
 1

Mitigating Docker Security Issues
1
Robail Yasrab

 1 School of Computer Science and Information Technology

University of Science and Technology of China, (USTC), Hefei China.

robail@mail.ustc.edu.cn

Abstract: It is very easy to run applications in Docker. Docker offers an ecosystem that offers a

platform for application packaging, distributing and managing within containers. However, Docker

platform is yet not matured. Presently, Docker is less secured as compare to virtual machines (VM)

and most of the other cloud technologies. The key of reason of Docker’s inadequate security protocols

is; containers sharing of Linux kernel, which can lead to risk of privileged escalations. This research is

going to outline some major security vulnerabilities at Docker and counter solutions to neutralize such

attacks. There are variety of security attacks like insider and outsider. This research will outline both

types of attacks and their mitigations strategies. Taking some precautionary measures can save from

huge disasters. This research will also present Docker secure deployment guidelines. These guidelines

will suggest different configurations to deploy Docker containers in a more secure way.

Keywords: Docker; LXC; Container; Virtual Machines (VMs); Linux kernel

I. INTRODUCTION

People have always been doubtful regarding the security of

cloud technologies since their inception. People don’t trust on

cloud computing security aspects entirely as this is still

emerging phenomena. In fact, the security vendors design a

marketing response for clients by using traditional terms to

market their products [1]. Though still a number of issues

lurking around but new cloud security solutions are

mitigating many security and privacy vulnerabilities.

Currently, cloud technologies are transforming

traditional technology with new and more efficient practices

[2,3]. One of such example is containers. Containers are

considered as future of virtual machines (VM).

Container-based virtualization is also known as operating

system virtualization, which allows virtualization layer to run

as an application within the operating system (OS) [4].

Containers appeared as micro virtual machines, more light

weight and more efficient because there is just one operating

system (OS) managing all hardware calls.

Currently container model is misrepresented. Apparently

container technology looks secure, that it contains all

dependences in one package. However it doesn’t ensure its

security. Container platforms are also vulnerable as other

cloud platforms. There are number of threats which are

threating from inside and outside [5].

Virtual environments offer a great deal of challenge to

run services with great security, particularly in a multi-tenant

cloud system [6]. It is already established that virtual

machines (VMs) developed through hypervisor based

virtualization methods are highly secured as compare to

containers. The key reason behind this aspect is that VMs

add an additional layer of isolation among the host and the

applications.

VM based applications are only allowed to

communicate with the VM kernel, not to the host kernel. So,

an attacker has to bypass the VM kernel and the hypervisor

before an attack can be made to the host kernel. On the other

hand, containers model offers application to directly access

and communicate with the host kernel as shown in Fig. 1.

Such situation permits attacker to directly hit host kernel.

This is one of the key aspects that raise the security concerns

about the container technology as compared to VM

platforms.

Fig.1. VMs vs. Container

mailto:robail@mail.ustc.edu.cn

 2

Currently, Docker appeared as one of the top

container-based virtualization platform. Docker containers

also suffer from same security vulnerabilities. Docker

demonstrates the idea of less friction; however security is just

opposite to it.

The research is aimed to offer a deep insight of Docker and

its analysis which leads to following research question. Is

Docker offering a safe environment to run applications? The

analysis will discover some of the key security

vulnerabilities which are currently threating Docker. This

research will also highlight the key mitigation policies to

avoid such issues. This analysis will attempt to assess

majority of security threats internally as well as externally.

The initial section of this paper is about the detailed

overview of Docker platform. The second section will

outline some of the major security issues and their mitigation

strategies. The third section will outline recommendations

for security deployment of containers at Docker platform

and a new evolutionary hybrid architecture that is more

secure and efficient. The last section is based on conclusion

and recommendations.

II. DOCKER OVERVIEW

Docker has quickly turned out as one of the leading projects

for containerizing applications. Docker platform was

initiated as an open source project that allows packing,

shipping and running applications in lightweight containers.

Docker containers offer unique capabilities of

platform-agnostic and hardware-agnostic. These containers

do not have any dependences regarding particular

framework, language or packaging system. Docker

containers can run within any technology based environment.

This capability make these containers independent from

particular stack or provider [7].

