
CORBA - FTAM/FTP Interworking
Specification

Version 1.0
March 2002

Copyright 1999-2001, Broadcom EireAnn Research
Copyright 1999-2001, Distributed Systems Technology Centre (DSTC)
Copyright 1999-2001, Ericsson
Copyright 1999-2001, Floorboard Software
Copyright 1999-2001, IONA
Copyright 1999-2001, Lucent
Copyright 1999-2001, PrismTech
Copyright 1999-2001, Siemens AG
Copyright 1999-2001, University of California Irvine

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver-
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having con-
formed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protect-
ing themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be liable for
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the Object
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize devel-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indi-
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without
permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in sub-
division (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and Object
Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, ORB,
CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a
trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . iii

1. Service Description . 1-1

1.1 File Transfer in Telecoms Systems. 1-1
1.1.1 File Transfer Capable Network Elements 1-2

2. Service Architecture . 2-1

2.1 Overview . 2-1
2.1.1 File System Servers . 2-1
2.1.2 Principal Components . 2-2
2.1.3 Files and Directories . 2-2
2.1.4 File Transfer. 2-3

2.2 File Transfer Protocols. 2-8
2.2.1 Protocol Syntax . 2-8
2.2.2 Transfer Connection Establishment 2-8
2.2.3 CORBA Transfer Protocol 2-9
2.2.4 FTP Transfer Protocol. 2-9
2.2.5 FTAM Transfer Protocol . 2-10

3. Service Interfaces . 3-1

3.1 CosFileTransfer Module . 3-1
3.1.1 Exceptions . 3-1
3.1.2 FileSystem Interface . 3-3
3.1.3 FileSession Interface . 3-4
3.1.4 FileSystemEntry Interface 3-5
3.1.5 Directory Interface . 3-8
3.1.6 DirEntryIterator Interface 3-11
3.1.7 File Interface . 3-13
3.1.8 TransferEndPoint Interface 3-17
3.1.9 OctetTransferIterator Interface 3-22
March 2002 CORBA-FTAM/FTP Interworking Specification, v1.0 i

Contents
3.2 Object Lifecycle . 3-24

3.3 Conformance Criteria . 3-25
3.3.1 Interfaces . 3-25
3.3.2 Transfer Protocols . 3-25

Appendix A Complete OMG IDL. A-1
ii CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
March 2002 CORBA-FTAM/FTP Interworking Specification, v1.0 i

Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:
ii CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted parts of this specification:

• Ericsson

• Siemens AG

• Broadcom Eireann Research

• Distributed Systems Technology Centre

• Floorboard

• IONA

• Lucent

• PrismTech

• University of California, Irvine
March 2002 CORBA-FTAM/FTP Interworking Specification, v1.0 iii

iv CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

Service Description 1
1.1 File Transfer in Telecoms Systems

Retrieving data from a remote Network Element (NE) and maintaining the software
that runs on that node is relatively straightforward but performing the same operations
on potentially thousands of Network Elements presents the telecommunication
operator with a significant challenge. These tasks are currently performed using either
the ISO specified File Transfer, Access and Maintenance (FTAM) protocol or the File
Transfer Protocol (FTP). Currently Operations Support Systems (OSS) employs either
FTAM or FTP to perform both data retrieval and software maintenance tasks.

This specification describes a single set of IDL interfaces that will allow any OSS to
perform its file management operations on underlying Network Elements regardless of
the type of file management mechanism the underlying node is using. There are a
number of reasons that identify the need for such interfaces:

• OSSs may be implemented in a large number of programming languages and
deployed in a platform-independent manner. In addition to using existing OSS
systems, telecommunication operators may also employ an alternative, lightweight
OSS client that has all of the features of the legacy systems but performs the
management of Network Elements through the IDL interfaces.

• The complexity of performing data retrieval and file maintenance operations is
hidden from the OSS user by a single set of IDL interfaces. No knowledge of FTP,
FTAM, or other file access mechanisms is necessary for them to perform their job.

• The task of extending the set of data retrieval and file maintenance operations is
made easier. New management or retrieval operations to meet changing
requirements may be exposed to the OSS through a new IDL interface. Existing
OSSs may continue to use the original IDL interfaces without interruption.

• The task of migrating a large installed base of OSSs to use a new file management
mechanism will be less complex and take considerably less time to perform since
the same set of IDL interfaces is being used.
March 2002 CORBA FTAM-FTP Interworking Specification, v1.0 1-1

1

There are a number of system configurations that are possible through the deployment
of the interfaces. One such configuration is illustrated in Figure 1-1.

Figure 1-1 High-level system overview

Traditionally different file transfer clients were required for each type of fileserver
within the telecoms OSS. By exposing basic file transfer functionality through a set of
IDL interfaces it is possible to develop less complex file transfer clients that are
independent of the underlying file transfer protocols. The use of CORBA allows
remote management of systems over corporate intranets.

1.1.1 File Transfer Capable Network Elements

The primary focus of this specification is defining a file transfer IDL that provides
uniform access to FTAM and FTP NEs. However, the scope and utility of the file
transfer IDL is not limited to use with only FTAM and FTP. Any NE may support the
file transfer IDL for data transfer. Clients often transfer files to a local file system,
which itself can be represented by the IDL. Non-file based information can also be
transferred. For example, an NE may support access to operational and performance
data through “virtual” files and directories, accessible by the file transfer IDL. The NE
itself may not actually store this data in physical files and directories.

Traditional OSS Access OSS Access Using Service

OSS Client

 FTP FTAM

OSS Client

 FTAM FTP

CosFileTransfer Service

FTA M N E

FT P N E

L ocal
F ileSystem
1-2 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

Service Architecture 2
2.1 Overview

This service defines a set of interfaces that model a simplified virtual file system.

A client obtains access to a file system by logging in and accessing an initial directory.
A directory provides access to the file system entries that it contains. A file system
entry is a data file or a directory.

A client may perform basic maintenance tasks on file system entries. A client may also
log on to multiple file systems to transfer files between them. The types of operations
a client may perform include:

• Copy, insert, or append the contents of a file to another file.

• List the entries in a directory.

• Create a new directory.

• Remove an existing directory or file.

• Query a file or directory for properties such as creation time or size.

An implementation may restrict a client’s access to any particular file, directory,
property, or operation based on the credentials the client used to login to the file
system.

2.1.1 File System Servers

The files and directories a client accesses through the service interfaces are virtual
proxies for entities internal to the service. The specification places no restrictions on
the internal structure or form of these entities.

The service interface is capable of providing virtual file systems for:

• FTP servers
March 2002 CORBA FTAM-FTP Interworking Specification, v1.0 2-1

2

• FTAM responders

• Local file systems

• NEs presenting arbitrary data as virtual files and directories through the service
interfaces.

No details specific to FTAM, FTP, or a specific NE are exposed in the IDL. A client is
unaware of the underlying service implementation and may transfer files between
services through a CORBA interface or another negotiated transfer protocol such as
FTP.

2.1.2 Principal Components

The CosFileTransfer module defines the following primary interfaces:

• FileSystem - The virtual file system the service represents.

• FileSession - The login session a client is granted to access the file system.

• FileSystemEntry - A base interface providing common operations for files and
directories.

• Directory - A virtual directory that a client can list the entries in.

• DirEntryIterator - An iterator to access a list of file system entry properties.

• File - A virtual file that can be copied, inserted, or appended to another file.

The following two interfaces provide more advanced transfer control and direct access
to a file’s content:

• TransferEndPoint - An object that represents one end of a file’s transfer
connection. It is used for a single transfer.

• OctetTransferIterator - An iterator to read and write file contents.

