
Interested in learning more
about cyber security training?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

A Checklist for Audit of Docker Containers
Docker and other container technologies are increasingly popular methods for deploying applications in DevOps
environments, due to advantages in portability, efficiency in resource sharing and speed of deployment. The
very properties that make Docker containers useful, however, can pose challenges for audit, and the security
capabilities and best practices are changing rapidly. As adoption of this technology grows, it is, therefore,
necessary to create a standardized checklist for audit of Dockerized environments based...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=A_Checklist_for_Audit_of_Docker_Containers+Cover&utm_campaign=SANS+Training
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 1

Alyssa Robinson, lyssanr@yahoo.com

A Checklist for Audit of Docker Containers
GIAC GSNA Gold Certification

Author: Alyssa Robinson, lyssanr@yahoo.com
Advisor: Robert Vandenbrink
Accepted: 18 November, 2016

Abstract

Docker and other container technologies are increasingly popular methods for deploying
applications in DevOps environments, due to advantages in portability, efficiency in resource

sharing and speed of deployment. The very properties that make Docker containers useful,
however, can pose challenges for audit, and the security capabilities and best practices are

changing rapidly. As adoption of this technology grows, it is, therefore, necessary to create a
standardized checklist for audit of Dockerized environments based on the latest tools and

recommendations.

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 2

Alyssa Robinson, lyssanr@yahoo.com

1. Why Docker? Why now?
After World War II, the original containerization technology provided a standard framework

for shipping freight via railway, container ship, or truck. Freight in containers could be stored

and moved between these transportation mechanisms, improving shipping speed while reducing

costs (World Shipping Council, 2016). Similarly, Docker containers improve the speed of

application deployment, (Docker, 2016) hiding the details of the OS, the network and other host-

specific resources from developers (Wang, 2016) and providing the ability to ship an application

seamlessly between environments (Wang, 2016). Containerization allows developers to package

an application and all of its dependencies together in a standardized format, without the need to

re-compile or to find and install the correct packages (Mouat, 2016b). Once a Dockerfile is built,

it can be run across multiple Linux kernel versions, on hosted cloud platforms (Kearns, 2016),

and now even on MacOS and Windows systems (Chanezon, 2016). This flexibility makes it easy

to create a development environment that mimics production (Mouat, 2016b) on a smaller scale

and easy to test an application once, rather than multiple times across different environments

(Wang, 2016).

While Docker is gaining rapidly in popularity, with many companies experimenting with the

technology, most haven’t yet made the leap to using Docker for production deployments (Mouat,

2015a). A 2016 Cloud Foundry research report states that while only a small percentage of

respondents were running containers in production now, many planned to deploy in production

within the next year (Cloud Foundry, 2016). Cloud monitoring company Datadog has seen a

30% growth in the number of customers adopting Docker in just the last year, with an even

higher rate of adoption for its larger customers (Datadog, 2016). Technologies for deploying and

managing containers have multiplied and matured rapidly over the last few years (Mouat, 2016b)

and multiple studies predict a high rate of continued growth over the next few years (Weins,

2016). As containers become mainstream, auditors will need to understand the best practices for

securing and auditing this technology. Existing auditing tools are immature, but are evolving

quickly in response to Docker growth (de la Fuente, 2015).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 3

Alyssa Robinson, lyssanr@yahoo.com

2. What is Docker?
Docker provides a platform and accompanying tools for building, distributing and deploying

applications using containers (Docker, 2016). Container technologies like Docker provide

partitioned environments for running applications; whereas VMWare and other hardware

virtualization technologies trick an OS into believing it is running on dedicated hardware,

containers make an application believe it is running in a dedicated operating system (Haff, 2016).

Several applications can thus share one kernel, reducing both resource and management

overhead, while remaining isolated from one another (Docker, 2016).