Solomon Hykes initiated Docker as an open-source

internal project at dotCloud, which is a platform-as-a-service

(PaaS) company. The initial version of open source Docker

was released in March 2013. Docker was designed to utilize

different interfaces to access virtualization characteristics of

the Linux kernel as shown in Fig.2. Initially Docker was

utilizing LXC as the default execution environment for its

platform. However, on release of version 0.9 on March 13,

2014, Docker dropped LXC and introduced its own

libcontainer library. Go programming language was used to

write Docker libcontainer library [8].

Fig.2. Docker uses virtualization features of the Linux kernel

Process of developing containers on Docker is based on

number of steps. For developing container, we search for

images in local Docker library. Docker offers images

command lists locally to create a Docker container. However,

if required image is not available then it can be downloaded

from the central Docker repository. The next step is to build

a container as well formulating necessary changes. The

whole process is shown in Fig. 3.

Fig.3. Developing a Docker container

Till now number of popular technology organizations

worldwide showed their interest and dependence on Docker.

Organizations like Red Hat, Google, IBM, Google, Amadeus

IT Group and Cisco Systems have already contributed to

Docker at great level. Red Hat is one of biggest contributor

of Docker containers. Recently Red hat announced that now

users can run Docker containers on Red Hat Enterprise

Linux 7 (RHEL 7) and Red Hat Enterprise Linux Atomic

(based on RHEL 7) systems [9].

On August 12, 2015, new version of Docker 1.8 was

announced. This new version offers new capabilities of

content trust, toolbox and updates to registry and

 3

orchestration. This new version will also offer support for

image signing, a new installer, and incremental

improvements to Engine, Swarm, Compose, Machine and

Registry [10]. Docker 1.8 version offers support for users of

Mac OS X, Linux and Windows versions

III. SECURITY ANALYSIS

Current growing technology market demands enhanced

virtualization technologies. Though a number of

virtualization methods are not flexible enough to satisfy

developer needs. Most of virtualization technology solutions

offer considerable overhead that turn out to be a burden on

the scalability of the infrastructure.

In such situations, Docker has evolved a light weight

virtualization solution that minimize the overhead through

containerization of applications and services [11]. Docker

offers the same kernel as the host system to minimize the

resources overhead, though this technique can expose

containers to a number of security risks if not effectively

configured [12].

Running services in multi-tenant cloud based virtual

environment presents security as one of key challenges. VM

allows an application to only communicate with the VM

kernel, not with the host kernel. Conversely, containers

based applications are able to directly communicate with the

host kernel [13,14]. This is one of key weak point for

containers security and privacy management. Docker is also

based on similar container-based virtualization methodology,

also having same security vulnerabilities.

To analyze the security vulnerabilities of Docker, we

have to assess two sides of system, ‘outsider’ and ‘insider'.

Security attacks can be happened from outside as well as

inside of the system. Outsider attacks try to get access to

container and damage the data and exploit resources. While

insider attacks carried out by a malicious user present inside,

through getting access to the Docker commands. The basic

objective of both kinds of attacker is same, to damage and

exploit container intellectual resources.

For example, a simple command (given below) can do huge

damage if your system is not properly configured. The below

given command is executed through dummy flag:

The above stated command deletes all of host’s /usr folder. So,

we can assess that how much a system can be damaged if

security precautions are not taken properly.

The objective of this analysis is to find out most

vulnerable security issues (insider/outsider) and suggest some

precautions and mitigation strategies to counter such attacks.

Insider attacks can be managed through some simple

configurations. Running Docker Daemon with –selinux flag

will prevent containers from doing damage to the host

system through developing additional security layer. Further

details of different insider attacks are outlined in coming

sections.

Let’s consider security of the container in comparison to

the security of a ship. The ship acts like a dock. It can build

very strong and secure container, however if the ship is

insecure, it doesn’t matter how strong the container is?

Similarly, a great deal of care should be taken to avoid

outsider attacks. Through removing capabilities of containers,

a number of outsider security threats can be avoided.

Container capabilities are the partition of root into 32

different categories. By default many of these capabilities are

disabled in Docker containers. For instance, by default,

Docker container’ IPTables rules cannot be manipulated. For

disabling all of these capabilities, the command is given

below:

IV. DEFENDING AGAINST SECURITY ATTACKS

Security is now one of key aspects for cloud application.

Docker also suffers from number of security attacks. This

section will outline different insider and outsider security

attacks and their mitigation policies.