The above two interfaces are used internally by a service implementation to provide
the basic file transfer operations.

2.1.3 Files and Directories

Names

FileSystem entries have a simple single component name, EntryName, that is
unique to their immediate parent Directory and a multi-component EntryPath that is
relative to any ancestor Directory.

Basic Maintenance Operations

The basic operations such as get_path, remove, exists, create_directory, are
described starting in Section 3.1, “CosFileTransfer Module,” on page 3-1.
2-2 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

2

Directory Lists

The following pseudo-code illustrates logging in to a FileSystem and listing the
names of the entries.

...
session = fileSys.login(user, password, lprops, home_dir);

// relative dir path: “sub1/sub2/dir3”
String [] dirPath = {
 “sub1”, “sub2”, “dir3”
}

subDir = home_dir.get_directory(dirPath);

// desired properties: file name and size
String[] dirProps = {
 “name”, “size”
}

entryItor = subDir.list(dirProps);

// Iterate through entries, printing returned properties
offset = 0;
if (entryItor != null){
 do{
 entries = entryItor.next(0,0);
 for(e=0; e<entries.length(); ++e){
 printNameAndSize(entries[e]);
 }
 offset += entries.length();
 }
 while(entries.length()!=0);
}

session.destroy();

2.1.4 File Transfer

The service transfers files between file systems. The protocol used for the transfer is
negotiated when the transfer is initiated. The supported protocols are:

• CORBA - “IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” - mandatory

• FTP - optional

• FTAM - optional

• Additional CORBA interfaces - optional
March 2002 CORBA FTAM-FTP Interworking: Overview 2-3

2

Clients are coded identically regardless of the transfer protocol used.
OctetTransferIterator support is mandatory to guarantee that any two service
implementations will be able to transfer files if no other common transfer protocol is
available. A service may offer additional CORBA transfer interfaces besides this.

Binary File Transfer

All file transfers are binary. This service has no concept of character code-sets and
does not make a distinction between text and binary files as defined by FTP and
FTAM.

2.1.4.1 High Level File Transfer Operations

Basic file transfer operations for transferring data from one file system to another are
available on the File interface. The pseudo-code below illustrates logging on to two
file systems and performing the high level transfer operations: copy, append, and insert.
The full IDL descriptions are in Section 3.1, “CosFileTransfer Module,” on page 3-1.

fromSess = fsFrom.login(user1, password1, lprops1, dirFrom);
toSess = fsTo.login(user2, password2, lprops2, dirTo);

String[] fromName = {
 // filename is: “from_dir_name/from_file_name”
 “from_dir_name”, “from_file_name”
};

String [] toName = {
 // filename is: “to_dir_one/to_dir_two/to_file_name”
 “to_dir_one”, “to_dir_two”, “to_file_name”
};

fromFile = dirFrom.get_file(fromName, true); // must exist
toFile = dirTo.get_file(toName, false); // need not

fromFile.copy(toFile);
fromFile.append(toFile);
fromFile.insert(toFile, 1024);

fromSess.destroy();
toSess.destroy();

When the client is finished, the file sessions are destroyed to release all server
resources. Support for the append and insert operations is optional.

2.1.4.2 File Transfer Implementation

Additional transfer primitives are required for services to implement the high level
transfer operations described above. Clients may also use these primitives to directly
control more advanced transfer operations.
2-4 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

2

To implement a file transfer, the File interface has a few additional methods. The
interface TransferEndPoint is defined to represent a file’s connection endpoint for
the duration of a single file transfer.

A transfer between two Files is carried out in the following steps.

1. Negotiate the protocol to be used for the file transfer:

• Determine a common transfer protocol: FTP, FTAM, or a CORBA interface.

• Determine which end point of the transfer connection will wait for connection,
the passive end point, and which end will actively connect, the active endpoint.

2. Create the appropriate TransferEndPoint objects for each File.

3. The passive endpoint is put in a listening state, awaiting connection.

4. The active endpoint makes the connection.

5. The passive endpoint is notified the active connection has been made.

6. The transfer operation is called on the source endpoint.

These steps are described in more detail in the next sections.

Protocol Negotiation

The method File::get_transfer_protocols returns a preference ordered list of the
transfer protocols supported by the File. Some example return lists are:

“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”

“ftp”

This list says that the File can be transferred using either the specified corba interface
or a FTP data connection in either active or passive mode. Support for the
CosFileTransfer::OctetTransferIterator interface is mandatory. In this case it is
listed to indicate that it is preferred over FTP.

“ftp;active”

“IDL:CompanyX.com/CryptoTransfer/CompressedIterator:1.0”

“ftam;passive”

This list says that the File can be transferred using FTP if the File actively makes the
data connection. If FTP cannot be used, the specified corba interface is the next
preferred transfer protocol. Finally, FTAM may be used with this endpoint taking on
the passive role. Since support for the OctetTransferIterator interface is mandatory it
is not required to be listed.

To transfer from File A to File B, the Files are queried for their supported protocols.
This list is examined and a compatible set is chosen. An example being “ftp;active”
for File A and “ftp;passive” for File B. If a transfer protocol string does not specify
active or passive, it supports both. This is always the case for the
OctetTransferIterator protocol.

Transfer protocol syntax is specified in Sectio n2.2.1, “Protocol Syntax,” on page2-8.
March 2002 CORBA FTAM-FTP Interworking: Overview 2-5

2

TransferEndPoint Creation

The method File::create_transfer_endpoint is used to create the necessary
TransferEndPoints. It takes arguments that specify whether this endpoint is the
source or a destination of the transfer, the read/write offset into the File, and whether
the offset is relative to the beginning or end of the File. These parameters can specify
endpoints usable as the source or sink of copy, append, and insert operations. See
Section 3.1.7, “File Interface,” on page 3-13 for details.

Passive Endpoint Listen

The passive TransferEndPoint is put into a wait for connection (listening) state by
calling go_to_listen. It is then ready to accept a connection from the active
TransferEndPoint. This method returns a TransferDetail describing the passive
endpoint.

Active Endpoint Connection

The active TransferEndPoint completes the connection circuit when
connect_to_peer is called. The argument to this method is the TransferDetail
returned from go_to_listen. This method returns a TransferDetail string describing
the active endpoint protocol specific details. For some protocols, the returned
TransferDetail may be an empty string.

Passive Endpoint Connect Notify

The last step in the connection establishment is calling set_peer on the passive
endpoint to notify it that the connection has been made. The argument to this method
is the TransferDetail returned from the connect_to_peer operation. For some
protocols, set_peer may accept an empty string.

Low Level Transfer Example

The following example illustrates the execution of an append operation, where the
negotiated protocol is “FTP.” The sender is passive and the receiver is active.

...
fromFile = dirFrom.get_file(fromName);
toFile = dirTo.get_file(toName);

fromProtocols = fromFile.get_end_point_protocols();
toProtocols = toFile.get_end_point_protocols();

// From the protocol lists, find a matching
// protocol set. “ftp” is used for this example,
// the sender will be passive, listening
// for ftp data connection
...
fromProtocol = “ftp;passive”;
toProtocol = “ftp;active”;
2-6 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

2

// create endpoints to append the file

fromEP = fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 fromProtocol);

toEP = fromFile.create_endpoint(TransferEndPointRole::SINK,
 FilePos::END,
 0,
 toProtocol);

// establish connection
passiveDetail = fromEP.go_to_listen();
activeDetail = toEP.connect_to_peer(passiveDetail);
fromEP.set_peer(activeDetail);

fromEP.transfer();

fromEP.destroy();
toEP.destroy();

This example would follow the same form if a different transfer protocol were used. To
change the operation to a copy, the SINK endpoint would have FilePos::BEGIN and
offset of zero. Inserts are performed by specifying a TransferEndPointRole of
SINK_INSERT for the destination endpoint. An implementation may restrict the types
of TransferEndPoints supported.

