyBook Interface 2-

2.3.11 Exchange Rate Manager Interface 2
2.3.12 Money Formatter . 2

2.3.13 Money Calculator Interface 2-
2.3.14 Examples of Use . 2

2.4 CboCurrency Module . 2

2.4.1 Module Interfaces and Values 2
2.4.2 Currency Interface . 2

2.4.3 Money . 2
2.4.4 Exchange Rate Date Based 2

2.5 CBO Module . 2
2.5.1 CBO Values and Interfaces 2

2.5.2 DDecimal . 2-
2.5.3 DAmountOfTime . 2-

2.5.4 DTime. 2-
2.5.5 DDecimalFactory . 2-

2.5.6 DAmountOfTimeFactory 2-3
2.5.7 DTimeFactory. 2-

Appendix A - Consolidated IDL Specifications A-1

Appendix B - Additional Operations B-1
ii Currency v1.0 June 2000

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Currency v1.0 June 2000 1

tion

 are
ides
 are

d,
dards

 (The

mat.
ons,

e
Associated OMG Documents

In addition to the other Domain Technology specifications, the CORBA documenta
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

0.1 Acknowledgments

The following companies submitted and/or supported parts of the CORBA Financ
specification(s):
2 Currency v1.0 June 2000

Cyborg Systems, Inc.

International Business Machines Corporation

System Software Associated, Inc.
Currency v1.0 Acknowledgments June 2000 3

4 Currency v1.0 June 2000

Overview 1
de

oposed
s
d in
Note – This specification’s format has changed only - no textual changes were ma
since its release in December 1998.

Contents

This chapter contains the following topics.

1.1 Introduction

This document specifies a set of business objects and related abstractions as a pr
standard to support international currency. It describes the objectives and busines
requirements for each object of the component. The business abstractions define
this specification include:

• A currency component.

• Basic business object for currency, money, and exchange rate.

• Calculation and formatting mechanisms for the use of money.

Topic Page

“Introduction” 1-1

“Compliance Points” 1-2

“Relationship to Other Specifications” 1-3
Currency v1.0 June 2000 1-1

1

 ISO
hich

etting

of
ill be

een

mal

ing
 the

rency

ts.

ion

y

ency-
1.2 Compliance Points

1.2.1 Mandatory and Optional Requirements Met

1.2.1.1 Currency

The currency interface accommodates both an alpha code and mnemonic for the
standard 4217, and a description. Currency allows for user-defined currencies in w
the code and mnemonic may be meaningless. The Currency interface allows for s
monetary symbols for currencies of both major and minor (fractional) parts.

A currency can be determined as active by checking the current date or the date
exchange against the introduction and expiration date of the currency. The date w
in compliance with the final standard for date/time encompassed by the common
facilities. Major and minor parts of currency are handled with a ratio defined betw
the major and minor currency.

1.2.1.2 Money

The internal precision of money is maintained by using the common facilities deci
amount value and by setting the precision on the money calculator.

Legal arithmetic operations of adding and subtracting two money amounts, multiply
and dividing money by a scalar value, and comparing moneys will be supported by
money calculator interface and the common money business object.

Expressions containing mixed currencies are only supported in the FbcCurrency
module. To use mixed currencies in the CboCurrency module, the DMoney objects
need to first be exchanged by the exchange rate so that they are of the same cur
prior to doing any calculations on them. CBOCurrency will return exceptions on
calculation methods that are invoked for monies of mixed currencies.

Both modules have interfaces defined to allow for money conversion from one
currency to another and for arithmetic operations of same currency money amoun

Monetary conversion will be handled by the exchange rate object exchange funct
interface and the exchange rate facility interfaces.

Money can be rounded giving the user multiple rounding rule options, such as
rounding up or rounding down.

Money format externalization is handled by the money formatter interfaces. Mone
can be parsed from a string and formatted to a string using the money formatter
interfaces to define the format structure and using the currency interfaces for curr
specific format information such as the currency symbol.
1-2 Currency v1.0 June 2000

1

ed.
a

d,

s)

e
 and

d

6

/98-

nic
c
g
1.2.1.3 Exchange Rate

Money conversion can be done using an exchange rate. The ExchangeRateManager
contains a set of exchange rates.

1.2.1.4 Additional

The currency abstraction allows for non-ISO (user-defined) currencies to be creat
The CurrencyBook allows for new currencies to be registered, removed, and for
collection of all registered currencies to be accessible by an application. The
ExchangeRateManager allows for exchange rates to be added, replaced, remove
and retrieved allowing multiple users the ability to reference the same group of
exchange rates. Currency has the ability to keep track of the ISO locales (entitie
associated with a specific currency. The MoneyFormatter interface can use the same
locales for use in formatting. This will permit the formatter to determine the string
representation of the money depending on the locale. Many of the interfaces us
string formats for informational purposes. These fields can be set to any language
locale, however, localization of this information is outside the scope of this
specification.

1.3 Relationship to Other Specifications

1.3.1 Common Business Objects and Business Object Facility

The currency objects will depend upon the Common Business Objects for date an
fixed point values.

The Currency and ExchangeRate objects will depend upon a date object. The
complete definition of the date object, called DTime , is defined in the CBO module.
This Common Business Object is defined in more detail in the OMG bom/98-01-0
IBM/NIIP Revised Business Objects CBO RFP submission.

The Money and ExchangeRate objects will depend upon a decimal object. The
complete definition of the decimal object, called DDecimal , is defined in the CBO
module. This Common Business Object is defined in more detail in the OMG bom
01-06 IBM/NIIP Revised Business Objects CBO RFP submission.

1.3.2 Electronic Payment

Electronic payment deals with transfer of money. It would make sense for electro
payment to use the Money object to represent their money. The currency mnemoni
aspect of the money would be whatever currency the electronic payment is dealin
with.

1.3.3 Externalization Service

The Externalization Service is not used in this specification.
Currency V1.0 Relationship to Other Specifications December 1998 1-3

1

pon

e
 return

ept

l
1.3.4 Relationship Service

The StateIdManager used to determine state for a network-based client depends u
the CosObjectIdentity::IdentifiableObject interface defined in the relationships
service (OMG formal/97-12-16:CORBAservices).

1.3.5 Query Service

The CboCurrency module uses the CosQueryCollection::Iterator interface
defined in the query service (OMG formal/97-12-16:CORBAservices) for the
collection of currency locales.

1.3.6 Objects by Value

The specification depends upon the Objects-by-Value specification, OMG TC
Document orbos/98-01-01. The FbcCurrency module's Currency , Money , and
ExchangeRate are pass-by-value objects which use the value type concept wher
pass-by-value semantics are required. They are defined as values and are used as
types and parameters in many of the interfaces. CboCurrency also uses DMoney and
DExchangeRateDateBased as pass-by-value objects. The DDecimal , DTime , and
DAmountOfTime abstractions in the CBO module are also value types. The conc
of initializers as defined in the Objects-by-Value specification is used in the
FbcCurrency value objects and CboCurrency objects, by the keyword identifier init
for the name of the operation.

1.3.7 Fit with OMA

The OMA is the Object Management Architecture. Currency fits within the "vertica
domain-specific interfaces" for the Financial vertical marketplace.
1-4 Currency v1.0 June 2000

Modules and Interfaces 2
de

oposed
s
d in
Note – This specification’s format has changed only - no textual changes were ma
since its release in December 1998.

Contents

This chapter contains the following topics.

2.1 Introduction

This document specifies a set of business objects and related abstractions as a pr
standard to support international currency. It describes the objectives and busines
requirements for each object of the component. The business abstractions define
this specification include:

• A currency component.

• Basic business object for currency, money, and exchange rate.

• Calculation and formatting mechanisms for the use of money.

Topic Page

“Currency Modules” 2-2

“FbcCurrency Module” 2-6

“CboCurrency Module” 2-25

“CBO Module” 2-29
Currency v1.0 June 2000 2-1

2

nd
other

sor
alue
ing
e

.

2.2 Currency Modules

2.2.1 Purpose

This specification standardizes objects encompassing the concepts of currency a
money. This does not limit the specification to those abstractions, but extends to
related abstractions necessary for comprehensive interfaces.

2.2.2 Overview

The currency specification uses value types as defined in the Objects-by-Value
specification. These value types have minimal behavior and contain mostly acces
methods. The primary purpose of these objects is to encapsulate data. These v
types are used as parameters or return types to the business utilities. The follow
UML class diagrams show these values as Utility classes. The diagrams show th
relationships between the main currency facility abstractions. This section of the
document describes the diagrams shown in Figure 2-1, Figure 2-2, and Figure 2-3

Figure 2-1 FbcCurrency Module

CurrencyBook MoneyFormatter MoneyCalculator ExchangeRateManager

Currency Money ExchangeRate

FbcCurrency Module

CosObjectIdentity::IdentifiableObjectStateIdManager
2-2 Currency v1.0 June 2000

2

Figure 2-2 CboCurrency Module

Figure 2-3 CboCurrency Module Level 2 Compliant

DExchangeRateDateBasedDMoney Currency

CboCurrency Module

CurrencyFactoryMoneyFactory ExchangeRateDateBasedFactory

FbcCurrency::Currency

DExchangeRateDateBasedDMoney Currency

CurrencyFactoryMoneyFactory ExchangeRateDateBasedFactory

FbcCurrency::Money
FbcCurrency::ExchangeRate

CboCurrency Module Level 2 Compliant
Currency v1.0 Currency Modules June 2000 2-3

2

of a

type

cy
ular

es

 a
ns to
ings

o
r is
2.2.3 Abstractions

2.2.3.1 Network Business Component Architecture

There are abstractions for Currency , Money , ExchangeRate , CurrencyBook ,
MoneyCalculator , MoneyFormatter , ExchangeRateManager , and
StateIdManager .

Values

The Currency object contains operations for setting and accessing the attributes
particular currency.

The Money object contains operations for setting and accessing the amount and
of currency for a particular instance of money.

The ExchangeRate operations will support conversions of money from one curren
to money of another in addition to setting and accessing the attributes of a partic
exchange rate.

Interfaces

The StateIdManager is an abstraction used to identify the application client in cas
where state is important. The id returned from the StateIdManager is used to access
the other abstractions where state is necessary. The id is a
CosObjectIdentity::IdentifiableObject defined in the relationships service
specification. The StateIdManager has no direct relationship to any of the other
currency abstractions.

The CurrencyBook maintains a group of currencies. It is used by the
MoneyFormatter to retrieve the currency symbol and by the MoneyCalculator to
retrieve the base currency when converting to base currency.

The ExchangeRateManager maintains exchange rates. It is used by the
MoneyCalculator to retrieve an ExchangeRate to exchange Money .

The MoneyCalculator is a utility used for performing money arithmetic. It supports
standard set of operations for arithmetic calculations and additional state operatio
support rounding rules, precision settings, and conversion rules. These state sett
are saved on a per-client basis. The MoneyCalculator uses the CurrencyBook to
retrieve the base currency and the ExchangeRateManager to retrieve an appropriate
ExchangeRate . The MoneyCalculator takes Money as parameters.

There is a MoneyFormatter class utility used for parsing and formatting money int
strings. The formatter is dependent upon state settings and therefore the identifie
used for all operations to identify the application client. The MoneyFormatter takes
Money as parameters. The MoneyFormatter uses Currency to retrieve the symbol.
2-4 Currency v1.0 June 2000

2

c

-
sed
duce

lity
e user
n the

rated
ted
.
o not
 owned

 and

n

re
2.2.3.2 Common Business Object Architecture

There are abstractions for Currency , Money , and ExchangeRateDateBased .
These interfaces should contain similar operations as the Currency , Money , and
Exchange Rate values defined in the FbcCurrency module.