1. Kernel Exploits

Kernel mange and deal all container operations and

processes. In case of a kernel-level exploit, the applications

running inside containers are at the verge of compromising

and exploit. All containers share the same kernel architecture

[5]. In this situation, if some contained application is

hijacked and obtain some privileged rights of kernel, then

such condition leads to compromise all running containers as

well as host platform. Likewise, there is no possibility that

two containers utilize different versions of the same kernel

docker run --dontpastethis --privileged -v

/usr:/usr busybox rm -rf /usr

docker run -ti --cap-drop ALL debian /bin/bash

 4

module.

Docker is currently taking security very seriously and

trying to offer more solid and effective solutions to tackle

and deal major security issues. To deal with kernel level

exploits Docker specifically recommends following

precautions to implement a secure and safe cloud

environment.

It is recommended that AppArmor or SELinux should

be executed while running Docker Engine.

Docker states that mutually-trusted containers should

be mapped together in groups at separate machines.

Untrusted applications should not be running with root

privileges. Docker Engine has also started support for user

namespaces which will offer an additional layer of security

for containers.

To avert kernel exploits, container file system must be set to

read-only. Through turning off inter-container

communication, such attacks can be avoided. Avoiding

unnecessary package installations in the container is also a

good way to keep such dangers away.

2. Denial of Service (Dos) Attacks

Denial-of-Service or DoS is one of the most well-known

attacks on network resources. In such attacks a process or a

group of processes try to consume the entire resources of the

system, thus breaking down or disrupting normal processing

or operations.

In containers based processing architecture all

containers share kernel resources. DoS condition happens

when one container exploits access to a resource. In such

conditions, it will starve out all other containers.

To encounter such attacks, there is a need for OS-level

virtualization solution that should fulfill requirements like:

file system isolation, process isolation, IPC isolation, device

isolation, network isolation and controlling resource

allocation [5].

So, through controlling resource allocation to each

container, such attacks can be prevented. Docker implements

Cgroups as a key tool to deal with such issues. Cgroups

control and manage the resource limits, e.g. CPU time,

memory space, and disk I/O that any Docker container can

use. They ensure that every container gets its fair share of

the resources and avoiding any container monopolizes all

resources. Moreover, Cgroups allow Docker to control and

configure resource allocation constraints for every container.

For instance, one such constraint is controlling the CPUs

availability to a specific container [5].

3. Container Breakouts

In such attacks an attacker breakout a container, then he/she

be able to get access to the host and other containers. After

getting access, the attacker will be able to access files

outside the container.

open_by_handle_at() function allows process to access

files on a mounted filesystem through file_handle structure.

file_handle structure utilize inode numbers to distinguish

files. To call this function needs

CAP_DAC_READ_SEARCH capability. A superuser inside

a container is having this capability by default. This allows

an attacker to bypass simfs constraints and access the entire

files on a primary filesystem comprising other VE’s residing

on the similar filesystem.

According to Docker’s website, container breakout

issue and vulnerability was only present until Docker version

0.11. According to the new details this vulnerability was

fixed in Docker 0.12, which was ultimately turned out to be

Docker 1.0.

To mitigate such kind of security vulnerabilities there is

a need to set container file system to read-only. Running

containers with the privileged flag can be dangerous and can

cause such kind of security attacks. Setting containers

volumes to read-only is an effective way for discouraging

container breakout.

4. Poisoned Images

Container Images may be injected through some virus or

trojan infected software. Problem of poisoned images also

happens if someone is running outdated, known-vulnerable

software versions.

According to Docker, a downloaded image is “verified”

by system. This verification is solely based on the presence

of a signed manifest. Though Docker never authenticates

downloaded image checksum from the manifest. In such

situations, an attacker could transmit any image together

with a signed manifest. Such kind of security issues can lead

to numerous serious vulnerabilities [15].

 5

In Docker, images are downloaded from an HTTPS

server. These images pass through an insecure streaming

processing pipeline inside Docker daemon: [decompress]

-> [tarsum] -> [unpack].

Inside Docker, this pipeline is effective, however, extremely

unprotected. Therefore, there is a need that unauthenticated

input steam should not be assessed before confirming its

digital signature.

Docker users need to be alert that the code used for

downloading images is shockingly insecure. In this scenario,

users should only download authenticated and trusted

images. Another better option to manage such security issues

is to block index.docker.io locally. Through this, a user will

be able to download and authenticate images manually

before importing to Docker platform through Docker load.