2.1.4.3 Direct File Access

To allow direct access to the contents of a file from a client that cannot provide another
TransferEndPoint or File, the OctetTransferIterator interface can be used to read
and write file contents directly. An example of reading the contents of a “text” file for
display is shown in the pseudo-code below:

...
protocol = “IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”
fromEP = fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 protocol);

// go_to_listen returns “IOR:....”
// as the TransferDetail for a corba protocol

corbaDetail = fromEP.go_to_listen();
octetItorObj = orb.string_to_object(corbaDetail);
octetItor = OctetTransferIterator.narrow(octetItorObj);

do{
March 2002 CORBA FTAM-FTP Interworking: Overview 2-7

2

 octetBuf = octetItor.get_octet_seq(offset, 0);
 printBuffer(octetBuf); // print file as text
 offset = offset + octetBuf.length();
}
while(octetBuf.length()!=0);

fromEP.destroy();

2.2 File Transfer Protocols

This section describes the details of the supported file transfer protocols.

2.2.1 Protocol Syntax

The protocol syntax defines protocol names and protocol specific attributes. The syntax
is extensible to allow new protocols and attributes to be added. The syntax for the
currently supported protocols is:

<ProtocolSpec> ::= <CORBA> | <FTP> | <FTAM> | <NewProtocol>

<CORBA> ::= <OctetTransfer> | <OtherCORBA>
<OctetTransfer> ::=
 “IDL:org.omg.CosFileTransfer/OctetTransferIterator:1.0”
<OtherCORBA> ::= <InterfaceID> [<Options>]
<InterfaceID> ::= Valid Repository ID

<FTP> ::= “ftp” [<ActivePassiveOption>]
<FTAM> ::= “ftam” [<ActivePassiveOption>]

<ActivePassiveOption> ::= “;” [“active” | “passive”]
<NewProtocol> ::= <AlphaNumericString> [<Options>]
<Options> ::= “;” <Tag>[“=” <Value>][<Options>]
<Tag> ::= <AlphaNumericString>
<Value> ::=<AlphaNumericString>

2.2.2 Transfer Connection Establishment

Service implementations and clients using transfer primitives are required to use
connection establishment semantics that are functionally equivalent to the following:

// protocol independent connection establishment
passiveDetail = passiveEP.go_to_listen();
activeDetail = activeEP.connect_to_peer(passiveDetail);
passiveEP.set_peer(activeDetail);
2-8 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

2

The one exception is if a client is directly accessing a File using the
OctetTransferIterator interface as described previously in Section 2.1.4.3, “Direct
File Access,” on page 2-7. In this case only, it is sufficient to call go_to_listen and
then use the returned OctetTransferIterator immediately.

2.2.3 CORBA Transfer Protocol

The following is required for a service implementation to support a CORBA transfer
protocol.

File::create_end_point must return a corba aware TransferEndPoint when the
endpoint protocol argument begins with an interface repository ID.

TransferEndPoint::go_to_listen must return a stringified object reference that can
be passed to TransferEndPoint::go_to_listen or used directly by a client.

TransferEndPoint::connect_to_peer must return a stringified object reference that
can be passed to TransferEndPoint::set_peer.

The OctetTransferIterator corba protocol does not have a concept of active or
passive, so either endpoint can be used as passive or active. This may not be true for
other corba transfer interfaces. An implementation supporting OctetTransferIterator
may implement the high level transfer operations in a manner similar to the one
outlined by the example in Section 2.1.4.3, “Direct File Access,” on page 2-7.

There is no requirement for an implementation to make use of the stringified object
reference that is passed to set_peer for a corba transfer protocol.

An implementation must allow the set_peer argument to be an empty string. This
represents the case where a client is using an OctetTransferIterator directly.

2.2.4 FTP Transfer Protocol

The ftp transfer protocol, refers specifically to a file transfer that takes place as if it
were the data connection of an ftp1 service transfer. A service implementation need not
use a true ftp server to implement this transfer protocol.

The following is required for a service implementation to support the ftp transfer
protocol.

File::create_end_point must return an ftp aware TransferEndPoint when the
endpoint protocol argument is an ftp type.

TransferEndPoint::go_to_listen must return a string of the form:

host:port

1.IETF RFC 959 “File Transfer Protocol (FTP)”, J. Postel, J.Reynolds. October 1985
March 2002 CORBA FTAM-FTP Interworking: File Transfer Protocols 2-9

2

where host is either a DNS style host name or a dotted decimal IP address and port
identifies the port number that will accept the ftp data connection.The returned
host:port string is passed to TransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a host:port string identifying
the local end of the ftp data connection that has been established. In some cases this
information may not be available, in which case an empty string is returned. The
returned string is passed to TransferEndPoint::set_peer.

There is no requirement for an implementation to make use of the host:port that is
passed to set_peer for the ftp transfer protocol.

2.2.5 FTAM Transfer Protocol

The following is required for a service implementation to support the FTAM2 transfer
protocol.

File::create_end_point must return an FTAM aware TransferEndPoint when the
endpoint protocol argument is an FTAM type.

TransferEndPoint::go_to_listen must return a string identifying an FTAM
responder.

The returned responder string is passed to TransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a string identifying the FTAM
initiator. The returned string is passed to TransferEndPoint::set_peer.

2.ISO/IEC 8571-1,8571-2,8571-3,8571-4 Information Processing Systems - Open Systems
Interconnection - File Transfer, Access, and Management Parts 1 - 4. 1993
2-10 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

Service Interfaces 3
3.1 CosFileTransfer Module

This chapter describes the CosFileTransfer module in detail.

3.1.1 Exceptions

The following IDL shows the exceptions defined for the service:

typedef short ErrorCode;
const ErrorCode UNSPECIFIED = 0;
const ErrorCode UNAVAILABLE = 1;
const ErrorCode UNSUPPORTED = 2;
const ErrorCode NO_PERMISSION = 3;

const ErrorCode ENTRY_EXISTS = 4;
const ErrorCode ENTRY_PATH_ERROR = 5;
const ErrorCode ENTRY_IO_ERROR = 6;
const ErrorCode DIR_NOT_EMPTY = 7;

const ErrorCode TRANSFER_IO_ERROR = 8;
const ErrorCode TRANSFER_ABORT = 9;

exception FileSystemError {
ErrorCode error;
wstring desc;

};

// Error transferring between two files

exception TransferError {
TransferEndPointRole error_endpoint;
March 2002 CORBA FTAM-FTP Interworking Specification, v1.0 3-1

3

ErrorCode error;
wstring desc;

};

3.1.1.1 ErrorCode

The exceptions defined in the CosFileTransfer module contain an ErrorCode field
which identifies the category of the error. The values are:

• UNSPECIFIED - The error category is none of the below.

• UNAVAILABLE - The FileSystem is temporarily unavailable. This is only raised
by the FileSystem::login method.

• UNSUPPORTED - The operation or the particular parameter values are
unsupported by the implementation.

• NO_PERMISSION - The user credentials are insufficient or invalid for the
requested operation.

• ENTRY_PATH_ERROR - A component of the name specified for a File or
Directory is invalid or the entry does not exist.

• ENTRY_EXISTS - The operation expected the entry not to already exist.

• ENTRY_IO_ERROR - There has been an error opening, reading, writing, or
closing a File or Directory.

• DIR_NOT_EMPTY -The implementation does not allow removal of a Directory
that is not empty.

• TRANSFER_IO_ERROR - There has been an error opening, reading, writing, or
closing a data transfer connection.