The Currency abstraction contains data attributes and accessor methods of a
particular currency, as well as a method to check equivalence of currencies.

The Money abstraction contains data attributes, accessor methods, and arithmeti
methods of one or more monies. The Money class references the Currency which
defines it.

The ExchangeRateDateBased abstraction contains data attributes and accessor
methods. The ExchangeRate interface uses Money as parameters for exchange.

2.2.4 Semantics

2.2.4.1 Network Business Component

The Distributed Business Component Architecture is intended for use as network
based business utilities which have courser-grained interfaces. These network-ba
objects are shared by multiple clients and therefore require re-entrant state. To re
network traffic this architecture defines value types used as parameters in the uti
objects, taking advantage of the pass-by-value semantics. This model supports th
that wants a shared, encapsulated component that is available to all applications o
network.

2.2.4.2 Common Business Objects

The Common Business Object Architecture's main intention is to be used as integ
application level business objects. This model would be used in an Object-Orien
application framework where the object is actually used internal to the application
Therefore the Common Business Objects have finer-grained interfaces and they d
require re-entrant state. These objects are not shared across processes, they are
within an application.

2.2.5 Security

This specification provides auditing capabilities for the CurrencyBook and
Currency . These capabilities include the vendor-supplied version of the
CurrencyBook and determining whether the CurrencyBook integrity has been
maintained. There is also the ability to determine if a currency is an ISO currency
which ISO version it is.

It is expected that the objects implemented for the currency services will utilize a
OMG-compliant security service. This will provide the necessary security
interoperability. With the exception of the auditing interfaces described above, the
Currency v1.0 Currency Modules June 2000 2-5

2

y

s

f

ing
 is
 the

are no requirements for currency that support extending the security service in an
way. Therefore, there is no need to directly address or reference security service
interfaces within this specification.

2.3 FbcCurrency Module

2.3.1 Module Interfaces and Values

value Currency;
value Money;
value ExchangeRate;

interface StateIdManager;
interface CurrencyBook;
interface ExchangeRateManager;
interface MoneyCalculator;
interface MoneyFormatter;

2.3.2 Typedefs

typedef sequence<Currency> CurrencyCollection;
typedef sequence<wstring> StringCollection;
typedef sequence<ExchangeRate> ExchangeRateCollection;

The CurrencyCollection is used by the CurrencyBook to pass a list of currency
instances. The StringCollection is used to pass a list of strings such as mnemonic
and locales and is represented as a sequence of strings. The
ExchangeRateCollection is used to pass a list of exchange rate instances.

2.3.3 Conversion Types

enum ConversionType { NO_CONVERSION,
 BASE_CURRENCY_CONVERSION,
 AUTOMATED_CONVERSION };

The conversion type is a set of options to determine what type of exchange rate
conversion should be used in the MoneyCalculator .

• If NO_CONVERSION is set, then arithmetic operations performed on monies o
different currencies will throw an exception.

• If BASE_CURRENCY_CONVERSION is set, then arithmetic operations on
monies of different currencies will convert both monies to monies of the base
currency as defined by the CurrencyBook. The monies are converted by retriev
the correct exchange rate from the ExchangeRateManager. The exchange rate
retrieved by the unique combination of the source and target currencies; where
source is the currency of the operands and the target is the base currency. An
exception is thrown if the appropriate exchange rate cannot be found.
2-6 Currency v1.0 June 2000

2

 the

cy of
ption

e

be

es.

e
• If AUTOMATED_CONVERSION is set and arithmetic operations are performed
on two monies of different currencies, then the first operand will be converted to
currency of the second operand. The exchange rate is retrieved by the unique
combination of the source and target currencies; where the source is the curren
the first operand and the target is the currency of the second operand. An exce
is thrown if the appropriate exchange rate cannot be found.

2.3.4 Rounding Types

enum RoundingType { ROUND_DOWN,
 ROUND_UP,
 ROUND_FLOOR,
 ROUND_CEILING,
 DONT_ROUND };

Rounding types are used by the MoneyCalculator to determine how rounding should
be performed during arithmetic operations.

• When ROUND_DOWN is set, all decimal places past the internal precision will b
truncated.

• When ROUND_UP is set, the first decimal place past the internal precision will
rounded up if greater than the rounding digit.

• When ROUND_FLOOR is set, a positive number will be rounded up and a
negative number will be rounded down using the round up and round down rul

• When ROUND_CEILING is set, a positive number will be rounded down and a
negative number will be rounded up using the round down and round up rules.

• When DONT_ROUND is set, no rounding will occur and internal precision will b
ignored.

2.3.5 Exceptions

enum ExceptionType { INVALID_ROUNDING_DIGIT,
 INVALID_PRECISION,
 AMBIGUOUS_STRING,
 DOES_NOT_EXIST,
 ALREADY_EXISTS,
 INVALID_CURRENCY,
 AMBIGUOUS_EXCHANGE_RATE,
 UNKNOWN_LOCALE,
 UNKNOWN_EXCEPTION };

exception FbcException
{
 ExceptionType error;
 wstring description
};
Currency v1.0 FbcCurrency Module June 2000 2-7

2

e
ctions

se of
r return
ified

d

s-by-

ic for
ain
d by
The error field is used to determine the type of exception that was raised. The
description gives more detail to the error message.

2.3.6 Values

There are value types defined in the FbcCurrency which are Currency , Money , and
ExchangeRate . Because FbcCurrency is a network component-based architectur
passing these basic objects as values helps control network usage. These abstra
have minimal behavior and contain mostly accessor methods. The primary purpo
these objects is to encapsulate data. These value types are used as parameters o
types to the business utilities. Each value defines an initialization method as spec
in the Objects-by-Value specification for Initializers. See Appendix A “Consolidate
IDL Specifications” for the format of the initialization operations.

2.3.6.1 Currency Value

The currency object represents a user-defined or ISO-defined currency. It is a pas
value object.

value Currency

Unique Identifier Accessors

wstring getMnemonic() raises (FbcException);
void setMnemonic(in wstring mnemonic) raises (FbcException);

short getNumericCode() raises (FbcException);
void setNumericCode(in short numericCode) raises (FbcException);

wstring getName() raises (FbcException);
void setName(in wstring name) raises (FbcException);

The currency mnemonic, numeric code, and name are all unique identifiers of the
currency. The ISO 4217:1995 standard defines name, numeric code, and mnemon
each of the ISO currencies. Users creating non-ISO currencies will need to maint
the uniqueness of the name, numeric code, and mnemonic. The mnemonic is use
money to identify the currency associated with the money.

Attribute Accessors

wstring getFractionName() raises(FbcException);
void setFractionName(in wstring name) raises(FbcException);

The fractional name is the name of the fraction part of a currency. Examples of
fractional names are “Cents” for the US dollar and “Pence” for British Pound.

wstring getSymbol() raises (FbcException);
void setSymbol(in wstring symbol) raises (FbcException);
2-8 Currency v1.0 June 2000

2

ional
 by

 a
r

 The
or
 has

,
 for a

ns a
 will

time
wstring getFractionSymbol() raises(FbcException);
void setFractionSymbol(in wstring symbol) raises(FbcException);

The symbol of a currency is the symbol of the base value of a currency. The fract
symbol is the symbol of the fractional part of a currency. These symbols are used
the money formatter to format a money of a particular currency.

short getRatioOfFractionToWhole() raises(FbcException);
void setRatioOfFractionToWhole(in short ratio) raises(FbcException);

The ratio of the fraction part to whole part of a currency is the ratio between the
smallest unit of the fractional part of a currency and one unit of the whole part of
currency. The ratio for United States Dollars is one hundred pennies to one dolla
which is 100. In cases where there is no minor part of a currency (i.e., Zen), this
method should return a value of 1.

CBO::DTime getIntroductionDate() raises(FbcException);
void setIntroductionDate(in CBO::DTime date) raises(FbcException);

CBO::DTime getExpirationDate() raises(FbcException);
void setExpirationDate(in CBO::DTime date) raises(FbcException);
boolean isCurrentlyActive() raises (FbcException);

The introduction date of a currency is the date in which it became a valid currency.
expiration date is the date in which the currency is no longer valid. An implement
will need to account for default expiration dates in cases where no expiration date
been set by a client, this would assume to indicate that this is an active currency.

wstring getDescription() raises(FbcException);
void setDescription(in wstring description) raises(FbcException);

Unused data for a currency is not exceptionable so vendors must return a wstring
whether it is a null value, spaces, or indicates a message. This would be the case
currency that does not contain a minor currency. The getFractionName() should still
return wstring .

ISO Currency

boolean isISOCurrency() raises(FbcException);
wstring getISOVersion() raises(FbcException);

A currency can be initialized as an ISO-defined currency. The isISO method retur
boolean to say whether the currency is ISO-defined or not. ISO-defined currencies
have the ISO Standard version number in which they are defined. There are no
corresponding set methods because they can be defined only at the initialization
of a currency.

Locale Information

StringCollection getLocales() raises(FbcException);
void addLocale(in wstring locale) raises (FbcException);
Currency v1.0 FbcCurrency Module June 2000 2-9

2

 to

ocale
les

ney
 its

mon

)
d

void removeLocale(in wstring locale) raises (FbcException);

A currency can have a set of locales in which it is used. Valid locales are defined
correspond one to one with the currency entity lists defined in the ISO 4217:1995
standard on currency. A user can add and remove locales from any currency. If a l
is changed on an ISO currency, it will no longer be considered ISO. The getLoca
method will return the set of all locales for which this currency is recognized. An
exception will be thrown if a locale is used that is not contained in the list of ISO
locales.

2.3.7 Money Value

Money refers to a specific amount of a particular currency. The abstraction for Mo
must clearly support editing and reading this amount as well as the knowledge of
currency.

value Money {
CBO::DDecimal getValue() raises(FbcException);
void setValue(in CBO::DDecimal amount) raises(FbcException);

wstring getCurrencyMnemonic() raises(FbcException);
void setCurrencyMnemonic(in wstring mnemonic)
raises(FbcException);

};

The Money value is supported with a decimal abstraction that is defined as a com
object defined in the CBO module.

The money definition above implies that, roughly, currency is the type (meta data
while money is the instance of the type. Therefore, money is in the context of, an
must have specific knowledge of, its defining currency. To support this, the money
abstraction defined in this specification supports access to its unique currency
identifier.

2.3.8 ExchangeRate Value

value ExchangeRate

Mnemonic Identifiers

wstring getSourceCurrencyMnemonic() raises (FbcException);
void setSourceCurrencyMnemonic(in wstring currencyMnemonic)
 raises (FbcException);

wstring getTargetCurrencyMnemonic () raises(FbcException);
void setTargetCurrencyMnemonic(in wstring currencyMnemonic)
 raises (FbcException);
2-10 Currency v1.0 June 2000

2

 to
zed

 used

 types
 of the

ency
f a
oney

e
Each exchange rate has a source and target currency to identify what currencies
convert with. An exception will be raised if the exchange rate has not been initiali
and the get source or target mnemonic is called.

Conversion Factor

CBO::DDecimal getConversionFactor() raises(FbcException);
void setConversionFactor(in CBO::DDecimal conversionFactor)
 raises(FbcException);

There are methods to set and get the conversion factor. This conversion factor is
to do the actual conversion calculations of money amounts.