5. Compromised Secrets

Compromising business or personal secrets are the big

security dangers in container based technology. In case of

theft of API keys and database passwords; the overall system

can be compromised. Docker allows user to run multiple

containers at the same time. In case of security breach,

overall services and operations can be disrupted. So a lot

more is needed to be done to protect database passwords and

API keys. Such details must be kept secret to avoid any

possible security breach.

To further protect Docker from such attacks, there is a

need to set container file system to read-only option. For

sharing secrets, utilizing environment variables is not a good

option. Running containers without privileged flags will also

be considered a great help to avoid compromising security

attacks.

6. Man-in-the-Middle (MitM)

In such attacks a malicious actor inserts himself/herself into

a communication among two legitimate parties. Such

attacker monitor, alter or steal valuable information which

transmits among two parties.

To avoid such attacks in containers, network isolation

is the most significant aspects to prevent such network-based

attacks. There is a need to configure containers in such a

way that they are incapable to manipulate or eavesdrop on

the network traffic of the host or other containers [5].

In this scenario, OpenVPN (open virtual private

network) offers a best way to implement virtual private

networks (VPNs) by means of TLS (Transport Layer

Security) encryption. OpenVPN defends the network traffic

from man-in-the-middle attacks and eavesdropping.

Docker offers an easy way to encapsulate the

OpenVPN server. In this way OpenVPN server process and

configuration of data can be managed more easily at Docker'

platforms. Image of the Docker OpenVPN is prebuilt. It

contains everything that is necessary to run the server in a

well-balanced and persistent environment. Docker includes

scripts those considerably automate the standard use case,

however if desired, it also offers full manual configuration.

A Docker volume container is utilized to hold the EasyRSA

PKI and also configuration certificate data.

7. ARP spoofing

ARP (Address Resolution Protocol) spoofing is a kind of

security attack in which an attacker sends fake ARP

messages over a LAN (local area network). In such attacks,

attacker is able to link his/her MAC address with the IP

address of a legitimate system on the network. As the

attacker’s MAC address is linked to legitimate IP address,

the attacker will start getting each and every bit of data from

that specific IP address.

Initially, Docker developers paid less attention to the

fact, that the so‐called ARP is employed to map IPv4 to

Ethernet hardware (MAC) addresses, which can also be

utilized by the virtual bridge to distribute the Ethernet

frames to right container. As ARP packets are not filtered so

there is no security mechanism available in ARP itself.

Therefore containers can certainly imitate other containers or

even the host. Such situations can present an ARP spoofing

or ARP cache poisoning attack scenario. The NDP (Neighbor

Discovery Protocol) in IPv6 is used in the similar way.

If an attacker gains access to one of the containers,

through compromising the container’s security, the attacker

can obtain, manipulate or redirect any information of the

bridge. This information can be any traffic running among

containers and the outside world. In such situations, attacker

might sniff any secret details (passwords) sent between web

application and database containers. Moreover, attacker will

also be capable to inject malicious payload into network

 6

connections.

To mitigate such security attacks, there are number of

ways; one of the most powerful ways to save container, is to

run the container without NET_RAW capability. In this way,

programs inside container will not be able to create

PF_PACKET sockets. Without PF_PACKET sockets, ARP

spoofing attack cannot be performed. This method has few

drawbacks.

Another more suitable way to protect Docker container

from such attacks; is to utilize “ebtables” to filter out

Ethernet frames. In this way, ARP packets with wrong

sender protocol or hardware address (ARP spoofing) can be

caught and detected [16]. It also allows filtering out the

incorrect source addresses (MAC spoofing). In this situation,

attacker has no chance to perform ARP spoofing attack.

V. PROPOSED SOLUTION

1. Access Control Policy Modules

We have proposed a solution that is a simple and more

reliable. This is based on access control methodology to

ensure appropriate access management. It is based on

specific SELinux types of containerized procedures in a

more clear way for the client. In this method image

maintainers ship the SELinux policy module together with

their images to the host platform. Here the module will be

placed on the host system and outlines the types that will be

linked with the processes in the Docker image. SELinux

modules and aforementioned Policy Modules (PM) have to

fulfill the properties to not to pose a threat to the host system

[17]. The policy modules for an image will be stated in the

Docker file and placed in the image metadata at their

build-time. For running containerized processes along with

some SELinux types, the image-maintainer is able to label

the binaries in the image by particular types, and write a type

transition procedure. Thus, the process is allocated to the

SELinux type stated in the rule, when the binary is executed.