To run a Docker deployment, a Docker daemon that manages the application containers is

run on a physical or virtual host (Wang, 2016). The containers themselves are launched from an

image built using a layered template file, referred to as a Dockerfile (Docker 2016). The "base"

layer is the image on top of which the application container is built: at a minimum, an OS user-

space snapshot, but the base could also be an application image (Docker, 2016). Text instructions

are then layered on top of the base when the image is built, adding commands, packages, users,

files and filesystems and specifying the processes to run when a container is launched (Mouat,

2015a). While the Docker image itself is immutable, running containers have a writable layer

and can write out to volumes mounted from the host operating system (Wang, 2016).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 4

Alyssa Robinson, lyssanr@yahoo.com

Figure 1 A comparison of Virtual Machine and Container architecture (Docker, 2016)

Once images are built, they can be distributed using Registry services, including the

official Docker registry, known as the Docker Hub (Mouat, 2015b). While the Docker Hub

repository provides access to hundreds of thousands of images for all sorts of applications and

environments, running an in-house registry provides greater control over which images are used

and who can see the images created internally (Docker, 2016). In-house registries can also

provide improved performance over Internet download of images, as well as the ability to

configure additional security features, such as image signing (Hausenblas, 2015). Images can be

automatically uploaded to the registry, tagged for searching, and downloaded via Docker

commands or additional orchestration (Mouat, 2015b).

3. Docker Security Issues
Red Hat’s Dan Walsh quoted a coworker in a 2014 article on Docker security as saying,

“Docker is about running random code downloaded from the Internet and running it as root”

(Walsh, 2014). As the number of containers running on a system grows, so does the likelihood

that one of the contained applications has a flaw that could lead to a breach, allowing container

breakout (Mouat, 2015b). While Docker provides some level of resource and process isolation

between containers, the fact remains that a process running as root within a container is running

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 5

Alyssa Robinson, lyssanr@yahoo.com

as root on the host system, in direct communication with kernel subsystems and devices (Walsh,

2014). Tools for namespacing processes, scanning for vulnerabilities and identifying the

provenance of containers exist, but are still maturing (Linthicum, 2015) and aren’t standardized,

adding to the challenges of managing containers at scale in a production environment.

4. Docker Audit Challenges
Auditing Docker deployments can be challenging based both on the Docker architecture

itself and the microservices/continuous deployment models with which Docker aligns so well.

According to application monitoring software provider New Relic, 46% of the containers they

monitor last for less than one hour and 11% are deployed for under a minute (McGuire, 2015).

These short lifetimes and the density of containers deployed make the task of monitoring

significantly different than monitoring VM or hardware deployments (Datadog, 2016) and can

lead to an asset management nightmare trying to track exactly what was deployed where when.

Effective container audit thus looks at containers by role, rather than as individual entities,

assuming deployment processes support this model (Datadog, 2016).

Additionally, security vulnerabilities may lie either within the container or in the host OS,

meaning both must be tracked, patched, and auditable. Each of these environments generally

requires different audit tools and processes (Cramer, 2016). With an estimated 30% of images in

the Docker Hub showing vulnerabilities at any one time (Petazzoni, 2015), it’s important to

know what’s inside a deployed version of a container at any given time. This isn’t particularly

easy for images that haven’t been built in-house; even for those that have, software versions

installed in a container built from the same Dockerfile can be different based just on the time it

was built (Boettiger, 2014).

The microservice architecture and Continuous Delivery practices that generally go hand-

in-hand with Docker deployments can have some significant advantages for auditors and for the

companies that run them. Continuous Delivery depends on small changes, deployed frequently

using an automated test infrastructure to reduce risk (Humble, 2010). If the security team can fit

its checks into this process, the end result is a more secure product (Bellis, 2015). Automating

auditing of security-related settings as part of this process allows the auditor to audit the process

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 6

Alyssa Robinson, lyssanr@yahoo.com

itself, rather than the settings on each system or container; the process is where the real problems

generally lie (Hoelzer, 2015). On the other side, using containers can free developers (Flower,

2015) from the normal security and operational processes that provide oversight or maintenance

of what gets deployed to the production network.