Exchange Rate Type

wstring getType() raises(FbcException);
void setType(in wstring exchangeRateType)
 raises(FbcException);

There are methods to set and get the exchange rate types. A user will define the
of the exchange rates that are created. Exchange rate types are not used by any
internal code.

Exchanging Money

Money exchange(in Money sourceMoney) raises(FbcException);

The exchange method will take the source money and convert it to the target curr
defined in the exchange rate. An exception will be raised if the source money is o
different currency than the source currency in the exchange rate. The converted m
will be returned.

2.3.9 State Identifier Interface

interface StateIdManager

The StateIdManager interface uses the CosObjectIdentity::IdentifiableObject
interface from the Relationships Service. It identifies the network client to the
currency component so that state information can be used.

CosObjectIdentity::IdentifiableObject getStateIdentifier() raises (FbcExcep-
tion);

The first time a network client uses the currency component, it will need to get th
identifier to its state settings. This identifier will be used for all methods in the
currency component which set or require state information.
Currency v1.0 FbcCurrency Module June 2000 2-11

2

ase

ing

cale.
s
void removeStateIdentifier(in CosObjectIdentity::IdentifiableObject identi-
fier) raises (FbcException);

When a network client is completely done using the currency component it will rele
its identifier. This will free its state information.

2.3.10 CurrencyBook Interface

interface CurrencyBook

The CurrencyBook represents a set of ISO-defined or user-defined currencies.

CurrencyBook Identification

wstring getPublishedVersion() raises (FbcException);
boolean isIntegrityMaintained() raises (FbcException);

The published version is set by the currency component vendor. It is a unique str
that identifies the version of the CurrencyBook .

Integrity is maintained on the CurrencyBook as long as none of the original
currencies are changed. Integrity will not be maintained if an original currency is
replaced or deleted.

Retrieving Currency Information

CurrencyCollection getAllCurrencies() raises (FbcException);
StringCollection getAllCurrencyMnemonics() raises (FbcException);
StringCollection getAllCurrencyLocales() raises (FbcException);

Getting all currencies will return a sequence of currency objects representing
currencies defined in the CurrencyBook.

Getting all currency mnemonics will return a sequence of strings representing the
currency mnemonics associated with the set of all currencies defined in the
CurrencyBook .

Getting all currency locales will return a sequence of strings each representing a lo
The locale strings represent the set of all the ISO 4217:1995 defined entity string
representing locales for ISO currencies.

Currency Accessors

void addCurrency(in Currency currency)
 raises (FbcException);

void removeCurrency(in wstring currencyMnemonic)
 raises (FbcException);

void replaceCurrency(in Currency currency)
 raises (FbcException);
2-12 Currency v1.0 June 2000

2

t

rom

y

he

 the
 of

ic

cts

ate

ncy is
Currency getCurrency(in wstring mnemonic)
 raises (FbcException);

boolean containsCurrency(in wstring mnemonic)
 raises (FbcException);

boolean areEquivalent(in Currency currency,
 in Currency comparison)
 raises (FbcException);

Add currency adds a currency to the CurrencyBook . An exception is raised if the
currency already exists in the CurrencyBook or if the locales of the currency are no
standard locales. Adding currencies will have no impact on the integrity of the
CurrencyBook .

Remove currency removes a specific currency, identified by its unique mnemonic, f
the CurrencyBook . Removing currencies that were provided by the vendor will
change the integrity of the CurrencyBook . Removing currencies that were previousl
added will not impact the integrity of the CurrencyBook .

Replacing a currency requires that the mnemonic, numeric code, and name are t
same for both the currency in the CurrencyBook and the currency passed in.
Replacing a currency that was provided by the vendor will change the integrity of
CurrencyBook . Replacing currencies that were added will not impact the integrity
the CurrencyBook .

The getCurrency interface will return the currency object for the currency mnemon
passed in. If the currency does not exist in the CurrencyBook , an exception will be
raised.

The containsCurrency interface will return true if the currency represented by the
passed-in mnemonic exists in the CurrencyBook and false if it does not.

The areEquivalent interface determines whether the two passed-in currency obje
contain the same elements.

Base Currency

void setBaseCurrencyMnemonic(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring baseCurrency)
 raises (FbcException);

wstring getBaseCurrencyMnemonic(
 in CosObjectIdentity::IdentifiableObject stateIdentifer)
 raises (FbcException);

The setBaseCurrency interface passes in a state identifier. This preserves the st
information for the particular application using the CurrencyBook component. If no
currency matches the passed-in mnemonic, an exception is raised. The base curre
used by the MoneyFormatter .
Currency v1.0 FbcCurrency Module June 2000 2-13

2

fier is

dding
money
c
ation

hange

er. An

te
. An

The getBaseCurrencyMnemonic interface returns the mnemonic of the base
currency. An exception is raised if no base currency has been set. The state identi
passed in so that the CurrencyBook can determine which client needs this state
information.

2.3.11 Exchange Rate Manager Interface

interface ExchangeRateManager

The exchange rate manager contains a set of exchange rates and manages the a
and removing of exchange rates. The exchange rate manager is also used by the
calculator to retrieve exchange rates for the conversion of money during arithmeti
operations. The exchange rate manager contains no state information. The combin
of source currency, target currency, and rate type must be unique among the exc
rates in the exchange rate manager.

Creating Exchange Rates

ExchangeRate createExchangeRate(
in wstring rateTypeId,
in wstring sourceCurrencyMnemonic,
in wstring targetCurrencyMnemonic,
in CBO::DDecimal conversionFactor)
raises(FbcException);

Exchange rates are created by passing in the attribute data. The ExchangeRate is
returned to the user.

Exchange Rate Methods

void addExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException);

void removeExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException);

void replaceExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException);

Adding an exchange rate will add the exchange rate to the exchange rate manag
exception will be raised if the exchange rate already exists in the manager.

Removing an exchange rate will remove the exchange rate from the exchange ra
manager if a match of the source currency, target currency, and rate type is found
exception will be raised if a matching exchange rate cannot be found.

Replacing an exchange rate will replace the conversion rate in the exchange rate
specified, if a matching exchange rate is found in the exchange rate manager. An
exception will be raised if no matching exchange rate is found to be replaced.
2-14 Currency v1.0 June 2000

2

if
ange

s can
 use.

he

t of

ll be
Retrieval Methods

ExchangeRate getExchangeRateForRateType(
 in wstring rateTypeId,
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic)
 raises(FbcException);

ExchangeRate getExchangeRate(
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic)
 raises(FbcException);

The getExchangeRateForRateType operation will return an exchange rate object
the requested exchange rate is found. An exception is raised if no matching exch
rate is found. An exception is raised from the getExchangeRate operation if there
are multiple matching exchange rates for the source and target mnemonics.

2.3.12 Money Formatter

The money formatter is used to format and parse money. Since many application
use it at once, there is a state identifier to determine which formatting settings to

2.3.12.1 Default Symbols for Money Format String

The Money Formatter contains default symbols for specifying formatting strings. T
symbols are:

• The radix character is the delimiter between the whole and fraction parts of a
money amount.

• The grouping symbol is the delimiter between groups of digits of the whole par
a money amount.

• The currency symbol, currency fraction symbol, and currency mnemonic may a
used together or only one or two can be used in the same string.

Symbol Meaning

0 placeholder for a digit

placeholder for a digit, zero shows as absent

. placeholder for a radix symbol

, placeholder for a grouping symbol

* placeholder for a currency symbol

@ placeholder for a currency fraction symbol

M placeholder for a currency mnemonic

; separate negative format from positive format

- placeholder for negative prefix
Currency v1.0 FbcCurrency Module June 2000 2-15

2

or
if the

2.3.12.2 User-Defined Symbols Operations

wchar getPatternCurrencySymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
void setPatternCurrencySymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternCurrencySymbol)
 raises(FbcException);

wchar getPatternFractionSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
void setPatternFractionSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternFractionSymbol)
 raises(FbcException);

wchar getPatternMnemonicSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
void setPatternMnenonicSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternMnemonicSymbol)
 raises(FbcException);

wchar getPatternDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
void setPatternDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternDigit)
 raises(FbcException);

wchar getPatternRadix(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(CBOException);
void setPatternRadix(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternRadix)
 raises(FbcException);

Each of the setPattern and getPattern operations sets or gets the pattern symbol f
the format string. This allows the users to use symbols that make sense to them
default symbols do not make sense. A stateidentifier is passed in to each of these
interfaces because the symbol patterns are specific to each application using the
Currency component.
2-16 Currency v1.0 June 2000

2

 the
fault
s.

f the

ney
le

be.
2.3.12.3 Formatter Specification Operations

void setFormatByLocale(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring locale)
 raises (FbcException);

The formatter contains default formatting information for each locale supported by
ISO 4217:1995 standard. This interface will set the money formatter to use that de
locale format. An exception will be raised if the locale is not one of the ISO locale

wstring getFormattingString(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
void setFormattingString(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring formattingString)
 raises (FbcException);

There are operations to get and set the formatting string. The formatting string
determines the format of the money amount. The format is passed in as “positive
string; negative string.” The user can define what symbols to use for each piece o
formatting string or use the vendor-provided defaults.

wstring getRadixCharacter(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
void setRadixCharacter(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring radixCharacter)
 raises (FbcException);

wstring getGroupingSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
void setGroupingSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring groupingSymbol)
 raises (FbcException);

The radix character is the delimiter between the whole and fraction part of the mo
amount. The grouping symbol is the delimiter between groups of digits of the who
part of a money amount. The pattern settings show where these symbols should
The actual symbol must also be set.

short getInputMulitplier(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
Currency v1.0 FbcCurrency Module June 2000 2-17

2

ase
ying

rmat
use.

tion
t in

d. An
void setInputMultiplier(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short multiplier)
 raises (FbcException);

short getOutputDivisor(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
void setOutputDivisor(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short divisor)
 raises (FbcException);

The input multiplier and output divisor are for shifting the decimal place. This is a b
10 amount, so a multiplier of 1 shifts over one place which is the same as multipl
by 10.

2.3.12.4 Format and Parse Operations

wstring format(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money money)
 raises (FbcException);

Money parse(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring moneyString)
 raises (FbcException);

Money parseForCurrency(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring moneyString,
 in wstring currencyMnemonic)
 raises (FbcException);

The format interface formats a money amount returning a formatted string. The fo
uses the currency of the money to determine the appropriate currency symbol to
The formatter uses the CurrencyBook to retrieve the currency symbol information. If
the currency is not found in the CurrencyBook , an exception will be raised.

The parse interface takes a string and parses it into a money structure. An excep
will be raised if the string is ambiguous, such as if the symbol or mnemonic is no
the list of currencies in the CurrencyBook or if the symbol is in multiple currencies
in the CurrencyBook .

The parse for currency by mnemonic parses the string using the currency specifie
exception will be raised when the currency mnemonic cannot be found in the
CurrencyBook .
2-18 Currency v1.0 June 2000

2

rand
s can

d to

the

he

ic

ple
2.3.13 Money Calculator Interface

The money calculator abstraction is defined as a stateless calculator with no ope
context. This means that both operands must be supplied before binary operation
occur. The money calculator does contain state for precision, rounding rules, and
conversion rules. Operations which affect the state of the money calculator or nee
know the state of the money calculator to perform the operation must be passed
application state identifier.