• TRANSFER_ABORT - A file transfer operation has been aborted.

Client ErrorCode Handling

In this chapter, each operation description lists the exceptions raised along with
specific ErrorCode values. A service implementation may use ErrorCode values
other than those specifically listed. A client must handle these values gracefully, at the
very least handling them like UNSPECIFIED.

3.1.1.2 FileSystemError

This exception is raised when an operation involving a single CosFileTransfer object
fails. The fields are:

• error - A broad classification of the error.

• desc - Optional text detail about the error.
3-2 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.1.1.3 TransferError

TransferError is raised by operations that involve copying one File’s contents to
another. Since there are two Files involved, the one that raised the exception must be
identified. The fields are:

• error_endpoint - Identifies whether the exception originated from the source or
sink of the data transfer.

• error - A broad classification of the error.

• desc - Optional text detail about the error.

3.1.2 FileSystem Interface

The FileSystem interface provides access to the virtual file system represented by the
service. The IDL is:

interface FileSystem {

FileSession login(in wstring user,
in wstring password,
in CosPropertyService::Properties login_properties,
out Directory initial_dir)

raises(FileSystemError);

wstring get_system_id();
};

3.1.2.1 login

Before transferring files or performing maintenance operations, a client must provide
credentials to login to the FileSystem to obtain an initial Directory reference. The
FileSystem validates the user credentials in an implementation specific manner.

Parameters
• user - FileSystem specific text string identifying the user.

• password - FileSystem specific text string identifying the user password.

• login_details - sequence of FileSystem specific properties providing login
details. A FileSystem implementation may use any property names and values that
are appropriate. The following properties with wstring values are defined:

• user - Same value as the user parameter. If this property is present, the user
parameter is ignored.

• password - Same value as the password parameter. If this property is present,
the password parameter is ignored.

• account - Many systems have the concept of an account in addition to a user.

• initial_dir - returns the initial Directory for the supplied login details.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-3

3

Return value

This method returns a FileSession (see Section 3.1.3, “FileSession Interface,” on
page 3-4) for the supplied login parameters.

Exceptions

FileSystemError - The following ErrorCode values are defined:

• UNAVAILABLE - The FileSystem is unavailable for login. In this case, no
attempt has been made to validate the user credentials. A retry by the client may be
successful.

• NO_PERMISSION - The supplied user credentials were rejected.

3.1.2.2 get_system_id

Returns implementation specific text providing identification of the file system. This
text shall be suitable for display to an end user.

Return value

Returns a wstring identifying the file system. This string is for informational purposes
only and cannot be used to determine object identity. An implementation is not
required to make this string globally unique. An empty string is a legal return value.

3.1.3 FileSession Interface

The FileSession interface controls the lifecycle of all object references obtained from
the server. The IDL is:

interface FileSession {
void destroy();

};

3.1.3.1 destroy

The destroy operation terminates the session with the service established by the call
to FileSystem::login. All objects associated with the FileSession such as
Directories, Files, etc. are destroyed. After the destroy method is invoked, further
operations on the FileSession or any of its associated objects will raise an
OBJECT_NOT_EXIST.

The status of any file transfers that are in progress at the time of a call to destroy are
undefined.
3-4 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.1.4 FileSystemEntry Interface

FileSystemEntry is a base interface that defines operations that are common to the
Directory (Section 3.1.5, “Directory Interface,” on page 3-8) and File (Section 3.1.7,
“File Interface,” on page 3-13) interfaces.

3.1.4.1 Properties

The interface derives from CosProperty::PropertySet. The properties are defined in
Table 3-1.

A mandatory property is one that a service implementation must always allow a client
to access. An optional property is one that a service implementation may restrict a
client’s access to, may not provide a value for a particular File or Directory, or not
provide at all. For purposes of discussion, the properties from the above list and any
other implementation defined properties that a specific client is allowed access to are
called client accessible properties.

The behavior of the CosProperties::PropertySet methods specific to
FileSystemEntry objects are:

Table 3-1 FileSystemEntry Properties

Property Name Data Type Property Mode Description

name EntryName mandatory,
fixed_readonly

Simple name relative to
parent Directory

path EntryPath optional,
fixed_readonly

Full pathname relative to
initial FileSession Directory.

owner wstring optional,
fixed_readonly

If defined, the owner of the
Entry.

creation_time TimeBase::UtcT optional,
fixed_readonly

If defined, the entry creation
time.

modification_time TimeBase::UtcT optional,
fixed_readonly

If defined, the last time the
entry was modified.

define_property For a read only client accessible property, a
CosProperties::ReadOnlyProperty exception will be
raised. If the property is not client accessible, a
CosProperties::UnsupportedProperty is raised

define_properties An implementation will behave as for define_property,
except that the exception raised is
CosProperties::MultipleExceptions containing
PropertyException structs having reason codes of
read_only_property or unsupported_property.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-5

3

:

3.1.4.2 FileSystemEntry Methods

The next sections describe the methods available on the FileSystemEntry interface.

3.1.4.3 get_name

Returns the simple name for this FileSystemEntry. This is the same value returned
by the name property.

Return Value

EntryName for the FileSystemEntry.

get_number_of_properties An implementation must not include any non
client accessible properties in the return count.
The returned count may be less than the total
number of properties associated with the
FileSystemEntry.

get_all_property_names An implementation must not include any non
client accessible properties in the returned
sequence. The returned sequence size may be less
than the total number of properties associated
with the FileSystemEntry.

get_property_value For all client accessible properties that a value is
defined for, the property value is returned.
Otherwise the exception PropertyNotFound is
raised.

get_properties,
get_all_properties

For all client accessible properties that a value is
defined for, the property is returned. All other
properties will denote an exception by appearing
in the return sequence with a type of tk_void as
described in the CosProperty Service
specification.

delete_property
delete_properties
delete_all_properties

For all fixed client accessible properties, an
exception denoting fixed_property shall be
raised. For delete_all_properties, client
accessible fixed properties will not be deleted and
the operation shall return true.
3-6 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.1.4.4 get_path

Returns the path name for this FileSystemEntry relative to the initial Directory
returned from FileSystem::login. This is the same value returned by the path
property.

Return Value

EntryPath for the FileSystemEntry.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No specific
ErrorCode values are defined.

3.1.4.5 exists

Report the existence of a FileSystemEntry on the FileSystem.

Return Value
• TRUE - The FileSystemEntry exists on the FileSystem.

• FALSE - The FileSystemEntry does not exist on the FileSystem.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No specific
ErrorCode values are defined.

3.1.4.6 get_parent

Returns the parent Directory for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION - If the client is not allowed to access the parent Directory.
Many implementations will raise this exception if get_parent is called on the
initial Directory returned from FileSystem::login.

3.1.4.7 get_session

Returns the associated FileSession for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION - If the client is not allowed to access the FileSession from
this FileEntry.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-7

3

3.1.4.8 remove

This operation removes the entry from the service. A Directory may only be removed
if it is empty. Once removed an Entry will not appear in a listing of its parent
directory.

Exceptions

A FileSystemError is raised on error. The following ErrorCode values are defined:

• NO_PERMISSION - If the client is not allowed to remove this Entry.

• DIR_NOT_EMPTY - If this is a Directory and contains child entries.

• ENTRY_PATH_ERROR - If the Entry does not exist.

3.1.4.9 destroy

This operation releases the FileSystemEntry object. It does not remove the entry’s
representation from the FileSystem. A client should call destroy on an Entry when
it has finished with it.