It is possible to run different SELinux labels, even if

multiple processes have been running at the similar the same

image. When a Docker container holds different images, all

the policy modules for the images that comprise the

container will be installed. It also offers SELinux types

intended for processes in the parent images.

The Docker Hub Registry has to ensure that policy modules

must not alter the system policy as well as can only have an

influence on processes and resources linked with the DPM

itself. Fig. 4 shows that two Docker containers (apache, and

mysql) are running, using explicit SELinux types stated in

the policy modules inserted in the Docker images.

It also needs to ensure that new types stated in policy

modules have to always operate inside the boundaries

defined through the svirt_lxc_net_t type. A policy model

offers the flexibility of outlining numerous types with

diverse privileges. Consequently, a container can switch to

the least privilege domain required to obtain the present task.

Fig.4. Two Docker containers running processes in, using

SELinux types based Policy Modules

2. Secure Deployment Guidelines

Taking precautionary security measures can save us from

huge vulnerabilities. The same case is with the Docker

container security. By taking number of precautionary

measures for Docker container security, more secure and

reliable applications could be developed. This section will

outline some secure deployment guidelines for Docker

platform.

2.1. Docker Images

As discussed earlier that poisoned images are one of the key

security issues at Docker. However, from Docker 1.3 and

onward versions offer cryptographic signatures support.

Through this approach, a user will be able to discover real

origin and integrity of official repository images. This

capability will reduce the dangers of poisoned images and

also reduces the chances of possible security threats. It is

highly recommended that all images should be downloaded

from authenticated source and support cryptographic

signatures.

 7

2.2. Network Namespaces

Running Docker on a TCP port can cause a serious security

hazard for containers. Such approach permits anyone to get

access to specific port to obtain access to container. This

leads to get root access on the host or may be to Docker

group. Therefore, it is critically required to ensure that

communications are adequately encrypted using SSL while

offering access to the daemon over TCP. This approach will

prevent unauthorized parties from interacting with it.

For more enhanced security management, kernel

firewall iptables rules can be implemented to docker0. For

example, the source IP range can be restricted for a Docker

container [18]. This will prevent container from talking with

the outside world. The following iptables filter is used to

prevent such access.

2.3. Logging & Auditing

Logging and auditing offers an additional layer of security

for Docker security management. In this way, a user can

monitor the traffic to ensure that no suspicious activities are

being performed.

Following command can be used to access log files outside

the container from the host:

Log files can also be accessed by using the built-in Docker

command:

For permanent storage into a tarball, log files can be

exported using following command:

2.4. SELinux / AppArmor

Docker offers Linux kernel security modules like AppArmor

and Security-Enhanced Linux (SELinux). These Linux based

Linux kernel security modules can be configured through

access control security policies. Through configuring these

security modules, the users can implement mandatory access

controls (MAC) for limiting set of system resources or

privileges.

Through configuring SELinux, Docker will have an

additional layer of security through permission checking

policy MAC. SELinux manage everything through labels. In

Docker system, every process, file/directory and system

object has a label. These labels are being used by system

administrator to write rules to manage access between

system objects and processes.

Similar like SELinux, AppArmor is another MAC

based security enhancement model to Linux. AppArmor

offers control access to individual programs. Through this

model administrator is able to load the security profile into

every individual program to restrict and manage the

capabilities of the program.

These features are available in Docker version 1.3 and

onwards. Docker offers an interface for loading AppArmor

pre-defined profile while launching a new container on

AppArmor supported systems [19].

To load SELinux or AppArmor security policies are

using label confinement; intended for container. It can be

configured using the newly added --security-opt argument in

Docker as shown below:

2.5. Daemon Privileges

It is recommended not to use the --privileged command

because --privileged command will permit the container to

access the all devices on host as well as it would provide the

container with explicit LSM (i.e AppArmor or SELinux)

iptables -t filter -A FORWARD -s

<source_ip_range> -j REJECT --reject-with

icmp-admin-prohibited

docker run -v /dev/log:/dev/log

<container_name> /bin/sh

docker logs ... (-f to follow log output)

docker export ...

--security-opt="label:user:USER" : Set the label

user for the container

--security-opt="label:role:ROLE" : Set the label

role for the container

--security-opt="label:type:TYPE" : Set the label

type for the container

--security-opt="label:level:LEVEL" : Set the

label level for the container

--security-opt="apparmor:PROFILE" : Set the

apparmor profile to be applied to the container

Example: docker run

--security-opt=label:level:s0:c100,c200 -i -t

centos bash

 8

configuration. LSM configuration would give the similar

level of control as host processes [18].