2.3.13.1 Money Calculator Attributes

double getInternalPrecision(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);

void setInternalPrecision(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in double precision)
 raises (FbcException);

The internal precision determines the decimal precision of the money amount. If t
rounding type is DONT_ROUND, the internal precision is ignored. Otherwise, all
rounding rules are used at the specified precision.

RoundingType getRounding(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);

void setRounding(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in RoundingType roundingFlag)
 raises (FbcException);

short getRoundingDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);

void setRoundingDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short roundingDigit)
 raises (FbcException);

The rounding type is used to determine what type of rounding to use for arithmet
operations. RoundingType is a set of enumerations, each described in the
enumeration section of this document.

The rounding digit is used to determine the value of the internal precision digit on
which the rounding rules take place. Valid rounding digits are 1 through 9. An exam
of the RoundingDigit is:
Currency v1.0 FbcCurrency Module June 2000 2-19

2

n it
Rounding Digit=4
Internal Precision=2
Value= .383 Rounded= .38
Value= .384 Rounded= .39

ConversionType getConversion(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);

void setConversion(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in ConversionType type)
 raises (FbcException);

The ConversionType is used to determine what type of conversion to use for
arithmetic operations on monies of different currencies. ConversionType is a set of
enumerations, each described in the enumeration section of this document.

The CurrencyBook is used to determine the base currency when the
ConversionType is convert to base.

The ExchangeRateManager is used to determine what exchange rate to use whe
is necessary to exchange money.

2.3.13.2 Arithmetic Operations

Money add(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

Money subtract(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

Money multiply(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in CBO::DDecimal multiplier,
 in Money money)
 raises (FbcException);

Money divide(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in CBO::DDecimal divisor,
 in Money dividend)
 raises (FbcException);
2-20 Currency v1.0 June 2000

2

t.

 Base

g
 rate

r

.
Money abs(in Money oper1)
 raises (FbcException);

Money round(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1)
 raises (FbcException);

The MoneyCalculator allows addition of two money operands, returning the resul
The MoneyCalculator allows subtraction of two money operands, subtracting the
second operand from the first operand and returning the result.

Addition and subtraction is allowed on monies of different currency types if the
conversion type is set to either base currency conversion or automatic conversion.
currency conversion uses the CurrencyBook to determine the base currency. Both
conversion types use the ExchangeRateManager to exchange the money. Automatic
conversion uses the currency of the first operand as the source currency and the
currency of the second operand as the target currency for the exchange, returnin
money of the target currency. Exceptions will be raised if the appropriate exchange
is not found or if there is not a unique source/target exchange rate to use.

Money multiplication returns the resulting money of a money multiplied by a scala
value. Money division returns the resulting money of a money divided by a scalar
value.

The MoneyCalculator can determine the absolute value of a money operand,
returning the resulting money.

The MoneyCalculator will round a money operand, returning the resulting money
Rounding uses the rounding and internal precision setting in the calculator.

2.3.13.3 Relational Operations

boolean lessThan(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

boolean equal(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

boolean greaterThan(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);
Currency v1.0 FbcCurrency Module June 2000 2-21

2

r
ds of
e an
ison.

y and
rning
 rate

cy

xed
sing
Relational comparisons can be performed on monies of the same currency type o
monies of differing currency types. When a comparison is done on money operan
differing currency types, the conversion type is used to determine whether to rais
exception or to convert the money to a common currency type prior to the compar
Base currency conversion uses the CurrencyBook to determine the base currency.
Both conversion types use the ExchangeRateManager to exchange the money.
Automatic conversion uses the currency of the first operand as the source currenc
the currency of the second operand as the target currency for the exchange, retu
money of the target currency. Exceptions will be raised if the appropriate exchange
is not found or if there is not a unique source/target exchange rate to use.

2.3.14 Examples of Use

2.3.14.1 Currency Calculations with Mixed Currency Using the FbcCurren
Components

Refer to Figure 2-4 on page 2-23 for an illustration of currency calculations with mi
currency using the FbcCurrency components. Figure 2-5 on page 2-24 illustrates u
the FbcCurrency::MoneyFormatter.
2-22 Currency v1.0 June 2000

2

ts
Figure 2-4 Currency Calculations with Mixed Currency Using the FbcCurrency Componen

 : StateId
Manager

 : Money
Calculator

 : Money : ExchangeRate
Manager

 : Exchange
Rate

 : CurrencyBook

Since the client first
set the CurrencyBook's
base currency to
pounds, the calculator
will return a Money
object that is in pounds
(converting both
operands to pounds
and doing the addition
on them).

Get the exchange rate using
the currency mnemonic of the
passed in monies and base
currency.

 : Money : Exchange
Rate

The MoneyCalculator would talk to the CurrencyBook to get the baseCurrency (passing it the client's id). It would also talk to the
ExchangeRateManager to get the ExchangeRates for USD to GBP and ITL to GBP to do the exchanges. The money returned would be in
GBP currency with a precision of .01, rounded up.

The calculator will perform the
calculation using the rounding
rules and the calculator's
internal precision.

8: getCurrencyMnemonic()

9: getExchangeRate(mnemonic of money oper1, baseMnemonic)

12: getExchangeRate(mnemonic of money oper2, baseMnemonic)

7: getBaseCurrencyMnemonic(stateId)

Client

1: getStateIdentifier()

5: setConversion(stateId, BASE_CURRENCY_CONVERSION)

6: add(stateId, moneyUSD, moneyITL)

4: setInternalPrecision(stateId, .01)

3: setRounding(stateId, ROUND_UP)

2: setBaseCurrencyMnemonic(stateId, "GBP")

13: exchange(money oper2)

10: exchange(money oper1)

11: getCurrencyMnemonic()

14:
Currency v1.0 FbcCurrency Module June 2000 2-23

2

Figure 2-5 Using the FbcCurrency::MoneyFormatter

Client theMoneyFormatter
: MoneyFormatter

moneyITL :
Money

theCurrencyBook
: CurrencyBook

currencyITL :
Currency

1: setFormattingString(stateId, "$##,##0.00")

2: setRadixCharacter(stateId, ",")

3: setGroupingSymbol(stateId, " ")

4: format(stateId, moneyITL)

5: getCurrenyMnemonic()

8:

Format money
value using the
formatting
string and
currency
information.

6: getCurrency(money's currency mnemonic)

7: getSymbol()
2-24 Currency v1.0 June 2000

2

s
ss
2.4 CboCurrency Module

2.4.1 Module Interfaces and Values

Each interface and value contain an initialization method which will allow
implementors to adapt to various protocols such as Enterprise Beans, the method
identified in the Objects-by-Value specification, or the use of factories in a Busine
Object Facility.

interface Currency;
value DMoney;
value DExchangeRateDateBased;

2.4.2 Currency Interface

interface Currency

The CboCurrency::Currency interface defines similar accessor methods as the
FbcCurrency::Currency interface. Only the additional interface methods will be
described here.

2.4.2.1 Initialization

void initializeCurrency(in wstring name,
 in wstring mnemonic,
 in wstring symbol,
 in long scaleFactor,
 in short ratioOfFractionToWhole,
 in wstring description,
 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in boolean isExternalOutputShowingFractions,
 in boolean isInternalOutputShowingFractions)
 raises(CBO::CBOException);

The initialization method is used to initialize a currency.

2.4.2.2 Money Formatting Attributes

boolean isExternalOutputShowingFractions() raises(CBO::CBOException);
void setExternalOutputShowingFractions(in boolean flag)

raises(CBO::CBOException);

boolean isInternalOutputShowingFractions() raises(CBO::CBOException);
void setInternalOutputShowingFractions(in boolean flag)

raises(CBO::CBOException);
Currency v1.0 CboCurrency Module June 2000 2-25

2

for

e

e.

e

y
ey is
The booleans for the internal and external output showing fractions are available
use by applications to allow different users in an application to control and select
different options for the display of the currency values. The applications control th
setting and use of these attributes.

2.4.2.3 Locale Information

CosQueryCollection::Iterator getLocaleIterator()
raises(CBO::CBOException);

The getLocaleIterator() method will return a CosQueryCollection::Iterator that
can be used to access the locales defined for a Currency .

2.4.2.4 Equality Testing

boolean equals(in Object another Currency)
raises(CBO::CBOException);

The equals method will check the values of the objects, not instance equality.

2.4.3 Money

value DMoney

The CboCurrency::DMoney value defines similar accessor methods as
FbcCurrency::Money . Only the additional interface methods will be described her

2.4.3.1 Initialization and Getting/Setting Data

void initializeDMoney(in Currency theCurrency,
 in CBO::DDecimal amount) raises(CBO::CBOException);

The initialize interface allows the Money to be initialized with the Currency and th
amount.

Currency getCurrency() raised(CBO::CBOException);
void setCurrency(in Currency theCurrency)
 raises(CBO::CBOException);

The Currency object is used in these operations instead of the identifying currenc
mnemonic. This allows the user to retrieve or set the actual currency that this mon
defined by.

2.4.3.2 Money Arithmetic

DMoney add(in DMoney anotherMoney) raises(CBO::CBOException);
DMoney subtract(in DMoney anotherMoney) raises(CBO::CBOException);
2-26 Currency v1.0 June 2000

2

of

ethod
sult.

thod

w
 zero.

ill

 the
s
DMoney multiply(in CBO::DDecimal multiplier) raises(CBO::CBOException);
DMoney divide(in CBO::DDecimal denominator) raises(CBO::CBOException);

The add method adds two monies of like currencies together and returns a new
instance of money containing the result. An exception is raised if the monies are
differing currencies.

The subtract method subtracts the passed-in money from the money which the m
is called. The subtract method returns a new instance of money containing the re
An exception is raised if the monies are of differing currencies.

The multiply method multiplies the passed-in scalar value with the money the me
is called on. A new money instance is returned.

The divide method divides the money amount by the passed-in scalar value. A ne
money instance is returned. An exception is raised if the passed-in scalar value is

2.4.3.3 Money Logical Operations

boolean equals(in Object anotherMoney) raises(CBO::CBOException);
boolean greater(in DMoney anotherMoney) raises(CBO::CBOException);
boolean greaterEqual(in DMoney anotherMoney)
 raises(CBO::CBOException);
boolean greaterThanZero() raises(CBO::CBOException);
boolean less(in DMoney anotherMoney) raises(CBO::CBOException);
boolean lessEqual(in DMoney anotherMoney)
 raises(CBO::CBOException);
boolean lessThanZero() raises(CBO::CBOException);
boolean isZero() raises(CBO::CBOException);
boolean isOfSameCurrency(in DMoney anotherMoney)
 raises(CBO::CBOExcep tion);

Each of the logical operations takes the current DMoney object and does the
comparison against the passed-in DMoney object. As an example, greater will
compare this Money greater than another money.

The equals method will check the values of the objects, not instance equality. It w
check if the monies are of the same currency and same amount.

2.4.3.4 Money Rounding and Truncation

DMoney createRounded(in long places) raises(CBO::CBOException);
DMoney createTruncated(in long places) raises(CBO::CBOException);

The createRounded and createTruncated operations will create a new DMoney
instance. The new money instance will contain a rounded or truncated amount from
original money instance. The truncation or round will occur at the passed-in place
digit.

DMoney createCeiling() raises(CBO::CBOException);
DMoney createFloor() raises(CBO::CBOException);
Currency v1.0 CboCurrency Module June 2000 2-27

2

n

e

ed if
rency
The createFloor and createCeiling operations will return new DMoney instances.
The new money instances will have the amount changed to be rounded up or dow
depending upon whether they are positive or negative numbers. The ceiling of a
positive number is the amount rounded up, the ceiling of a negative number is th
amount rounded down. The floor is just the opposite.