3.1.5 Directory Interface

The Directory interface represents a collection of File and Directory entries. The
interface defines operations to list and obtain references to these entries. The IDL is:

interface Directory: FileSystemEntry {

DirEntryIterator list(in CosPropertyService::PropertyNames listProps)

raises (FileSystemError);

Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean must_exist)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };
3-8 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.1.5.1 Directory Properties

In addition to the properties for FileSystemEntry, Directory objects have one
additional property listed in Table 3-2.

3.1.5.2 list

The list operation allows a client to iterate through a set of Directory entries and their
properties.

 Parameters
• list-props - A sequence containing the names of the desired entry properties. A

service implementation is not required to return all the properties requested.

Return value

A DirEntryIterator (see Section 3.1.6, “DirEntryIterator Interface,” on pa ge3-11). If
the DirEntryIterator value is nil, there were no entries to return. If the value is non-
nil there may or may not be entries to be retrieved.

An implementation is not required to return sequence members that represent the
current or parent Directory entries.

The properties returned are dependent on client permissions and whether an entry has
a value for the property. If a client does not have permission to retrieve a property, an
implementation must not raise an exception with an ErrorCode of
NO_PERMISSION. The denied property shall be silently omitted.

Exceptions

FileSystemError - The following ErrorCode value is defined:

• NO_PERMISSION - The client is not permitted to obtain the Directory list.

3.1.5.3 create_directory

This operation creates a child Directory. It is similar to the familiar mkdir command.

Table 3-2 Directory Properties

Property Name Data Type Property Mode Description

num_children DirEntryCount optional,
fixed_readonly

The number of entries in the
Directory. In some cases it is
not practical to provide this
value directly. In this case the
directory must be iterated
through to count the entries.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-9

3

Parameters
• dir_path - The Path of the Directory to create. This EntryPath is relative to the

Directory. If dir_path contains more than one component, the intermediate
directories will be created as well.

Return value

The newly created Directory.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. - If any component of the path is invalid or one of the
intermediate components is a File.

• NO_PERMISSION - If the client is not allowed to create or access any component
of the dir_path.

• ENTRY_EXISTS - If this Directory already exists.

3.1.5.4 get_file

This operation returns a File for the specified Path.

Parameters
• file_path - The File’s Path relative to the Directory.

• must_exist - If TRUE, the operation will only succeed if the file already exists on
the FileSystem.

Return value

A File reference for the file.

Exceptions

A FileSystemError may be raised with the following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of the path is invalid or one of the
intermediate components is a File. If the must_exist parameter is true and the file
does not exist.

• NO_PERMISSION - If the client is not allowed to access any component of the
file_path.

3.1.5.5 get_directory

This operation returns a Directory corresponding to an existing directory.

Parameters
• dir_path - The relative EntryPath for the Directory.
3-10 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

Return value

The requested Directory.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of the path is invalid or one of the
intermediate components is a File, or the Directory does not exist.

• NO_PERMISSION - If the client is not allowed to access any component of the
dir_path.

3.1.5.6 remove_entry

This operation removes a File or Directory entry. If the entry is a Directory, it must
be empty before it can be removed.

Parameters
• entry_path - The relative EntryPath.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of the path is invalid or one of the
intermediate components is a File.

• NO_PERMISSION - If the client is not allowed to access any component of the
path.

3.1.6 DirEntryIterator Interface

The DirEntryIterator interface is used to iterate through the results of a
Directory::list operation. The IDL is:

// Directory listing size and list offset

typedef unsigned long long DirEntryCount;
typedef unsigned long long DirEntryOffset;

// Directory listing Types

typedef short DirEntryType;
const DirEntryType FILE_ENTRY = 0;
const DirEntryType DIR_ENTRY = 1;

struct DirEntry {
EntryName name;
DirEntryType type;
CosPropertyService::Properties props;
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-11

3

};

typedef sequence<DirEntry> DirEntrySeq;

interface DirEntryIterator {
DirEntrySeq next(in DirEntryOffset from_dir_entry,

in DirEntryCount max_dir_entries)
raises (FileSystemError);

void destroy();
};

3.1.6.1 Related Types

DirEntryType

This type defines the type of an entry, either DIR_ENTRY, or DIR_FILE.

DirEntry

Directory::list returns FileSystemEntry information in DirEntry structures. The
fields of this struct are:

• name - The simple (single component) name of the entry in this Directory.

• type - The DirEntryType of the entry.

• props - A sequence containing the requested entry properties.

DirEntrySeq represents a sequence of DirEntry.

DirEntryCount, DirEntryOffset

These types are used to control the iteration through a Directory.

• DirEntryCount - The maximum number of entries to return to the client.

• DirEntryOffset - The offset into the Directory’s entry list from which the
DirEntryCount applies.

See “next” below for details on the use of these types.

3.1.6.2 next

This operation returns a sequence of DirEntry. The DirEntryIterator is a recoverable
iterator and allows a client to repeat a failed call to next, requesting a smaller
sequence in the event of an exception.

Parameters
• from_entry_number - return entries starting from the specified entry number.

• max_dir_entries - The maximum number of entries to return to the client. If the
value is zero value, there is no upper bound.
3-12 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

In normal operation next is called repeatedly until all the directory entries are
returned. The first time next is called, from_entry_number must be zero. For
subsequent calls, the value of from_entry_number is set to its previous value plus
the length of the returned entry sequence.

In the event that a call to next results in an exception indicative of resource exhaustion
on either the client or the server, such as NO_MEMORY, the client can retry the next
operation by invoking next with the previous from_entry_number and a smaller
max_dir_entries value.

If the next operation fails with a max_dir_entries value of one, the iteration cannot
be completed and the client must handle the error.

Return value

A DirEntrySeq with a length of up to max_dir_entries for non-zero values of
max_dir_entries. If max_dir_entries is zero, the returned sequence length is
implementation defined. In either case, an implementation may not return a
DirEntrySeq of length zero unless there are no further entries to retrieve.

Exceptions

 A FileSystemError may be raised with the following ErrorCode value:

• UNSUPPORTED - If the from_entry_number parameter is illegal for the current
iterator state.

3.1.6.3 destroy

After a client is finished with a DirEntryIterator, destroy should be called to release
the internal resources held by the service implementation.

3.1.7 File Interface

The IDL is:

interface File: FileSystemEntry {

void copy(in File dest)

raises(TransferError);

void append(in File dest)

raises(TransferError);

void insert(in File dest, in FileOffset offset)

raises(TransferError);

TransferEndPoint create_end_point(in TransferEndPointRole ep_role,

in FilePos seek,
in FileOffset offset,
in TransferProtocol ep_protocol)
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-13

3

raises (FileSystemError);

TransferProtocolSeq get_end_point_protocols();
};

3.1.7.1 File Properties

In addition to the properties for FileSystemEntry, File objects have one additional
property listed in Table 3-3.

3.1.7.2 copy

The copy operation copies the contents of this File to the destination File. If the
destination File currently exists, it is overwritten.

Parameters
• dest - The destination (sink) File.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of a File is invalid or one of the
intermediate components is a File.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
a file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

3.1.7.3 append

The append operation appends the contents of this File to the destination File.

Table 3-3 File Properties

Property Name Data Type Property Mode Description

size FileSize Optional,
fixed_readonly

The size of the file in octets. In
some implementations it may not
be practical to determine the size
of an entity being represented by
a File. In this case the property is
not provided.
3-14 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

Parameters
• dest - The destination File.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If the sink File does not exist. If any component of a
File is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If the sink File does not allow an append.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
a file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

3.1.7.4 insert

The insert operation inserts the contents of the File at the specified offset in the
destination File.

Parameters
• dest - The destination File.

