
“Docker” invokes many different ideas of how infrastructure can
be built in the future. Why are people so excited?

Many organizations are turning towards Docker as a solution
for reproducibility and scalability. At RStudio, we use Docker
every day in production systems for many good reasons.
However, we also deploy traditional multi-tenant servers
and do data science on the least hyped platform of all, our
desktops. In this document, we will share what we’ve learned
by looking at the pros and cons of Docker, where Docker fits
with R, and how RStudio is making Docker easier to use with our
products.

Understanding the Docker Phenomenon

Isolation
At the foundation of Docker are clever interactions with the
Linux kernel based on the idea of sandboxes. These sandboxes
ensure an application in a Docker container is isolated from the
underlying server and from other applications.

This isolation has nice benefits. For example, two users can run
R code on the same server, each in their own container, and not
worry about user A’s installation of libxml2 breaking user B’s
analysis. (libxml2 is a system library used by the popular xml2
package).

However, this isolation comes at a cost. Imagine starting each
analysis with a brand new computer - you’d spend quite a bit
of time installing packages! Luckily Docker supports caching.
Organizations can create an “R container” that comes with their
favorite R packages pre-installed. However, caching is one of
the two hardest problems in Computer Science. Docker is not
immune; it is hard to find the right balance between caching
and customization.

Even with an optimized container, launching Docker takes more
time than starting a new R session. For data scientists, the time
between starting a project and writing the first line of code is an
important cost. Often dedicated analytic servers outperform
containerized deployments by allowing users to create projects
with little overhead. For the best of both worlds, it is possible to
run RStudio Server Pro inside Docker. This model allows a single
container to support multiple users and sessions, requiring the

RStudio and Docker

Open source & enterprise-ready
professional software for R

overhead of containerization to be paid just once per project,
not once per data scientist’s session.

The challenge of balancing caching with isolation is also
why we’ve opted to use a different isolation mechanism in
RStudio Connect instead of Docker. Connect uses Linux kernel
tools (cgroups) similar to Docker to isolate parts of a user’s
application from the operating system, and uses packrat
to manage R dependencies. The result is an application
sandbox, or container, similar to Docker but optimized for data
science products like Shiny applications and R Markdown
reports.

Reproducibility
Isolating applications from the underlying server facilitates
reproducibility, but doesn’t guarantee it. In Docker, all the
dependencies for an application are captured in the container.
These dependencies can be enumerated in code in the form of
Dockerfiles. A Dockerfile contains a series of instructions, e.g.,
install R, install some R packages, etc. When the instructions are
executed, you end up with a Docker container. Much like writing
down a recipe, the benefit of a Dockerfile is that someone
else can follow the instructions and end up with a similar
environment.

Dockerfiles do not ensure reproducibility. A Dockerfile contains
enough information to create an environment, but not enough
information to reproduce an environment. Consider a Dockerfile
that contains the command “install.packages(‘dplyr’)”. Following
this instruction in August 2017 and again in December 2017
will result in two different Docker containers, since the current
version changed.

Users often modify their environment after a container has been
started. A Dockerfile that includes the instruction “install R” will
build a container with R, but then the user will manually install
packages inside the container. These manual actions are not
captured by the Dockerfile. This scenario doesn’t represent a
bad setup. Most R users are not expected to write Dockerfiles.
A seasoned DevOps team will work to supply R users with a
container that serves as a reasonable launching place for further
customization.

https://www.rstudio.com/products/rstudio/

Since a Dockerfile helps with reproducibility but does not
guarantee it, many organizations rely on taking snapshots of the
actual containers themselves. These snapshots can be stored,
organized, and brought back to life at a later date.

Provisioning containers from Dockerfiles and managing
snapshots requires a significant amount of tooling. This tooling
can be bought from platform providers, or home-built by a
mature DevOps organization, but the engineering investment
should not be underestimated. Proper tooling for an analytics
workflow centered on Docker will take an order of magnitude
more work than supporting a traditional, dedicated, and multi-
tenant analytics server.