Figure 2 Container images and layout can change rapidly

5. Best Practices and Audit Checklist
5.1 Ensure good host security

In container deployments, as in the non-containerized world, good security relies upon

multiple layers; a secure Docker implementation relies on the security of the host as well as

the container implementations (Mouat, 2015b). The Docker host OS must be patched

regularly and should follow best practices for securing the host OS (Gürkök, 2016). Kernel

hardening enhancements like Grsecurity and Pax provide additional protections against

container and host exploit (Boelen, 2015), as do properly configured AppArmor or SElinux,

for which Docker templates are available (Docker, 2016). When multiple containers are

deployed on a host, they should be segregated according to the sensitivity level of the hosted

data, keeping a container breakout in a less secure service from leading to breach of more

sensitive data (Mouat, 2015a). Docker is relatively immature and undergoing rapid

development; it should be updated regularly to obtain security fixes and deprecated and

unsupported features should be avoided (Mouat, 2015b).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 7

Alyssa Robinson, lyssanr@yahoo.com

Checklist:
o Patch	hosts	

o Install	only	needed	components	

o Hardened	kernel	(Grsecurity,	Pax)	

o Apparmor/SElinux	

o Segregate	containers	by	data	sensitivity	

o Update	Docker	software	regularly	

5.2 Check Image Provenance
Using Docker images downloaded from Docker Hub or another registry provides

multiple benefits in building an application, including increased speed and --in the case of

“official” images-- the expertise of the image builders and the collective wisdom of previous

users (Mouat, 2015b). Since running a poisoned image could compromise your

infrastructure, understanding the provenance of images is incredibly important (Mouat,

2015a). Most of the open source licenses used by the images available on Docker Hub

protect their creators from liability (Open Source Initiative), leaving providers that make use

of these images liable for security problems (Koohgoli, 2014). Either when downloading

from Docker Hub or building images, the Docker Content Trust feature ensures that images

signatures and hashes are checked before use and requires that users sign their own images as

well (Mouat, 2016).

 Verifying container integrity is particularly important when images are transferred over an

untrusted network: (Docker, 2016) image signing provides protection against any container

tampering that could happen in transport (Gürkök, 2016). Both image signing and checking

image signatures require a Docker Notary server. Both the root keys used to create signed

repositories and repository keys used to sign images within those repositories need to be

protected from unauthorized access and securely backed up. Root keys should always be

stored offline; repository keys need strong passphrases and can be rotated or expired if

needed (Docker, 2016).

When deploying images from a registry, the unique “digest” hash should also be used to

ensure that the image pulled is the one that’s been tested and has not been changed or

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 8

Alyssa Robinson, lyssanr@yahoo.com

corrupted in transit (Mouat, 2015b). While Content Trust gives peace of mind that an image

was created by a reputable provider, setting the explicit content hash ensures that the image

in use is the specific image requested, not an earlier or later version (Docker, 2016).

Checklist:
o Enable	DOCKER_CONTENT_TRUST	environment	variable,	so	that	only	signed	

images	can	be	pulled.	

o Store	root	key	offline	

o Backup	signing	keys;	rotate	&	expire	old	keys	

o Check	image	digest	at	deployment	

	

5.3 Monitor Containers
Logging and monitoring are essential for identifying and investigating security incidents

and providing audit trails (OWASP, 2016). Centralized logging becomes even more

important in a containerized environment, since a given container may no longer be available

when it’s time to track down a breach or other issue (Mouat, 2015b). In addition to the

concerns regarding ephemeral containers, Docker environments require logging at multiple

layers -- the host, the Docker infrastructure, and the containers themselves -- to get the full

view of any activity (Newman, 2015). By default, all Docker containers log to

STDOUT/STDERR, with the logs made available via the ‘Docker logs’ command, but

several strategies can be used to transfer logs to a permanent storage location. The “–

logdriver” argument can make use of a logging driver such as Syslog or Fluentd,

allowing for movement to a centralized log location via another process on the container or

host (Mouat, 2015b). Alternately, a dedicated logging container (e.g. logspout) can also be

used to retrieve and aggregate logs from multiple containers (Newman, 2015).