• file_offset - The FileOffset into the destination File.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If the sink File does not exist. If any component of a
File path is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If the sink File does not allow an insert.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
a file or the file_offset parameter is larger than the sink File size.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-15

3

3.1.7.5 create_end_point

The create_end_point method is used to create a TransferEndPoint (see
Section 3.1.8, “TransferEndPoint Interface,” on page 3-17), which is used by a service
to implement the high level copy, append, and insert operations. Clients performing
more complex transfer operations may also make use of this method.

Parameters
• ep_role - Specifies whether the role of the TransferEndPoint is to read or write

the File’s contents. Values are TransferEndPointRole::SOURCE,
TransferEndPointRole::SINK, and TransferEndPointRole::SINK_INSERT.
TransferEndPointRole::SINK will overwrite and truncate to the last written
octet.

• file_pos - Specifies whether the data transfer will be relative to the beginning or
end of the File. Values are FilePos::BEGIN and FilePos::END.

• offset - The offset from the file_pos to begin reading or writing.

• ep_protocol - Specifies the type of TransferEndPoint to be created. The
specification currently defines transfer protocols using CORBA interfaces, FTP, and
FTAM. See Section 3.1.8, “TransferEndPoint Interface,” on page 3-17 for details.

Return value

TransferEndPoint for use in a single transfer of the File. The TransferEndPoint
should be destroyed after use.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If the SOURCE file does not exist. If any component of
a File path is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an unsupported ep_protocol is specified.

• NO_PERMISSION - If the client cannot create the TransferEndPoint.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
a file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

3.1.7.6 get_end_point_protocols

Obtains a sequence of supported transfer protocols for this File. An implementation is
not required to provide the same transfer protocols for all Files. An implementation
may also change the set of available transfer protocols for a File if there are no
TransferEndPoints for that File in existence at the time of the change.
3-16 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

Return value

TransferProtocolSeq listing supported protocols. The sequence is in preferred
protocol order.

An implementation is not required to return the CORBA interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” since it is mandatory.
An implementation may choose to return it in the list to indicate a preference over
other protocols.

3.1.8 TransferEndPoint Interface

TransferEndPoint objects represent a File during a transfer operation. The IDL is:

interface TransferEndPoint;
typedef wstring TransferProtocol;
typedef sequence<TransferProtocol> TransferProtocolSeq;

typedef short TransferEndPointRole;

const TransferEndPointRole SOURCE = 0;
const TransferEndPointRole SINK = 1;
const TransferEndPointRole SINK_INSERT= 2;

// transfer protocol specific information

typedef wstring TransferDetail;

typedef short TransferState;
const TransferState CREATE = 0;
const TransferState LISTEN = 1;
const TransferState CONNECT = 2;
const TransferState ACTIVE = 3;
const TransferState COMPLETE = 4;
const TransferState ABORT = 5;

struct TransferStatus {
TransferState state; // current transfer state
FileCount current_count; // current transfer count
FileCount max_count; // expected transfer size bytes/chars
};

interface TransferEndPoint
{

TransferDetail go_to_listen()
raises(FileSystemError);

TransferDetail connect_to_peer(in TransferDetail passive_detail)

raises(FileSystemError);

void set_peer(in TransferDetail active_detail)
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-17

3

raises(FileSystemError);

TransferStatus get_transfer_status()
raises (FileSystemError);

void transfer()

raises (FileSystemError);

void abort()
raises (FileSystemError);

void destroy();

};

3.1.8.1 Related Types

TransferProtocol

A string type that identifies a transfer protocol such as “FTP.” TransferProtocolSeq
is the sequence typedef for TransferProtocol.

TransferDetail

This is a string type with a format that is specific to the transfer protocol used. During
connection negotiation, TransferEndPoints exchange protocol information in
TransferDetails.

TransferState

An enumeration that provides state information about a TransferEndPoint. The
defined states are:

• CREATE - Initial state after creation.

• LISTEN - waiting for an active connection, go_to_listen has been called.

• CONNECT - connected to its peer, either connect_to_peer, or set_peer has
been called.

• ACTIVE - data transfer has started.

• COMPLETE - data transfer completed successfully.

• ABORT - data transfer error.

TransferStatus

This struct provides information about the progress of a transfer that a
TransferEndPoint is involved in. The fields are:

• state - the TransferState for the endpoint.
3-18 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

• current_count - expected transfer size. If this is unknown or not provided by the
service implementation, it is set to zero. This value is usually available from the
source endpoint but not the sink.

• max_count - For a source endpoint this is the octets sent. For a sink endpoint this
is the octets received. In the case of a transfer error this value represents the transfer
count before the abort. If the value is unknown or not provided by the service
implementation, it is set to zero.

3.1.8.2 go_to_listen

This method is called on the passive TransferEndPoint to establish the listening side
of a data connection. On return the TransferEndPoint is ready to accept an active
connection. This is the first step in negotiating a transfer connection.

Return value

TransferDetail describing the passive TransferEndPoint details. For example in the
case of a CORBA protocol transfer, the returned TransferDetail would be an IOR
string, and for an FTP transfer, “host:port.”

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If a file does not exist, any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform
the operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.

3.1.8.3 connect_to_peer

This method is called on an active TransferEndPoint to make the connection to the
passive TransferEndPoint. This is the second step in negotiating a transfer
connection.

Parameters
• passive_detail - This TransferDetail provides the required details to allow the

active TransferEndPoint to connect to the passive TransferEndPoint. This
parameter is set to the return value from the go_to_listen call on the passive
TransferEndPoint.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-19

3

Return value

TransferDetail describing the active TransferEndPoint details.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid passive_detail is specified for those protocols
that use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform
the operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.

3.1.8.4 set_peer

This method is called on the passive TransferEndPoint to complete the transfer
connection negotiation. It is the final step in negotiating a transfer connection. It allows
the passive TransferEndPoint to obtain any remaining TransferDetail about the
active end of the connection. The use of this information is protocol dependent.

Parameters
• active_detail - This TransferDetail provides information about the active end of

the data connection to the passive TransferEndPoint. The value of this parameter
is set to the result of the connect_to_peer operation.

Exceptions

A TransferError may be raised with the following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform
the operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.
3-20 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.1.8.5 get_transfer_status

This method returns the status of the TransferEndPoint.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode value is
defined.

• UNSUPPORTED - If a service implementation does not provide this information.

3.1.8.6 transfer

Transfer the File contents between the source and sink TransferEndPoints. This
method is called on the source TransferEndPoint.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode value is
defined.

• UNSUPPORTED - If this operation is called on a sink TransferEndPoint.

3.1.8.7 abort

This method causes the TransferEndPoint to terminate the current transfer
operation the transfer at its end of the connection. The other TransferEndPoint will
see the abort an unexpected termination of the transfer operation or connection.

An implementation may not be able to abort a transfer or even respond to the request
until the current transfer is complete.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode value is
defined.

• UNSUPPORTED - If it is not possible to abort the transfer operation.

The system exception BAD_INV_ORDER will be raised if abort is called on a
transfer that has not yet started, is already completed, or has aborted.

3.1.8.8 destroy

This method closes a transfer, releasing any internal resources the TransferEndPoint
has obtained. Further invocations on this object will receive an
OBJECT_NOT_EXIST exception.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-21

3

3.1.9 OctetTransferIterator Interface

The OctetTransferIterator interface allows for transfer of a File’s contents using
only CORBA calls and without requiring another File object to transfer to or from.
OctetTransferIterator is a recoverable iterator. It does not provide random access to
a File’s contents.