Organizations interested in getting started with Docker can
begin by treating Docker containers as stand-in replacements
for virtual machines. For example, it is just as easy to install
RStudio Server Pro, Shiny Server Pro, or RStudio Connect inside
a Docker container as inside a VM. Teams can start by running a
single, long-lasting container and then gradually build tools to
support a model that uses containers to isolate and reproduce
specific analysis.

Portability and Scalability

Docker containers are also known for portability and scalability.

Like virtual machines, Docker containers are easily portable
because they isolate the runtime environment of an application
from the underlying server. The same Docker container can be
run on a physical server or in the cloud. This flexibility saves time
for IT organizations tasked with maintaining many applications
and servers.

Containers are also easy to clone, theoretically allowing
organizations to scale applications that are built on top of
containers. In practice, however, scaling also requires careful
tooling. For example, R users typically require persistent storage
that can be accessed during an analysis. Creating tooling that
can quickly scale 100s of R containers while seamlessly giving
them equal access to shared storage is no small task.

Docker and RStudio … err I mean R?

Where does rubber meet the road with R and Docker?

Stage 1: Treat Docker like a VM

Most teams using R with Docker will begin small and grow. To
start, many organizations treat a Docker container like a VM. The
container can include either the open-source RStudio Server
or RStudio Server Pro, and is accessed by many users across
different projects. The container is still portable, but will be left
running for an extended period of time.

A similar approach works for Shiny applications. RStudio
Connect or Shiny Server Pro can be installed into a container
or a cluster of containers for high availability. Connect or Shiny
Server Pro handles scaling the number of R processes, and
Connect additionally provides app isolation and reproduces
package libraries.

Stage 2: Tooling to support multiple containers

Docker Container

Docker Container

Docker Container Docker Container

As the organization gains experience, it can build out tools to
support multiple containers. The required interface allows an R
user to provision a container and access previously saved con-
tainers. DevOps teams can work with R users to design reason-
able baseline images. Infrastructure can be put in place to allow
containers to mount shared resources and access data.

For Shiny applications, this approach translates into a container
that includes Shiny Server Pro and a single app. Alternatively,
RStudio Connect can be used to achieve isolation, reproducibil-
ity, and scalability with or without Docker. However, we do not
recommend using one RStudio Connect instance per applica-
tion.1

Stage 3: Separating R from the RStudio IDE or
RStudio Connect

Today, we’re proud that the terms “R” and “RStudio” are often
used interchangeably. However, as organizations mature further
into their use of Docker, there comes a point where conflating
the two is problematic. Looking ahead, RStudio will be work-
ing in 2018 to allow a third architecture, which separates the R
runtime from the RStudio service. This model will help DevOps
organizations focus on scaling and managing containers, while
allowing users to access backend compute through the familiar
RStudio interface.

Connect will also support the ability to launch R processes
in separate containers. In this model, Connect is a front-end
service responsible for running R in support of Shiny apps,
R Markdown documents, and plumber APIs, but Connect is
agnostic to where R actually runs. The Connect service could be
backed by local R processes or a Kubernetes, Mesos, or Docker
Swarm cluster.

Conclusion

Accounting for the benefits and costs, Docker is here to stay and
will become a bigger part of computing infrastructure.

How should you use Docker with R? Unfortunately there is not a
single answer. At RStudio, we’re committed to building products
that work inside and outside Docker, in a variety of ways. We’re
investing in tools today to support your team’s future Docker
adoption.

If you would like to learn more, or are interested in having a
conversation with us on how to think about your deployment
model, please reach out to us at sales@rstudio.com.

About RStudio
RStudio® makes data analysis with R easier and provides powerful tools for sharing reports, dashboards, and

interactive Shiny® applications with your entire enterprise.

RStudio® is a trademark of RStudio, Inc. All rights reserved | rstudio.com | 844-448-1212 | info@rstudio.com

1. For deployments that increasingly isolate RStudio Server Pro and Shiny Server Pro in containers for specific analyses and move away from multi-tenant servers,
our server-dependent published pricing is not a good fit. Please contact our customer success team for server-independent pricing.

Container Orchestration Tool (Kubernetes)

https://www.rstudio.com
mailto:info@rstudio.com