DMoney createAbs() raises(CBO::CBOException);
DMoney createChangeSign() raises(CBO::CBOException);

The createAbs method returns an instance of DMoney with the amount as the
absolute value of the money amount being operated on.

The createChangeSign returns a new instance of DMoney with the sign of the
amount reversed from the money amount being operated on.

2.4.4 Exchange Rate Date Based

value DExchangeRateDateBased

The CboCurrency::ExchangeRateDateBased value defines similar operations as
the FbcCurrency::ExchangeRate . Only the additional interface methods will be
described here.

void initializeDExchangeRateDateBased(in wstring rateTypeID,
 in Currency fromCurrency,
 in Currency toCurrency,
 in CBO::DTime startDate,
 in CBO::DTime endDate,
 in CBO::DDecimal conversionFactor)
 raises(CBO::CBOException);

Currency getSourceCurrency() raises (CBO::CBOException);
void setSourceCurrency(in Currency newSourceCurrency)
 raises(CBO::CBOException);

Currency getTargetCurrency() raises (CBO::CBOException);
void setTargetCurrency(in Currency newTargetCurrency)
 raises(CBO::CBOException);

DMoney exchange(in DMoney money)
 raises(CBO::CBOException);

The exchange rate can exchange the money passed in. An exception will be rais
the source currency in the money being exchanged did not match the source cur
in the exchange rate.

2.4.4.1 Exchange Rate Dates

CBO::DTime getStartDate() raises(CBO::CBOException);
void setStartDate(in CBO::DTime startDate) raises(CBO::CBOException);
2-28 Currency v1.0 June 2000

2

the

es.
.”

s

o
 with
d

an
CBO::DTime getEndDate() raises(CBO::CBOException);
void setEndDate(in CBO::DTime endDate) raises(CBO::CBOException);

Exchange rates have start and end dates in which they are valid.

2.4.4.2 Equality Testing

boolean equals(in Object another ExchangeRate)
raises(CBO::CBOException);

The equals method will check the values of the objects, not instance equality.

2.5 CBO Module

The Common Business Object module defined in this specification is a subset of
CBO module defined in the Joint Common Business Object Revised Submission.
Refer to the document: OMG bom/98-01-06 IBM/NIIIP Revised Business Objects
CBO RFP submission for more details and for information on each of the interfac
The CBO idl is listed and specified in Appendix A “Consolidated IDL Specifications
The following is a general overview of the Common Business Objects abstraction
used by the Currency facility.

2.5.1 CBO Values and Interfaces

value DDecimal;
value DAmountOfTime;
value DTime;

interface DDecimalFactory;
interface DAmountOfTimeFactory;
interface DTimeFactory;

2.5.2 DDecimal

DDecimal is a common business object which provides the capabilities required t
set, retrieve, and perform mathematical operations with and upon a decimal value
a specified precision. DDecimal allows a decimal value to be used in collections an
as a property value. The DDecimal interface provides functionality such as rounding
and truncation.

2.5.3 DAmountOfTime

A DAmountOfTime object represents an absolute (positive) amount of time that c
be added to, subtracted from, or used to hold differences of DTime objects. A
DAmountOfTime object is defined as a specified number of weeks, days, hours,
minutes, and seconds.
Currency v1.0 CBO Module June 2000 2-29

2

nd
d
2.5.4 DTime

A DTime object represents an actual date and time. A DTime object encapsulates a
point in time defined by a calendar date (year, month, day and an hour, minute, a
second in that day). Formatting date and time information according to a specifie
locale is supported by the DTime interface.

2.5.5 DDecimalFactory

The DDecimalFactory is used to create DDecimal objects.

2.5.6 DAmountOfTimeFactory

The DAmountOfTimeFactory is used to create DAmountOfTime objects.

2.5.7 DTimeFactory

The DTimeFactory is used to create DTime objects.
2-30 Currency v1.0 June 2000

Consolidated IDL Specifications A
g
l from

 in
.

 file.
The following idl specifications depend on the CORBA specification for the wstrin
and wchar types. The idl also depends on the pass-by-value semantics. It uses id
the CosQueryCollection module of the Query Service and idl from the
CosObjectIdentity module of the Relationships Service. The Object interface used
the CboCurrency and CBO modules defined in CORBA.idl must also be available
Because many of these specifications are not yet available, the submitters have
compiled this idl by:

• using typedefs on string and char to wstring and wchar,

• changing value types to interface types, and

• dummying any other non-available service types in the appropriate included idl

A.1 Network Business Component IDL

#ifndef _FbcCurrency_idl_
#define _FbcCurrency_idl_

#include <ObjectIdentity.idl>
#include <CBO.idl>

module FbcCurrency {
 value Currency;
 value Money;
 value ExchangeRate;

 interface StateIdManager;
 interface CurrencyBook;
 interface ExchangeRateManager;
 interface MoneyFormatter;
 interface MoneyCalculator;

 typedef sequence<Currency> CurrencyCollection;
Currency v1.0 June 2000 A-1

A

 typedef sequence<ExchangeRate> ExchangeRateCollection;
 typedef sequence<string> StringCollection;

 enum ConversionType { NO_CONVERSION,
 BASE_CURRENCY_CONVERSION,
 AUTOMATED_CONVERSION };

 enum RoundingType { ROUND_DOWN,
 ROUND_UP,
 ROUND_FLOOR,
 ROUND_CEILING,
 DONT_ROUND };

 enum ExceptionType { INVALID_ROUNDING_DIGIT,
 INVALID_PRECISION,
 AMBIGUOUS_STRING,
 DOES_NOT_EXIST,
 ALREADY_EXISTS,
 INVALID_CURRENCY,
 AMBIGUOUS_EXCHANGE_RATE,
 UNKNOWN_LOCALE,
 UNKNOWN_EXCEPTION };

 // Exceptions
 exception FbcException {
 ExceptionType error;
 wstring description;
 };

 value Currency
 {

void init(
 in wstring name,
 in wstring mnemonic,
 in wstring numericCode,
 in wstring symbol,
 in wstring fractionSymbol,
 in long scaleFactor,
 in short ratioOfFractionToWhole,
 in wstring description,
 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in wstring ISOVersion,
 in boolean isExternalOutputShowingFractions,
 in boolean isinternalOutputShowingFractions)
 raises(FbcException);

 wstring getMnemonic() raises (FbcException);
 void setMnemonic(in wstring mne) raises (FbcException);

 short getNumericCode() raises (FbcException);
 void setNumericCode(in short numericCode) raises (FbcException);
A-2 Currency v1.0 June 2000

A

 wstring getName() raises (FbcException);
 void setName(in wstring name) raises (FbcException);

 wstring getFractionName() raises (FbcException);
 void setFractionName(in wstring name) raises (FbcException);

 wstring getSymbol() raises (FbcException);
 void setSymbol(in wstring symbol) raises (FbcException);

 wstring getFractionSymbol() raises (FbcException);
 void setFractionSymbol(in wstring symbol) raises (FbcException);

 short getRatioOfFractionToWhole() raises (FbcException);
 void setRatioOfFractionToWhole(in short ratio)
 raises (FbcException);

 CBO::DTime getIntroductionDate() raises (FbcException);
 void setIntroductionDate(in CBO::DTime date) raises (FbcException);

 CBO::DTime getExpirationDate() raises (FbcException);
 void setExpirationDate(in CBO::DTime date) raises (FbcException);

 boolean isCurrentlyActive() raises (FbcException);

 wstring getDescription() raises (FbcException);
 void setDescription(in wstring description) raises (FbcException);

 boolean isISOCurrency() raises (FbcException);
 wstring getISOVersion() raises (FbcException);

 StringCollection getLocales() raises (FbcException);
 void addLocale(in wstring locale)
 raises (FbcException); // UNKNOWN_LOCALE

 void removeLocale(in wstring locale)
 raises (FbcException); // UNKNOWN_LOCALE
 };

 value Money
 {

void init(in wstring currencyMnemonic,
 in CBO::DDecimal theValue)
 raises(FbcException);

 wstring getCurrencyMnemonic() raises (FbcException);
 void setCurrencyMnemonic(in wstring currencyMnemonic)
 raises (FbcException);

 CBO::DDecimal getValue() raises (FbcException);
 void setValue(in CBO::DDecimal amount) raises (FbcException);
 };
value ExchangeRate
 {

void init(in wstring rateTypeID,
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic,
Currency V1.0 June 2000 A-3

A

 in CBO::DDecimal conversionFactor)
 raises(FbcException);

 wstring getSourceCurrencyMnemonic() raises (FbcException);
 void setSourceCurrencyMnemonic(in wstring currencyMnemonic)
 raises(FbcException);

 wstring getTargetCurrencyMnemonic () raises(FbcException);
 void setTargetCurrencyMnemonic(in wstring currencyMnemonic)
 raises(FbcException);

 CBO::DDecimal getConversionFactor() raises(FbcException);
 void setConversionFactor(in CBO::DDecimal conversionFactor)
 raises(FbcException);

 wstring getType() raises(FbcException);
 void setType(in wstring exchangeRateType)
 raises(FbcException);

 Money exchange(in Money sourceMoney) raises(FbcException);
 };

 interface StateIdManager
 {
 CosObjectIdentity::IdentifiableObject getStateIdentifier() raises (FbcException);
 void removeStateIdentifier(in CosObjectIdentity::IdentifiableObject identifier)
raises(FbcException);
 };

 interface CurrencyBook
 {

 wstring getPublishedVersion() raises (FbcException);
 boolean isIntegrityMaintained() raises (FbcException);

 CurrencyCollection getAllCurrencies() raises (FbcException);
 StringCollection getAllCurrencyMnemonics() raises (FbcException);
 StringCollection getAllCurrencyLocales() raises (FbcException);

 void addCurrency(in Currency currency)
 raises (FbcException); // ALREADY_EXISTS
 void removeCurrency(in wstring mnemonic)
 raises (FbcException); // DOES_NOT_EXIST
 void replaceCurrency(in Currency currency)
 raises (FbcException); // DOES_NOT_EXIST

 Currency getCurrency(in wstring mnemonic)
 raises (FbcException); // DOES_NOT_EXIST

 boolean containsCurrency(in wstring mnemonic)
 raises(FbcException);

 void setBaseCurrencyMnemonic(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring baseCurrencyMnemonic)
A-4 Currency v1.0 June 2000

A

 raises(FbcException); // DOES_NOT_EXIST

 wstring getBaseCurrencyMnemonic(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);

 boolean areEquivalent(in Currency currency,
 in Currency comparison)
 raises (FbcException);
 };

 interface MoneyCalculator
 {

 double getInternalPrecision(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setInternalPrecision(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in double internalPrecision)
 raises (FbcException); // INVALID_PRECISION

 RoundingType getRounding(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setRounding(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in RoundingType roundingFlag)
 raises (FbcException);

 short getRoundingDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setRoundingDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short roundingDigit)
 raises (FbcException); // INVALID_ROUNDING_DIGIT

 ConversionType getConversion(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);

 void setConversion(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in ConversionType type) raises (FbcException);

 Money add(in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

 Money subtract(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
Currency V1.0 June 2000 A-5

A

 in Money oper2)
 raises (FbcException);

 Money multiply(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in CBO::DDecimal multiplier,
 in Money money)
 raises (FbcException);