The IDL is:

typedef unsigned long long FileLength;
typedef unsigned long long FileOffset;
typedef unsigned long long FileCount;
typedef sequence<octet> FileOctetSeq;

interface OctetTransferIterator {

FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount max_octets)
raises (FileSystemError);

void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)

raises(FileSystemError);

void destroy()
raises(FileSystemError);

};

3.1.9.1 Related Types

FileOffset

This type represents an offset into a File’s contents. Normally an
OctetTransferIterator is created by a TransferEndPoint, in which case an
OctetTransferIterator’s FileOffset values are relative to the FileOffset specified
when the TransferEndPoint was created (File::create_end_point).

FileCount

This type represents a File octet count. It is used to represent File size and the number
of octets transferred.

FileOctetSeq

An octet sequence representing the binary contents of a File.

3.1.9.2 get_octet_seq

This operation returns the next unread sequence of File octets.
3-22 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

Parameters
• from_octet - return octets starting from the specified offset.

• max_octets - The maximum number of octets to return. If the value is zero, there
is no upper bound.

In normal operation get_octet_seq is called repeatedly until all File octets are
returned. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of from_octet is set to its previous value plus the length of
the returned sequence of File octets.

If get_octet_seq raises an exception that may be indicative of resource exhaustion on
either the client or server such as NO_MEMORY, the client can retry the failed read by
invoking get_octet_seq with the previous from_octet and a smaller max_octets.

If get_octet_seq fails with a max_octets value of one, the get iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with the following ErrorCode values:

• ENTRY_PATH_ERROR - If a file does not exist. If any component of a File path
is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If this TransferOctetIterator does not allow reads.

• NO_PERMISSION - If the client does not have the proper credentials to perform
the operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associated TransferEndPoint has been aborted.

3.1.9.3 put_octet_seq

This operation writes an octet sequence to a File.

Parameters
• octet_offset - write octets starting at the specified offset.

• octet_seq - The octet sequence to write.

In normal operation put_octet_seq is called repeatedly until all the File octets are
transferred. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of octet_offset is set to its previous value plus the length
of the previous octet_seq.

If put_octet_seq raises an exception indicative of resource exhaustion on either the
client or server such as NO_MEMORY, the client can retry the operation by invoking
put_octet_seq with the previous octet_offset and a smaller octet_seq.
March 2002 CORBA FTAM-FTP Interworking: CosFileTransfer Module 3-23

3

If put_octet_seq fails with an octet_seq length of one, the put iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with the following ErrorCode values:

• ENTRY_PATH_ERROR - If a file does not exist. If any component of a File path
is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If the TransferOctetIterator does not allow writes.

• NO_PERMISSION - If the client does not have the proper credentials to perform
the operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associated TransferEndPoint has been aborted.

3.1.9.4 destroy

After a client is finished with an OctetTransferIterator, destroy must be called to
complete the transfer and gracefully release any associated resources held by the
service implementation. Further calls to the iterator will raise an
OBJECT_NOT_EXIST.

Exceptions

A FileSystemError may be raised with the following ErrorCode values:

• ENTRY_PATH_ERROR - If a file does not exist. If any component of a File path
is invalid or one of the intermediate components is a File.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

If destroy raises a FileSystemError, the OctetTransferIterator is still destroyed.

3.2 Object Lifecycle

All of the interfaces except for FileSystem have a destroy operation. After the
destroy method is invoked, any further operations on the object reference will raise an
OBJECT_NOT_EXIST.

A client should invoke destroy on an object after use is complete to allow a service
implementation to reclaim resources. An implementation is free to reap objects at any
time in order to reclaim resources.

Clients should expect that any operation on a CosFileTransfer object may raise an
OBJECT_NOT_EXIST as a server may reclaim an object, particularly if inactive, at
anytime.
3-24 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

3

3.3 Conformance Criteria

3.3.1 Interfaces

A service implementation must provide all of the interfaces defined in this
specification. An implementation is not required to support the following operations on
all Files or TransferEndPoints:

• File::append

• File::insert

• TransferEndPoint::abort

• TransferEndPoint::get_transfer_status

If an implementation does not support these operations on a given object it must raise
a FileSystemError exception with an ErrorCode value of UNSUPPORTED.

3.3.2 Transfer Protocols

A service implementation must support transfers using the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”. All other protocols
are optional.
March 2002 CORBA FTAM-FTP Interworking: Conformance Criteria 3-25

3

3-26 CORBA FTAM-FTP Interworking Specification, v1.0 March 2002

Complete OMG IDL A
//File: CosFileTransferFTF.idl

#ifndef _COS_FILE_TRANSFER_IDL_
#define _COS_FILE_TRANSFER_IDL_
#include <CosProperty.idl>

#pragma prefix “omg.org”

module CosFileTransfer {

 // FileEntry types

 interface Directory;
 interface File;

 // FileSystem login session

 interface FileSession;

 // Filesystem entries, Files and Directories,
 // have multi-component path names

 typedef wstring EntryName;
 typedef sequence<EntryName> EntryPath;

 // File size, offset, octet count, and contents

 typedef unsigned long long FileLength;
 typedef unsigned long long FileOffset;
 typedef unsigned long long FileCount;
 typedef sequence<octet> FileOctetSeq;

 typedef short FilePos;
 const FilePos BEGIN = 0; // FileOffset is relative to beginning of File
 const FilePos END = 1; // FileOffset is relative to end of File
March 2002 CORBA-FTAM/FTP Interworking Specification, v1.0 A-1

A

 // Directory listing size and list offset

 typedef unsigned long long DirEntryCount;
 typedef unsigned long long DirEntryOffset;

 // Directory listing Types

 typedef short DirEntryType;
 const DirEntryType FILE_ENTRY = 0;
 const DirEntryType DIR_ENTRY = 1;

 struct DirEntry {
 EntryName name;
 DirEntryType type;
 CosPropertyService::Properties props;
 };

 typedef sequence<DirEntry> DirEntrySeq;

 interface DirEntryIterator;

 // TransferEndPoint Types

 interface TransferEndPoint;
 typedef wstring TransferProtocol;
 typedef sequence<TransferProtocol> TransferProtocolSeq;

 typedef short TransferEndPointRole;

 const TransferEndPointRole SOURCE = 0;
 const TransferEndPointRole SINK = 1;
 const TransferEndPointRole SINK_INSERT = 2;

 // transfer protocol specific information

 typedef wstring TransferDetail;

 typedef short TransferState;
 const TransferState CREATE = 0; // the end point has been created (initial state)
 const TransferState LISTEN = 1; // the end point is awaiting active connection
 const TransferState CONNECT = 2; // the end point is connected to its peer
 const TransferState ACTIVE = 3; // the transfer is in progress
 const TransferState COMPLETE = 4; // transfer has completed succesfully
 const TransferState ABORT = 5; // transfer has been aborted

 struct TransferStatus {
 TransferState state; // current transfer state
 FileCount current_count; // current transfer count
 FileCount max_count; // expected transfer size bytes/chars
 };
A-2 CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

A

 // Exceptions

 typedef short ErrorCode;
 const ErrorCode UNSPECIFIED= 0; // Error category not defined
 const ErrorCode UNAVAILABLE = 1; // The service is not available at this time
 const ErrorCode UNSUPPORTED = 2; // operation not supported, illegal parameter value
 const ErrorCode NO_PERMISSION = 3; // No permission to perform the operation
 const ErrorCode ENTRY_EXISTS = 4; // Entry should not already exist for operation
 const ErrorCode ENTRY_PATH_ERROR = 5; // Entry path component missing or invalid
 const ErrorCode ENTRY_IO_ERROR = 6; // error opening, reading, writing, closing file
 const ErrorCode DIR_NOT_EMPTY = 7; // (rmdir required empty directory)
 const ErrorCode TRANSFER_IO_ERROR = 8; // error opening, transferring, or closing connections
 const ErrorCode TRANSFER_ABORT = 9;

 exception FileSystemError {
 ErrorCode error;
 wstring desc;
 };