Through avoiding --privileged command could help to

diminish the security risks and host compromises. A

legitimate user should have the ability to launch the daemon

by using -u option. It can reduce the privileges which are

enforced inside the container. For example:

2.6. cgroups

The cgroups, or control groups, offer a way for accounting

as well as limiting the resources for every container. So

cgroups offered great deal of capability to avoid the Denial

of Service (DoS) attacks through restricting system resource

exhaustion [20].

CPU usage:

Memory usage:

Storage usage:

2.7. SUID/GUID binaries

Buffer overflow security attacks can be serious for

containers. To avoid such attacks, SUID and SGID binaries

should be prohibited. This can be achieved by decreasing the

capabilities offered to containers by specific command line

arguments.

Another way is to mount filesystem with the nosuid

attribute. By applying this command, a user can avoid SUID

resultant buffer overflow security attacks.

2.8. Devices control group (/dev/*)

Device isolation is also one of the key ways to avoid number

of security vulnerabilities. By default containers includes all

permissions. To avoid such issues there is a need that devices

should be mount by means of the “--device" option which is

built-in and don’t use “-v” with the “--privileged" argument

[21].

A set of strict permissions can be utilized for device by

means of third set of options; “rwm” to override read, write,

and mknod permissions respectively. For example, sound

card read-only permission can be set by following command:

2.9. Services and Applications

If a Docker container security is compromised; while there

are number of sensitive services running, such situations can

lead to huge disaster. So, to avoid such situation, consider

isolating sensitive services. Through running sensitive

services (SSH service) on bastion host or in a VM we can

add an additional security layer into our system. Also

untrusted applications should be avoided to run with root

privileges within containers.

2.10. Linux Kernel

Sometimes out-dated kernels are more likely to be exposed

to publicly disclosed vulnerabilities. Therefore, it is so

important that kernel is up-to-date with updated utility

offered by the system (e.g. apt-get, yum, etc). There is a

great deal of effective security against memory corruption

bugs, through using kernel with GRSEC or PAX.

2.11. User Namespaces

Currently, user namespaces are not directly supported by

Docker. However, they can be used by Docker’ containers

on supported kernels, through applying the clone syscall, or

using the ‘unshare’ feature. UID mapping is presently

supported through the LXC driver, however; not in the

native libcontainer library.

User namespaces feature would permit the Docker daemon

to execute as an unprivileged user on the host [22]. However,

this Docker daemon will appear as executing like root inside

containers.

2.12. libseccomp (and seccomp-bpf extension)

Syscall processes are not significant to system operation. It

should be restricted in order to avoid abuse or misuse inside

a compromised container. To restrict Linux kernel’s syscall

procedures, libseccomp library is used. This feature is

presently under-development. This features available in LXC

docker run -u <username> -it <container_name>

/bin/bash

docker run -it --rm --cpuset=0,1 -c 2 ...

docker run -it --rm -m 128m ...

docker -d --storage-opt dm.basesize=5G

docker run -it --rm --cap-drop SETUID

--cap-drop SETGID ...

docker run --device=/dev/snd:/dev/snd:r ...

 9

driver but not in libcontainer.

Docker daemon can be restarted to use the LXC driver by

using following command:

2.13. Full Virtualization

Escalation from the container to the host can be so

dangerous. It can happen if kernel vulnerability is exploited

inside the Docker image. To prevent such issues, use full

virtualization solutions that contain Docker, for example

KVM. Docker offers capability to nest Docker images to

offer KVM virtualization layer. (Docker-in-Docker utility)

2.14. Security Audits

Security audits are one of the key ways to protect system

from major security risks. Host system and containers should

be audited regularly to assess and identify any vulnerabilities

and misconfigurations if any. These vulnerabilities and

mis-configurations could become dangerous for our systems

and may compromise intellectual resources [23].

2.15. Multi-tenancy Environments

Containers should run on dedicated hosts. It is very

important for the security of containers. It becomes more

important when user is dealing with some sensitive

operations.

It is recommended because of the shared nature of

Docker containers’ kernel. Therefore, multi-tenancy

environments of Docker containers’ kernel can offer secure

separation of duty. So, it is highly suggested that containers

should be running on dedicated hosts [24].