 Money divide(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in CBO::DDecimal divisor,
 in Money dividend)
 raises (FbcException);

 Money abs(in Money oper1)
 raises (FbcException);

 Money round(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1)
 raises (FbcException);

 boolean lessThan(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

 boolean equal(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);

 boolean greaterThan(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money oper1,
 in Money oper2)
 raises (FbcException);
 };

 interface MoneyFormatter
 {
 void setFormatByLocale(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring locale)
 raises (FbcException); // UNKNOWN_LOCALE

 wchar getPatternCurrencySymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
 void setPatternCurrencySymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
A-6 Currency v1.0 June 2000

A

 in wchar patternCurrencySymbol)
 raises(FbcException);

 wchar getPatternFractionSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
 void setPatternFractionSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternFractionSymbol)
 raises(FbcException);

 wchar getPatternMnemonicSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
 void setPatternMnenonicSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternMnemonicSymbol)
 raises(FbcException);

 wchar getPatternDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
 void setPatternDigit(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternDigit)
 raises(FbcException);

 wchar getPatternRadix(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises(FbcException);
 void setPatternRadix(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wchar patternRadix)
 raises(FbcException);

 wstring getFormattingString(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setFormattingString(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring formattingString)
 raises (FbcException); // AMBIGUOUS_STRING

 wstring getRadixCharacter(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setRadixCharacter(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring radixCharacter)
 raises (FbcException);

 wstring getGroupingSymbol(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setGroupingSymbol(
Currency V1.0 June 2000 A-7

A

 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring groupingSymbol)
 raises (FbcException);

 short getInputMulitplier(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setInputMultiplier(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short multiplier)
 raises (FbcException);

 short getOutputDivisor(
 in CosObjectIdentity::IdentifiableObject stateIdentifier)
 raises (FbcException);
 void setOutputDivisor(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in short divisor)
 raises (FbcException);

 wstring format(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in Money money)
 raises (FbcException);

 Money parse(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring moneyString)
 raises (FbcException); // AMBIGUOUS_STRING

 Money parseForCurrency(
 in CosObjectIdentity::IdentifiableObject stateIdentifier,
 in wstring moneyString,
 in wstring currencyMnemonic)
 raises (FbcException);
 };

 interface ExchangeRateManager
 {
 ExchangeRate createExchangeRate(
 in wstring rateTypeID,
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic,
 in CBO::DDecimal conversionFactor)
 raises (FbcException);

 void addExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException); // ALREADY_EXISTS

 void removeExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException); // DOES_NOT_EXIST

 boolean replaceExchangeRate(in ExchangeRate exchangeRate)
 raises(FbcException); // DOES_NOT_EXIST
A-8 Currency v1.0 June 2000

A

 ExchangeRate getExchangeRate(
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic)
 raises (FbcException);

 ExchangeRate getExchangeRateForRateType(
 in wstring rateTypeID,
 in wstring sourceCurrencyMnemonic,
 in wstring targetCurrencyMnemonic)
 raises (FbcException); // DOES_NOT_EXIST

 ExchangeRateCollection getAllExchangeRates() raises (FbcException);
 };

}; // End of FbcCurrency Module
#endif //_FbcCurrency_idl

A.2 Common Business Object Architecture IDL

#ifndef _CboCurrency_idl_
#define _CboCurrency_idl_

#include <CBO.idl>
#include <CORBA.idl>
#include <CosQueryCollection.idl>

module CboCurrency {
 // exceptions
 // exception CBOException; is picked up from CBO.IDL

 // Interface Definitions
 interface Currency;
 value DMoney;
 value DExchangeRateDateBased;

 interface Currency
 {
 void init(
 in wstring name,
 in wstring mnemonic,
 in wstring numericCode,
 in wstring symbol,
 in wstring fractionSymbol,
 in long scaleFactor,
 in short ratioOfFractionToWhole,
 in wstring description,
 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in wstring ISOVersion,
 in boolean isExternalOutputShowingFractions,
 in boolean isinternalOutputShowingFractions)
 raises(CBO::CBOException);
Currency V1.0 June 2000 A-9

A

 long getScaleFactor() raises(CBO::CBOException);
 void setScaleFactor(in long scaleFactor) raises(CBO::CBOException);

 boolean isExternalOutputShowingFractions() raises(CBO::CBOException);
 void setExternalOutputShowingFractions(in boolean flag)
 raises(CBO::CBOException);

 boolean isInternalOutputShowingFractions() raises(CBO::CBOException);
 void setInternalOutputShowingFractions(in boolean flag)
 raises(CBO::CBOException);

boolean equals(in Object anotherCurrency) raises(CBO::CBOException);

 wstring getMnemonic() raises (CBO::CBOException);
 void setMnemonic(in wstring mne) raises (CBO::CBOException);

 short getNumericCode() raises (CBO::CBOException);
 void setNumericCode(in short numericCode) raises (CBO::CBOException);

 wstring getName() raises (CBO::CBOException);
 void setName(in wstring name) raises (CBO::CBOException);

 wstring getFractionName() raises (CBO::CBOException);
 void setFractionName(in wstring name) raises (CBO::CBOException);

 wstring getSymbol() raises (CBO::CBOException);
 void setSymbol(in wstring symbol) raises (CBO::CBOException);

 wstring getFractionSymbol() raises (CBO::CBOException);
 void setFractionSymbol(in wstring symbol) raises (CBO::CBOException);

 short getRatioOfFractionToWhole() raises (CBO::CBOException);
 void setRatioOfFractionToWhole(in short ratio)
 raises (CBO::CBOException);

 CBO::DTime getIntroductionDate() raises (CBO::CBOException);
 void setIntroductionDate(in CBO::DTime date) raises (CBO::CBOExcep tion);

 CBO::DTime getExpirationDate() raises (CBO::CBOException);
 void setExpirationDate(in CBO::DTime date) raises (CBO::CBOException);

 wstring getDescription() raises (CBO::CBOException);
 void setDescription(in wstring description) raises (CBO::CBOException);

 boolean isISOCurrency() raises (CBO::CBOException);
 wstring getISOVersion() raises (CBO::CBOException);

 CosQueryCollection::Iterator getLocaleIterator() raises (CBO::CBOException);
 void addLocale(in wstring locale)
 raises (CBO::CBOException); // UNKNOWN_LOCALE

 void removeLocale(in wstring locale)
 raises (CBO::CBOException); // UNKNOWN_LOCALE
A-10 Currency v1.0 June 2000

A

 };

 value DMoney
 {
 // Initialization and Setting/Getting Data
 //
 void init(in Currency theCurrency,
 in CBO::DDecimal theValue)
 raises(CBO::CBOException);

 Currency getCurrency() raises(CBO::CBOException);
 void setCurrency(in Currency newCurrency) raises(CBO::CBOException);

 long getScaleFactor() raises(CBO::CBOException);

 wstring getCurrencyMnemonic() raises (CBO::CBOException);

 CBO::DDecimal getValue() raises (CBO::CBOException);
 void setValue(in CBO::DDecimal amount) raises (CBO::CBOException);

 // DMoney Arithmetic
 //
 DMoney add(in DMoney anotherMoney) raises(CBO::CBOException);
 DMoney subtract(in DMoney anotherMoney) raises(CBO::CBOException);
 DMoney multiply(in CBO::DDecimal multiplier) raises(CBO::CBOException);
 DMoney divide(in CBO::DDecimal denominator) raises(CBO::CBOException);

 // DMoney Logical Operations
 //
 boolean equals(in Object anotherMoney) raises(CBO::CBOException);
 boolean greater(in DMoney anotherMoney) raises(CBO::CBOException);
 boolean greaterEqual(in DMoney anotherMoney)
 raises(CBO::CBOException);
 boolean greaterThanZero() raises(CBO::CBOException);
 boolean less(in DMoney anotherMoney) raises(CBO::CBOException);
 boolean lessEqual(in DMoney anotherMoney)
 raises(CBO::CBOException);
 boolean lessThanZero() raises(CBO::CBOException);
 boolean isZero() raises(CBO::CBOException);
 boolean isOfSameCurrency(in DMoney anotherMoney)
 raises(CBO::CBOException);

 // DMoney Rounding and Truncation etc.
 //
 DMoney createRounded(in long places) raises(CBO::CBOException);
 DMoney createTruncated(in long places) raises(CBO::CBOException);
 DMoney createCeiling() raises(CBO::CBOException);
 DMoney createFloor() raises(CBO::CBOException);
 DMoney createAbs() raises(CBO::CBOException);
 DMoney createChangeSign() raises(CBO::CBOException);

 };

 value DExchangeRateDateBased
Currency V1.0 June 2000 A-11

A

 {
 void init(in wstring rateTypeID,
 in Currency fromCurrency,
 in Currency toCurrency,
 in CBO::DTime startDate,
 in CBO::DTime endDate,
 in CBO::DDecimal conversionFactor)
 raises(CBO::CBOException);

 Currency getSourceCurrency() raises (CBO::CBOException);
 void setSourceCurrency(in Currency newSourceCurrency)
 raises(CBO::CBOException);

 Currency getTargetCurrency() raises (CBO::CBOException);
 void setTargetCurrency(in Currency newTargetCurrency)
 raises(CBO::CBOException);

 CBO::DTime getStartDate() raises (CBO::CBOException);
 void setStartDate(in CBO::DTime startDate)
 raises(CBO::CBOException);

 CBO::DTime getEndDate() raises (CBO::CBOException);
 void setEndDate(in CBO::DTime endDate)
 raises(CBO::CBOException);

 wstring getSourceCurrencyMnemonic() raises (CBO::CBOException);
 void setSourceCurrencyMnemonic(in wstring currencyMnemonic)
 raises(CBO::CBOException);

 wstring getTargetCurrencyMnemonic () raises(CBO::CBOException);
 void setTargetCurrencyMnemonic(in wstring currencyMnemonic)
 raises(CBO::CBOException);

 CBO::DDecimal getConversionFactor() raises(CBO::CBOException);
 void setConversionFactor(in CBO::DDecimal conversionFactor)
 raises(CBO::CBOException);

 wstring getType() raises(CBO::CBOException);
 void setType(in wstring exchangeRateType)
 raises(CBO::CBOException);

 boolean equals(in Object another ExchangeRate)
 raises(CBO::CBOException);

 DMoney exchange(in DMoney sourceMoney) raises(CBO::CBOException);

 };

 interface CurrencyFactory
 {
 Currency createCurrency(in wstring name,
 in wstring mnemonic,
 in wstring numericCode,
 in wstring symbol,
 in wstring fractionSymbol,
 in long scaleFactor,
A-12 Currency v1.0 June 2000

A

 in short ratioOfFractionToWhole,
 in wstring description,
 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in wstring ISOVersion,
 in boolean isExternalOutputShowingFractions,
 in boolean isInternalOutputShowingFractions)
 raises(CBO::CBOException);

 };

 interface MoneyFactory
 {
 DMoney createDMoney(in Currency theCurrency,
 in CBO::DDecimal theValue) raises(CBO::CBOException);

 };

 interface ExchangeRateDateBasedFactory
 {
 DExchangeRateDateBased createDExchangeRateDateBased(
 in wstring rateTypeID,
 in Currency fromCurrency,
 in Currency toCurrency,
 in CBO::DTime startDate,
 in CBO::DTime endDate,
 in CBO::DDecimal conversionFactor)
 raises (CBO::CBOException);

 };