 // Error transferring between two files

 exception TransferError {
 TransferEndPointRole error_endpoint;
 ErrorCode error;
 wstring desc;
 };

 // FileSystem provided by service

 interface FileSystem {

 FileSession login(in wstring user,
 in wstring password,
 in CosPropertyService::Properties login_properties,
 out Directory initial_dir)
 raises(FileSystemError);

 wstring get_system_id();
 };

 // FileSession client obtains by logging in to FileSystem

 interface FileSession {
 void destroy();
 };

 // Common File system entry methods

 interface FileSystemEntry: CosPropertyService::PropertySet {

 EntryName get_name()
 raises (FileSystemError);

 EntryPath get_path()
March 2002 CORBA FTAM-FTP Interface Specification, v1.0 A-3

A

 raises (FileSystemError);

 boolean exists()
 raises (FileSystemError);

 void remove()
 raises (FileSystemError);

 Directory get_parent()
 raises (FileSystemError);

 FileSession get_session()
 raises (FileSystemError);

 void destroy();
 };

 interface File;

 // Directory manipulation and listing

 interface Directory: FileSystemEntry {

 DirEntryIterator list(in CosPropertyService::PropertyNames listProps)
 raises (FileSystemError);

 Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean create)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };

 // Iterator to retrieve results of Directory list

 interface DirEntryIterator {
 DirEntrySeq next(in DirEntryOffset from_dir_entry,
 in DirEntryCount max_dir_entries)
 raises (FileSystemError);
 void destroy();
 };

 // File manipulation and basic transfer

 interface File: FileSystemEntry {

 void copy(in File dest)
 raises(TransferError);
A-4 CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

A

 void append(in File dest)
 raises(TransferError);

 void insert(in File dest, in FileOffset offset)
 raises(TransferError);

 TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
 in FilePos seek,
 in FileOffset offset,
 in TransferProtocol ep_protocol)
 raises (FileSystemError);

 TransferProtocolSeq get_end_point_protocols();
 };

 // File transfer

 interface TransferEndPoint
 {
 TransferDetail go_to_listen()
 raises(FileSystemError);

 TransferDetail connect_to_peer(in TransferDetail passive_detail)
 raises(FileSystemError);

 void set_peer(in TransferDetail active_detail)
 raises(FileSystemError);

 TransferStatus get_transfer_status()
 raises (FileSystemError);

 void transfer()
 raises (FileSystemError);

 void abort()
 raises (FileSystemError);

 void destroy();
 };

 // File transfer using an iterator

 interface OctetTransferIterator {

 FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount max_octets)
 raises (FileSystemError);

 void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)
 raises(FileSystemError);

 void destroy()
 raises(FileSystemError);
March 2002 CORBA FTAM-FTP Interface Specification, v1.0 A-5

A

 };
};
#endif //_COS_FILE_TRANSFER_IDL_
A-6 CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

Index
A
Abort 3-21
Active endpoint connection 2-6
Append 2-1, 3-14

B
Basic maintenance operations 2-2
Basic maintenance tasks 2-1
Binary file transfer 2-4

C
Client ErrorCode handling 3-2
Configuration 1-2
Conformance criteria 3-25
connect_to_peer 3-19
Copy 2-1, 3-14
CORBA

contributors iii
documentation set ii

CORBA transfer protocol 2-9
CosFileTransfer module 2-2, 3-1
Create 2-1
create_directory 3-9
create_end_point 3-16

D
Destroy 3-4, 3-8, 3-13, 3-21, 3-24
Direct file access 2-7
Directory 2-2
Directory interface 3-8
Directory lists 2-3
Directory properties 3-9
DirEntryCount, DirEntryOffset 3-12
DirEntryIterator 2-2
DirEntryIterator interface 3-11
DirEntryType 3-12

E
ErrorCode 3-2
Exceptions 3-1
Exists 3-7

F
File 2-2
File interface 3-13
File properties 3-14
File system servers 2-1
File transfer 2-3
File transfer capable network elements 1-2
file transfer IDL 1-2
File transfer implementation 2-4
File Transfer Protocol (FTP) 1-1, 2-8
File Transfer, Access and Maintenance (FTAM) 1-1
FileCount 3-22
FileOctetSeq 3-22
FileOffset 3-22
FileSession 2-2
FileSession interface 3-4
FileSystem 2-2
FileSystem Interface 3-3
FileSystemEntry 2-2
FileSystemEntry Interface 3-5

FileSystemEntry methods 3-6
FileSystemError 3-2
FTAM 2-2
FTAM responders 2-2
FTAM transfer protocol 2-10
FTP 2-2
FTP transfer protocol 2-9

G
get_directory 3-10
get_end_point_protocols 3-16
get_file 3-10
get_name 3-6
get_octet_seq 3-22
get_parent 3-7
get_path 3-7
get_session 3-7
get_system_id 3-4
get_transfer_status 3-21
go_to_listen 3-19

H
High level file transfer operations 2-4

I
IDL 2-2
IDL interfaces 1-2
Insert 2-1, 3-15

L
List 2-1, 3-9
Local file systems 2-2
Login 3-3
Low level transfer example 2-6

M
Maintenance tasks 2-1
Multiple file systems 2-1

N
Names 2-2
NE 2-2
Network Element (NE) 1-1
next 3-12

O
Object Lifecycle 3-24
Object Management Group i

address of ii
OctetTransferIterator 2-2, 3-22
Operations 2-1
Operations Support Systems (OSS) 1-1

P
Passive Endpoint Connect Notify 2-6
Passive Endpoint Listen 2-6
Properties 3-5
Protocol negotiation 2-5
Protocol syntax 2-8
put_octet_seq 3-23

Q
Query 2-1
March 2002 CORBA-FTAM/FTP Interworking Specification, v1.0 Index-1

Index
R
Remove 2-1, 3-8
remove_entry 3-11

S
set_peer 3-20
System configurations 1-2

T
Transfer 3-21
Transfer connection establishment 2-8
Transfer Protocols 3-25

TransferDetail 3-18
TransferEndPoint 2-2, 3-17
TransferEndPoint Creation 2-6
TransferError 3-3
TransferProtocol 3-18
TransferState 3-18
TransferStatus 3-18

V
Virtual file system 2-1
Index-2 CORBA-FTAM/FTP Interworking Specification, v1.0 March 2002

	Preface
	1. Service Description
	1.1 File Transfer in Telecoms Systems
	1.1.1 File Transfer Capable Network Elements

	2. Service Architecture
	2.1 Overview
	2.1.1 File System Servers
	2.1.2 Principal Components
	2.1.3 Files and Directories
	2.1.4 File Transfer

	2.2 File Transfer Protocols
	2.2.1 Protocol Syntax
	2.2.2 Transfer Connection Establishment
	2.2.3 CORBA Transfer Protocol
	2.2.4 FTP Transfer Protocol
	2.2.5 FTAM Transfer Protocol

	3. Service Interfaces
	3.1 CosFileTransfer Module
	3.1.1 Exceptions
	3.1.2 FileSystem Interface
	3.1.3 FileSession Interface
	3.1.4 FileSystemEntry Interface
	3.1.5 Directory Interface
	3.1.6 DirEntryIterator Interface
	3.1.7 File Interface
	3.1.8 TransferEndPoint Interface
	3.1.9 OctetTransferIterator Interface

	3.2 Object Lifecycle
	3.3 Conformance Criteria
	3.3.1 Interfaces
	3.3.2 Transfer Protocols

	Appendix A - Complete OMG IDL
	Index