More secure environment can also be achieved through

reducing the inter-container communications to a very small

level. It can be achieved by setting the Docker daemon to

utilize --icc=false. Also it is useful to specify -link with

Docker run when required.

2.16. Docker Content Trust

Content Trust is a new feature that can offer an additional

layer of security for containers. It is open-source software

that is able to offer legitimacy of container images. This

feature is added in Docker version 1.8.0. It will allow

Docker users to conform the legitimacy of container images

(available at any public Docker Hub) before downloading

Docker images [25].

The basic idea behind this feature is to secure the

Docker platform and offer assurance to users that they won’t

be deploying anything possibly hazardous atop their

technology infrastructure.

VI. RESULTS AND DISCUSSION

The proposed guidelines offer a great deal of capability to

protect against any attacks from malicious client or network.

Adopting the aforementioned methodologies and guidelines

will ensure a great deal of capability to protect systems

against possible breaches. The proposed SELinux types

based Policy Modules for access control will ensure better

security and improved access management of possible

insider and outsider attacks. Application of these policy

modules for different images will offer a comprehensive

firewall.

To perform a network defensive drill we have to know the

difference between the efficiency among real world attacks

and the simulation. Therefore, to test the proposed technique,

DDoS program executed on the Docker container.

Cyber-attacks program will produce a huge number of

subroutines those are sending requests to attack the targets.

Docker container equipped with aforementioned tools and

capabilities defended better as compared to naive Docker

containers. Table 1. shows the experiment aspects where we

run Docker version 1.2 on a native OS, with policy modules

and specified guidelines. It can be seen that source to base

presence of policy modules can ensure higher protection and

security.

Table 1. Policy Module Application

 Target to Base
Target to Policy

Module

Source to Base Threat Present Partial Threats

Source to

Policy Module
Partial Threats No Threats

In March 2015, Docker Inc. published a research, which

offered a hybrid solution (Combining Containers and Virtual

Machines) to enhance the security and isolation [26].

Regular Virtual machines cannot be scaled down up to the

level of running a single application service. VMs are able to

support the rich set of applications. However, this approach

can present some conflicts among collaborating

docker -d -e lxc

 10

micro-services. On the other hand, running one

micro-service per VM is so costly from resource point of

view. To resolve these issues, Docker containers can be

deployed in conjunction with VMs. This hybrid

infrastructure will be based on combination of containers

and VMs. It will allow running complete group of services

in an isolated way and also it’s grouping inside of a virtual

machine, as shown in Fig.5.

Fig.5. Combining Containers and Virtual Machines

One of the key features of this approach is the

enhanced security by introducing two layers, VMs and

containers, to the distributed applications. The other feature

of this technique is to utilize resources in a better way.

Moreover, it increases the density of containers; whereas

decreases the number of VMs necessary for the defined

isolation and security objectives.

VII. CONCLUSION

Container applications are getting popular. Docker, LXC,

Rocket or other projects are getting momentum in container

application field. This technology is here to stay. As the

technology and related processes are getting mature, they

will address many of the risks, few of them have been

outlined above. Docker Containers are offering a lightweight

and efficient way to package application with all their

dependencies. However, some security issues hindering their

wide spread adoption. This research has addressed and

outlined some potential security issues and vulnerabilities,

and offer mitigation strategies to manage these issues. This

research also outlines some security deployment strategies to

deploy applications at Docker in a more security and safe

way. These all guidelines and precautionary measures can

offer a more secure and reliable container platform for future

application development. Currently, Docker has offered its

1.8 version with new updates and fixes. Now Docker is

offering quite secure container based application

development platform.

Docker suggests that user can ensure security of

processes through running inside the containers as

non-privileged users (i.e., non-root). It is also recommended

that by enabling SELinux, AppArmor, GRSEC, or hardening

solution, we can add additional layer of security for our

applications. Through configuring the right security policy

and following the secure deployment guidelines we can

ensure the greater security of Docker containers.

ACKNOWLEDGMENT

This research is supported by CAS-TWAS and University of

Science and Technology, China. We pay special gratitude to

our colleagues who provided insight and expertise that

greatly assisted this research work.

REFERENCES

1. Moral-García, S., Moral-Rubio, S., Fernández, E.B.,

Fernández-Medina, E.: “Enterprise security pattern: A

model-driven architecture instance”. Computer

Standards & Interfaces 36(4), 748-758 (2014).