}; // end of CboCurrency Module
#endif // CboCurrency_idl

A.3 Common Business Object Module

#ifndef _CBO_idl_
#define _CBO_idl_

#include <CORBA.idl>

module CBO
{
 // exceptions
 exception CBOException {};

 // Interface Definitions

 value DDecimal;
 value DAmountOfTime;
Currency V1.0 June 2000 A-13

A

 value DTime;

 interface DDecimalFactory;
 interface DAmountOfTimeFactory;
 interface DTimeFactory;

value DDecimal
 {
 DDecimal add (in DDecimal summand) raises (CBOException);
 DDecimal subtract(in DDecimal subtrahend) raises(CBOException);
 DDecimal multiply(in DDecimal factor) raises(CBOException);
 DDecimal divide(in DDecimal denominator) raises(CBOException);
 boolean equals(in Object anObject) raises(CBOException);
 boolean greater(in DDecimal aDecimal) raises(CBOException);
 boolean greaterEqual(in DDecimal aDecimal) raises(CBOException);
 boolean greaterThanZero() raises(CBOException);
 boolean less(in DDecimal aDecimal) raises(CBOException);
 boolean lessEqual (in DDecimal aDecimal) raises (CBOException);
 boolean lessThanZero () raises (CBOException);
 boolean isZero () raises (CBOException);
 boolean isOne () raises (CBOException);
 void setEqual (in Object dependentObject) raises (CBOException);
 void assign (in DDecimal aDecimal) raises (CBOException);
 void setToZero () raises (CBOException);
 void truncate(in long newScaleFactor) raises(CBOException);
 void round(in long newScaleFactor) raises(CBOException);
 void changeSignOf () raises (CBOException);
 DDecimal changeSign() raises (CBOException);
 DDecimal abs () raises (CBOException);
 double getCompareValue() raises(CBOException);
 long scaleFactor() raises (CBOException);
 void initializeDDecimal(in wstring value, in long scaleFactor) raises
(CBOException);
 };

interface DDecimalFactory
 {
 DDecimal createDDecimal(in wstring value, in long scaleFactor)
raises(CBOException);
 };

 value DAmountOfTime
 {
 long getSeconds () raises (CBOException);
 long getMinutes () raises (CBOException);
 long getHours () raises (CBOException);
 long getDays () raises (CBOException);
 long getWeeks() raises (CBOException);
 void setSeconds (in long newSeconds) raises (CBOException);
 void setMinutes (in long newMinutes) raises (CBOException);
 void setHours (in long newHours) raises (CBOException);
 void setDays (in long newDays) raises (CBOException);
A-14 Currency v1.0 June 2000

A

 void setWeeks(in long newWeeks) raises (CBOException);
 long long toSeconds () raises (CBOException);
 long toMinutes () raises (CBOException);
 long toHours () raises (CBOException);
 long toDays () raises (CBOException);
 long toWeeks () raises (CBOException);
 DAmountOfTime addTo (in DAmountOfTime anotherAmount) raises (CBOExcep-
tion);
 DAmountOfTime difference (in DAmountOfTime anotherAmount) raises
(CBOException);
 boolean lessThan (in DAmountOfTime anotherAmount) raises (CBOException);
 boolean greaterThan (in DAmountOfTime anotherAmount) raises
(CBOException);
 void initializeDAmountOfTime (in long weeks,
 in long days,
 in long hours,
 in long minutes,
 in long seconds) raises (CBOException);
 };

interface DAmountOfTimeFactory
 {
 DAmountOfTime createDAmountOfTime (in long weeks,
 in long days,
 in long hours,
 in long minutes,
 in long seconds) raises (CBOException);
 };

value DTime
 {
 long getHours() raises (CBOException);
 long getMinutes() raises (CBOException);
 long getSeconds() raises (CBOException);
 long getDayOfMonth () raises (CBOException);
 long getDayOfYear () raises (CBOException);
 long getMonth () raises (CBOException);
 long getOffsetGMT () raises (CBOException);
 DAmountOfTime getPrecision () raises(CBOException);
 void setHours(in long hours) raises (CBOException);
 void setMinutes(in long minutes) raises (CBOException);
 void setSeconds(in long seconds) raises (CBOException);
 void setDayOfMonth (in long dayOfMonth) raises (CBOException);
 void setDayOfYear (in long dayOfYear) raises (CBOException);
 void setMonth (in long month) raises (CBOException);
 void setYear (in long year) raises (CBOException);
 wstring formatDate (in wstring locale) raises (CBOException);
 wstring formatTime (in wstring locale) raises (CBOException);
 DTime addTo (in DAmountOfTime amount) raises (CBOException);
 DTime subtractFrom (in DAmountOfTime amount) raises (CBOException);
 DAmountOfTime difference (in DTime anotherTime) raises (CBOException);
 void initializeDTime (in long year,
 in long month,
Currency V1.0 June 2000 A-15

A

 in long day,
 in long hour,
 in long minute,
 in long second,
 in long offsetGMT,
 in DAmountOfTime precision) raises (CBOException);
 };

interface DTimeFactory
 {
 DTime createDTime(in long year,
 in long month,
 in long day,
 in long hour,
 in long minute,
 in long second,
 in long offsetGMT,
 in DAmountOfTime precision) raises (CBOException);
 };

};

#endif // _CBO_idl

A-16 Currency v1.0 June 2000

Additional Operations B
jects
 and
B.1 Overview

This appendix contains the additional operations needed in the Common Base Ob
module to be level 2 compliant, supporting both the Network Business Component
the Common Business Objects architectures. The FbcCurrency module does not
change; however, a few operations are added to the CboCurrency module. Because
of this, only the changed CboCurrency module is shown here. The FbcCurrency
module stays as is defined in the Consolidated IDL Specifications section. The
parameters and return types defined in FbcCurrency return the value types defined
within it. Therefore, in order to use the network components with the CboCurrency
objects, there needs to be ways to convert the CboCurrency objects into
FbcCurrency objects and vice-versa. Each factory in CboCurrency has an
operation to create its associated type using an FbcCurrency object as a parameter.
Each common object in CboCurrency has an operation defined to create the
associated FbcCurrency object with a similar state.

B.2 Interfaces

B.2.1 Currency Interface

FbcCurrency::Currency createCurrencyValue();

CreateCurrencyValue will return an FbcCurrency::Currency object that has a
state similar to the Currency object’s state. This newly created
FbcCurrency::Currency object can then be passed as a parameter into the
FbcCurrency operations.
Currency v1.0 June 2000 B-1

B

eful,

e
B.2.2 CurrencyFactory Interface

Currency createCurrencyFromValue(in FbcCurrency::Currency currency-
Value)
 raises(CBO::CBOException);

The createCurrencyFromValue method will create a CboCurrency currency
object using the FbcCurrency::Currency object passed in. This newly created
currency will contain the same state as the passed-in currency. This would be us
for example, if an FbcCurrency operation returns a value which the user wants to
convert to a CBO currency type.

B.2.3 DMoney Interface

FbcCurrency::Money createMoneyValue();

CreateMoneyValue will return an FbcCurrency::Money object that has state
similar to the DMoney object’s state. This newly created FbcCurrency::Money
object can then be passed as a parameter into the FbcCurrency operations.

B.2.4 DmoneyFactory Interface

DMoney createDMoneyFromValue(in FbcCurrency::Money moneyValue)
 raises(CBO::CBOException);

The createDMoneyFromValue method will create a DMoney object using the
FbcCurrency::Money object passed in. This newly created money will contain th
same state as the passed-in money. This would be useful, for example, if an
FbcCurrency operation returns a value which the user wants to convert to a DMoney
type.

B.2.5 DExchangeRateDateBased Interface

FbcCurrency::ExchangeRate createExchangeRateValue();

CreateExchangeRateValue will return an FbcCurrency::ExchangeRate object
that has state similar to the state of the DExchangeRateDateBased object except
date information. This newly created FbcCurrency::ExchangeRate object can then
be passed as a parameter into the FbcCurrency operations.

B.2.6 ExchangeRateFactory Interface

DMoney createDExchangeRateDateBasedFromValue(in
FbcCurrency::ExchangeRate exchangeRateValue)
 raises(CBO::CBOException);
B-2 Currency v1.0 June 2000

B

s the

 for
ert
The createDExchangeRateDateBasedFromValue method will create a
DExchangeRateDateBased object using the FbcCurrency::ExchangeRate
object passed in. This newly created exchange rate will contain the same state a
passed-in exchange rate, except for date. The user would need to set the date
information using the accessor methods on the new object. This would be useful,
example, if an FbcCurrency operation returns a value which the user wants to conv
to a DExchangeRateDateBased type.

B.3 Compliance Level 2 CboCurrency IDL

#ifndef _CboCurrency_idl_
#define _CboCurrency_idl_

#include <CBO.idl>
#include <CORBA.idl>
#include <CosQueryCollection.idl>
#include <FbcCurrency.idl>

module CboCurrency {
 // exceptions
 // exception CBOException; is picked up from CBO.IDL

 // Interface Definitions
 interface Currency;
 value DMoney;
 value DExchangeRateDateBased;

 interface Currency
 {
 FbcCurrency::Currency createCurrencyValue();

 void initializeCurrency(
 in wstring name,
 in wstring mnemonic,
 in wstring numericCode,
 in wstring symbol,
 in wstring fractionSymbol,
 in long scaleFactor,
 in short ratioOfFractionToWhole,
 in wstring description,
 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in wstring ISOVersion,
 in boolean isExternalOutputShowingFractions,
 in boolean isinternalOutputShowingFractions)
 raises(CBO::CBOException);

 long getScaleFactor() raises(CBO::CBOException);
 void setScaleFactor(in long scaleFactor) raises(CBO::CBOException);

 boolean isExternalOutputShowingFractions() raises(CBO::CBOException);
 void setExternalOutputShowingFractions(in boolean flag)
Currency v1.0 June 2000 B-3

B

 raises(CBO::CBOException);

 boolean isInternalOutputShowingFractions() raises(CBO::CBOException);
 void setInternalOutputShowingFractions(in boolean flag)
 raises(CBO::CBOException);

boolean equals(in Object anotherCurrency) raises(CBO::CBOException);

 wstring getMnemonic() raises (CBO::CBOException);
 void setMnemonic(in wstring mne) raises(CBO::CBOException);

 short getNumericCode() raises (CBO::CBOException);
 void setNumericCode(in short numericCode) raises(CBO::CBOException);

 wstring getName() raises (CBO::CBOException);
 void setName(in wstring name) raises (CBO::CBOException);

 wstring getFractionName() raises (CBO::CBOException);
 void setFractionName(in wstring name) raises (CBO::CBOException);

 wstring getSymbol() raises (CBO::CBOException);
 void setSymbol(in wstring symbol) raises (CBO::CBOException);

 wstring getFractionSymbol() raises (CBO::CBOException);
 void setFractionSymbol(in wstring symbol) raises (CBO::CBOException);

 short getRatioOfFractionToWhole() raises (CBO::CBOException);
 void setRatioOfFractionToWhole(in short ratio)
 raises (CBO::CBOException);

CBO::DTime getIntroductionDate() raises (CBO::CBOException);
void setIntroductionDate(in CBO::DTime date) raises (CBO::CBOException);

CBO::DTime getExpirationDate() raises (CBO::CBOException);
 void setExpirationDate(in CBO::DTime date) raises (CBO::CBOException);

 wstring getDescription() raises (CBO::CBOException);
 void setDescription(in wstring description) raises (CBO::CBOException);

 boolean isISOCurrency() raises (CBO::CBOException);
 wstring getISOVersion() raises (CBO::CBOException);