Checklist:	
o Capture	host	logs	

o Capture	logs	from	Docker	infrastructure	

o Capture	container	logs	

o Ensure	adequate	log	information	at	the	containers	

o Ensure	–log-level	is	set	to	INFO	(default)	(CIS,	2016)	

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 9

Alyssa Robinson, lyssanr@yahoo.com

5.4 Do Not Run Container Processes as Root
Namespaces isolate processes running in one container from processes running in another

container or on the host system (Docker, 2016). By default, the user namespace for

containers is the same as that of the host. More specifically, the root user inside of a

container is the root user of the host system and the compromise of a containerized process

running as root has the potential to compromise the Docker host (Estest, 2015). Apps in

containers should therefore not be run as root; instead, a non-privileged user should be

created and processed run with a USER statement inside Dockerfiles (Mouat, 2015b).

Having a unique user for each container allows an administrator to assign the minimum set of

Linux capabilities required for a particular process (Docker, 2016) and provides per-user

accounting (Estes, 2015).

Generally, containers do not need root privileges; root privileges are not even required for

many of the services that required root in the non-containerized world. In a Docker

environment, infrastructure services like network and hardware management, cron, and SSH

are all provided either by Docker itself or the Docker host (Docker, 2016). Similarly, root

privileges aren't required for container processes to bind a port in the 0-1024 range, as on the

host and can instead be granted to the container via the NET_BIND_SERVICE capability

(Docker, 2016).

Docker versions after 1.10 allow for User Namespace remap, allowing the container to

have UIDs/GIDs that map into a different UID/GID range on the host using the Linux

subordinate range file functionality (Estes, 2015). This capability includes the re-map of the

root user inside a container to a non-UID 0 user outside of the container (Docker, 2016), but

this approach does have limitations (Mouat, 2015b). One difficulty with the Docker User

Namespace feature is that the UID/GID mapping happens at the Docker daemon level, rather

than at the per-container level; this is due to limitations in the ability to shift the UIDs for

filesystem mount (Estes, 2015).

Access to the Docker CLI is an all or nothing prospect, with members of the Docker

group able to start and stop containers and change their configuration (Kuusik, 2015). As

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 10

Alyssa Robinson, lyssanr@yahoo.com

such, access to the Docker daemon itself should also be strictly limited: any user with access

to the Docker group essentially has privileged access not only to the containers, but also to

the host system (Nieto, 2015). Setuid and Setgid binaries should also be removed from

images, lessening the chance of privilege escalation if there are exploitable vulnerabilities in

these utilities (Mouat, 2015b).

Checklist:
o Container	processes	run	as	non-privileged	USER	

o If	process	must	run	as	root,	use	Docker	User	Namespace	feature	to	re-map	to	

non-privileged	user	on	host	

o Limit	access	to	run	Docker	

o Remove	setUID/setGID	binaries	

5.5 Do Not Store Secrets in Containers
Application containers may need database credentials, SSL certificates and

private keys, SSH or encryption keys and API tokens to interact with users and other

services (Shaikh, 2016). They also need usernames and passwords to authenticate

application users or data to access centralized authentication mechanisms. Many common

techniques for storing secrets on dedicated hosts or virtual machines -- such as dotfiles

with limited access or storage within encrypted files – aren’t viable in container

environments. When secrets are stored inside of an image, these secrets can be accessed

by anyone that pulls the image from the registry (Shaikh, 2016). A commonly-proposed

technique is to store secrets within environment variables used by the Docker containers

(Mouat, 2015b). While preferable to storing within the image (Mouat, 2015b), secrets

stored in environment variables are accessible to all container processes (Van Stijn,

2015). These secrets may then be leaked in logs (Mouat, 2015b), may be visible using

Docker inspect commands, and may be shared with linked containers (Van Stijn, 2015).