2. Kalloniatis, C., Mouratidis, H., Vassilis, M., Islam, S.,

Gritzalis, S., Kavakli, E.: “Towards the design of secure

and privacy-oriented information systems in the cloud:

Identifying the major concepts”. Computer Standards &

Interfaces 36(4), 759-775 (2014).

3. Blanco, C., Rosado, D.G., Sánchez, L.E., Jürjens, J.:

“Security in information systems: Advances and new

challenges”. Computer Standards & Interfaces 4(36),

687-688 (2014).

4. Bernstein, D.: Containers and cloud: “From lxc to

docker to kubernetes”. IEEE Cloud Computing (3),

81-84 (2014).

5. Bui, T.: “Analysis of Docker Security”. Aalto University

T-110.5291 Seminar on Network Security (2014).

6. Li, S.-H., Yen, D.C., Chen, S.-C., Chen, P.S., Lu,

W.-H.,Cho, C.-C.: “Effects of virtualization on

information security”. Computer Standards & Interfaces

42, 1-8 (2015).

7. Turnbull, J.: “The Docker Book”. ames Turnbull; 1.8.0

 11

edition, (2014)

8. Github: “Docker: the container engine”.

https://github.com/docker/docker (2015). Accessed 08

25 2015

9. RedHat: “Get Started with Docker Formatted Container

Images on Red Hat Systems”.

https://access.redhat.com/articles/881893 (2015).

Accessed 07 09 2015

10. Docker: “Announcing docker 1.8: content trust, toolbox,

and updates to registry and orchestration”.

http://blog.docker.com/2015/08/docker-1-8-content-trust

-toolbox-registry-orchestration/ (2015). Accessed 09 02

2015

11. Boettiger, C.: “An introduction to Docker for

reproducible research, with examples from the R

environment”. arXiv preprint arXiv:1410.0846 (2014).

12. Merkel, D.: “Docker: lightweight Linux containers for

consistent development and deployment”. Linux J.

2014(239), 2 (2014).

13. Gomes, J., Pina, J., Borges, G., Martins, J., Dias, N.,

Gomes, H., Manuel, C.: “Exploring Containers for

Scientific Computing”. In: 8th Iberian Grid

Infrastructure Conference Proceedings, p. 27

14. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: “An

updated performance comparison of virtual machines

and linux containers”. Technology 28, 32 (2014).

15. Rudenberg, J.: “Docker Image Insecurity”.

https://titanous.com/posts/docker-insecurity (2014).

Accessed 07 06 2015

16. Nyantec: “Docker networking considered harmful”.

https://nyantec.com/en/2015/03/20/docker-networking-c

onsidered-harmful/ (2015). Accessed 08 02 2015

17. Mutti, S., Bacis, E., Paraboschi, S.: “Policy

specialization to support domain isolation”. In:

Proceedings of the 2015 Workshop on Automated

Decision Making for Active Cyber Defense 2015, pp.

33-38. ACM

18. Grosperrin, Q.: “Docker Secure Deployment

Guidelines”. (2015).

19. Docker: “Docker security”.

https://docs.docker.com/articles/security/ (2015).

Accessed 08 29 2015

20. Goldmann, M.: “Resource management in Docker”.

https://goldmann.pl/blog/2014/09/11/resource-managem

ent-in-docker/ (2014). Accessed 8 8 2015

21. Vieux, V.: “Announcing Docker 1.2.0”.

http://blog.docker.com/2014/08/announcing-docker-1-2-

0/ (2014). Accessed 08 12 2015

22. Graber, S.: “Introduction to unprivileged containers”

https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileg

ed-containers/ (2014). Accessed 08 22 2015

23. Chou, D.C.: “Cloud computing risk and audit issues”.

Computer Standards & Interfaces 42, 137-142 (2015).

24. Turnbull, J.: “Docker Container Breakout

Proof-of-Concept Exploit” (2014).

25. Firshman, B.: “Announcing docker 1.8: content trust,

toolbox, and updates to registry and orchestration”.

http://blog.docker.com/2015/08/docker-1-8-content-trust

-toolbox-registry-orchestration/ (2015). Accessed 08 01

2015

26. Docker: “Introduction to Container Security”.

https://d3oypxn00j2a10.cloudfront.net/assets/img/Dock

er%20Security/WP_Intro_to_container_security_03.20.

2015.pdf (2015). Accessed 08 09 2015