CosQueryCollection::Iterator getLocaleIterator() raises (CBO::CBOException);
void addLocale(in wstring locale)

 raises (CBO::CBOException); // UNKNOWN_LOCALE

 void removeLocale(in wstring locale)
 raises (CBO::CBOException); // UNKNOWN_LOCALE

 };

 value DMoney
 {
 FbcCurrency::Money createMoneyValue();
B-4 Currency v1.0 June 2000

B

 // Initialization and Setting/Getting Data
 //
 void initializeDMoney(in Currency theCurrency,
 in CBO::DDecimal theValue)
 raises(CBO::CBOException);

 Currency getCurrency() raises(CBO::CBOException);
 void setCurrency(in Currency newCurrency) raises (CBO::CBOException);

 long getScaleFactor() raises (CBO::CBOException);

 wstring getCurrencyMnemonic() raises (CBO::CBOException);

 CBO::DDecimal getValue() raises (CBO::CBOException);
 void setValue(in CBO::DDecimal amount) raises (CBO::CBOException);

// DMoney Arithmetic
 //
 DMoney add(in DMoney anotherMoney) raises (CBO::CBOException);
 DMoney subtract(in DMoney anotherMoney) raises (CBO::CBOException);
 DMoney multiply(in CBO::DDecimal multiplier) raises (CBO::CBOException);
 DMoney divide(in CBO::DDecimal denominator) raises (CBO::CBOException);

 // DMoney Logical Operations
 //
 boolean equals(in Object anotherMoney) raises (CBO::CBOException);
 boolean greater(in DMoney anotherMoney) raises (CBO::CBOException);
 boolean greaterEqual(in DMoney anotherMoney) raises (CBO::CBOException);
 boolean greaterThanZero() raises (CBO::CBOException);
 boolean less(in DMoney anotherMoney) raises (CBO::CBOException);
 boolean lessEqual(in DMoney anotherMoney) raises (CBO::CBOException);
 boolean lessThanZero() raises(CBO::CBOException);
 boolean isZero() raises(CBO::CBOException);
 boolean isOfSameCurrency(in DMoney anotherMoney) raises(CBO::CBOException);

 // DMoney Rounding and Truncation etc.
 //
 DMoney createRounded(in long places) raises(CBO::CBOException);
 DMoney createTruncated(in long places) raises(CBO::CBOException);
 DMoney createCeiling() raises(CBO::CBOException);
 DMoney createFloor() raises(CBO::CBOException);
 DMoney createAbs() raises(CBO::CBOException);
 DMoney createChangeSign() raises(CBO::CBOException);

 };

 value DExchangeRateDateBased
 {
 FbcCurrency::ExchangeRate createExchangeRateValue();

 void initializeDExchangeRateDateBased(in wstring rateTypeID,
 in Currency fromCurrency,
 in Currency toCurrency,
 in CBO::DTime startDate,
Currency v1.0 June 2000 B-5

B

 in CBO::DTime endDate,
 in CBO::DDecimal conversionFactor)
 raises(CBO::CBOException);

 Currency getSourceCurrency() raises (CBO::CBOException);
 void setSourceCurrency(in Currency newSourceCurrency)
 raises(CBO::CBOException);

 Currency getTargetCurrency() raises (CBO::CBOException);
 void setTargetCurrency(in Currency newTargetCurrency)
 raises(CBO::CBOException);

 CBO::DTime getStartDate() raises (CBO::CBOException);
 void setStartDate(in CBO::DTime startDate)
 raises(CBO::CBOException);

 CBO::DTime getEndDate() raises (CBO::CBOException);
 void setEndDate(in CBO::DTime endDate)
 raises(CBO::CBOException);

 wstring getSourceCurrencyMnemonic() raises (CBO::CBOException);
 void setSourceCurrencyMnemonic(in wstring currencyMnemonic)
 raises(CBO::CBOException);

 wstring getTargetCurrencyMnemonic () raises(CBO::CBOException);
 void setTargetCurrencyMnemonic(in wstring currencyMnemonic)
 raises(CBO::CBOException);

 CBO::DDecimal getConversionFactor() raises(CBO::CBOException);
 void setConversionFactor(in CBO::DDecimal conversionFactor)
 raises(CBO::CBOException);

 wstring getType() raises(CBO::CBOException);
 void setType(in wstring exchangeRateType)

raises(CBO::CBOException);
boolean equals(in Object another ExchangeRate)

 raises(CBO::CBOException);

 DMoney exchange(in DMoney sourceMoney) raises(CBO::CBOException);

 };

 interface CurrencyFactory
 {
 Currency createCurrencyFromValue(in FbcCurrency::Currency currencyValue)
 raises(CBO::CBOException);

 Currency createCurrency(in wstring name,
 in wstring mnemonic,
 in wstring numericCode,
 in wstring symbol,
 in wstring fractionSymbol,
 in long scaleFactor,
 in short ratioOfFractionToWhole,
 in wstring description,
B-6 Currency v1.0 June 2000

B

 in CBO::DTime introductionDate,
 in CBO::DTime expirationDate,
 in boolean isISO,
 in wstring ISOVersion,
 in boolean isExternalOutputShowingFractions,
 in boolean isInternalOutputShowingFractions)
 raises(CBO::CBOException);

 };

 interface MoneyFactory
 {
 DMoney createDMoneyFromValue(in FbcCurrency::Money moneyValue)
 raises(CBO::CBOException);

 DMoney createDMoney(in Currency theCurrency,
 in CBO::DDecimal theValue) raises(CBO::CBOException);

 };

 interface DExchangeRateDateBasedFactory
 {

 DExchangeRateDateBased createDExchangeRateDateBasedFromValue(
 in FbcCurrency::ExchangeRate exchangeRateValue)
 raises(CBO::CBOException);

 DExchangeRateDateBased createDExchangeRateDateBased(
 in wstring rateTypeID,
 in Currency fromCurrency,
 in Currency toCurrency,
 in CBO::DTime startDate,
 in CBO::DTime endDate,
 in CBO::DDecimal conversionFactor)
 raises (CBO::CBOException);

 };

}; // end of CboCurrency Module
#endif // _CboCurrency_idl
Currency v1.0 June 2000 B-7

B

B-8 Currency v1.0 June 2000

Index
A
Abstractions 2-4
Arithmetic 2-26
Arithmetic Operations 2-20
Attribute Accessors 2-8
AUTOMATED_CONVERSION 2-7

B
Base Currency 2-13
BASE_CURRENCY_CONVERSION 2-6
Business Object Facility 1-3

C
CBO Interfaces 2-29
CBO Module 2-29
CBO Values 2-29
CboCurrency IDL B-3
CboCurrency Module 2-25
Common Business Object Architecture IDL A-9
Common Business Object Module A-13
Common Business Objects 1-3
Compliance Points 1-2
Conversion Factor 2-11
Conversion Types 2-6
CORBA

documentation set 2
Creating Exchange Rates 2-14
Currency Accessors 2-12
Currency Calculations 2-22
Currency Interface 2-25, B-1
Currency Modules 2-2
Currency Value 2-8
CurrencyBook Identification 2-12
CurrencyBook Interface 2-12
CurrencyFactory Interface B-2

D
DAmountOfTime 2-29
DAmountOfTimeFactory 2-30
DDecimal 2-29
DDecimalFactory 2-30
Default Symbols 2-15
DExchangeRateDateBased Interface B-2
DMoney Interface B-2
DmoneyFactory Interface B-2
DTime 2-30
DTimeFactory 2-30

E
Electronic Payment 1-3
Equality Testing 2-26, 2-29
Exceptions 2-7
Exchange Rate Date Based 2-28
Exchange Rate Dates 2-28
Exchange Rate Manager Interface 2-14
Exchange Rate Methods 2-14
Exchange Rate Type 2-11
ExchangeRate Value 2-10
ExchangeRateFactory Interface B-2
Exchanging Money 2-11
Externalization Service 1-3

F
FbcCurrency Components 2-22
FbcCurrency Module 2-6
Format Operations 2-18
Formatter Specification Operations 2-17

G
Getting Data 2-26

I
Initialization 2-26
interface Currency 2-25
interface CurrencyBook 2-12
interface StateIdManager 2-11
Interfaces 2-4, B-1
ISO Currency 2-9

L
Locale Information 2-9, 2-26
Logical Operations 2-27

M
Mnemonic Identifiers 2-10
Module Interfaces 2-6, 2-25
Money 2-26
Money Arithmetic 2-26
Money Calculator Attributes 2-19
Money Calculator Interface 2-19
Money Formatter 2-15
Money Formatting Attributes 2-25
Money Logical Operations 2-27
Money Rounding 2-27
Money Truncation 2-27
Money Value 2-10

N
Network Business Component IDL A-1
NO_CONVERSION 2-6

O
Object Management Group 1

address of 2
Objects by Value 1-4
OMA 1-4

P
Parse Operations 2-18

Q
Query Service 1-4

R
Relational Operations 2-21
Relationship Service 1-4
Retrieval Methods 2-15
Retrieving Currency Information 2-12
Rounding 2-27
Rounding Types 2-7

S
Security 2-5
Semantics 2-5
Setting Data 2-26
Currency v1.0 June 2000 Index-1

Index
State Identifier Interface 2-11
Symbols 2-16

T
Truncation 2-27
Typedefs 2-6

U
Unique Identifier Accessors 2-8

V
value DExchangeRateDateBased 2-28
value DMoney 2-26
Values 2-4, 2-6, 2-8, 2-25
Index-2 Currency v1.0 June 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	0.1 Acknowledgments

	1. Overview
	1.1 Introduction
	1.2 Compliance Points
	1.2.1 Mandatory and Optional Requirements Met

	1.3 Relationship to Other Specifications
	1.3.1 Common Business Objects and Business Object Facility
	1.3.2 Electronic Payment
	1.3.3 Externalization Service
	1.3.4 Relationship Service
	1.3.5 Query Service
	1.3.6 Objects by Value
	1.3.7 Fit with OMA

	2. Modules and Interfaces
	2.1 Introduction
	2.2 Currency Modules
	2.2.1 Purpose
	2.2.2 Overview
	2.2.3 Abstractions
	2.2.4 Semantics
	2.2.5 Security

	2.3 FbcCurrency Module
	2.3.1 Module Interfaces and Values
	2.3.2 Typedefs
	2.3.3 Conversion Types
	2.3.4 Rounding Types
	2.3.5 Exceptions
	2.3.6 Values
	2.3.7 Money Value
	2.3.8 ExchangeRate Value
	2.3.9 State Identifier Interface
	2.3.10 CurrencyBook Interface
	2.3.11 Exchange Rate Manager Interface
	2.3.12 Money Formatter
	2.3.13 Money Calculator Interface
	2.3.14 Examples of Use

	2.4 CboCurrency Module
	2.4.1 Module Interfaces and Values
	2.4.2 Currency Interface
	2.4.3 Money
	2.4.4 Exchange Rate Date Based

	2.5 CBO Module
	2.5.1 CBO Values and Interfaces
	2.5.2 DDecimal
	2.5.3 DAmountOfTime
	2.5.4 DTime
	2.5.5 DDecimalFactory
	2.5.6 DAmountOfTimeFactory
	2.5.7 DTimeFactory

	Appendix A - Consolidated IDL Specifications
	Appendix B - Additional Operations
	Index