Even when application containers are re-deployed often, leaked credentials may linger,

providing access to other, longer-lived services (Mouat, 2015b).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 11

Alyssa Robinson, lyssanr@yahoo.com

As an alternative to these approaches, secret stores such as Vault, Keywhiz,

Crypt, or Sneaker allow secure storage, quick rotation of secrets, and auditability of

secret access (Shaikh, 2016). These solutions are all somewhat immature, adding

operational complexity to the overall solution, but are developing and maturing rapidly

(Mouat, 2015b). Several have recently gone through independent security audits. Where

images containing secrets need to be re-deployed to update (Shaikh, 2016), these tools

allow rotation of credentials frequently and in some cases automatically. Cloud

Foundry’s Jason Smith noted that most attacks take 1) time, 2) leaked or misused

credentials, and 3) misconfigured and/or unpatched software. By changing credentials

frequently, we starve attackers of this required resource.

Checklist:
o Secrets	are	not	stored	in	the	Dockerfiles/included	in	the	image	

o Secrets	are	not	stored	in	environment	variables	

o Secrets	are	not	stored	in	volume	mounts	on	the	host	

o Secrets	are	stored	in	a	dedicated	secrets	management	system	

o Secrets	are	rotated	frequently 	

5.6 Base Image Security
In addition to checking the provenance of images pulled from registries, Docker

Administrators need to be able to trust that their images have up-to-date software, without

any known vulnerabilities (Mouat, 2015b). When software is installed, package versions

should be specified: this provides repeatable results and eliminates versions with known

vulnerabilities (Docker, 2016). Similarly, signatures should be verified on any package

downloads to ensure there is no tampering or corruption in transit. (Damato, 2014) Base

images should be updated regularly with all security patches, with dependent images re-built

and re-deployed, rather than updated in place (Petazzoni, 2015). To enable for this, the

deployment team must be able to identify the list of images that are currently running and

have a mechanism for rolling container restarts. By tagging images correctly in the registry, it

is easy to track back to the build information and debug any issues (Mouat, 2015b). If Docker

Hub is used to build images, they can be automatically rebuilt when the base image is

updated (Docker, 2016).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 12

Alyssa Robinson, lyssanr@yahoo.com

o Specify	package	versions	and	hash	in	FROM	tag	

o Understand	the	contents	of	running	images	

o Scan	images	regularly	for	vulnerabilities	

o Update	base	image	regularly	and	re-deploy	containers	

5.7 Limit container resources
As the number of containers running in a system grows, so does the likelihood that one of

the applications has a security flaw that can lead to a denial of service for the other

containers. If an attacker can monopolize a shared resource on one container, he may be able

to deny access to multiple others (Mouat, 2015b). Docker provides the capability to limit the

resources a container can use in order to give each a fair share while preventing starvation for

the others. These limits can apply to memory, CPU, disk IOPS, plus processes and open file

descriptors via container ulimits. Limits can also apply to the number of container restarts to

keep problematic containers from using up host resources on restart (Docker, 2016). For

CPU and block limits, these are relative limits, whereas for memory the limits are absolute

(Goldmann, 2014).

In addition to limiting system resources, filesystem access can be limited by mounting

filesystems read-only where possible; this prevents data overwrite, as well as injection of

malicious code into the system (Walsh, 2015). Limiting filesystems to read-only can also

provide benefits during an audit, removing the need to audit the running containers and

leaving the focus on the image (Mouat, 2015b).

By default, containers can send network traffic using the internal Docker network

whether or not ports are explicitly opened (Mouat, 2015b). This increases the attack surface

and may provide an attacker the ability to pivot between containers; Docker users should turn

off inter-container communication and require explicit linking of containers or opening of

public ports for communication (CIS, 2016). While Docker containers are run with limited

Linux capabilities by default, additional capabilities can be dropped or added as needed

(Docker, 2016). While finding the right set can take a great deal of trial and error, limiting

these capabilities provides further protection for the host in case of container breach (Mouat,

2015a).

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 13

Alyssa Robinson, lyssanr@yahoo.com

Checklist:
o Mount	filesystems	read-only	(prevent	writing	malicious	code)	

o Place	limits	on	system	resources	(limit	denial	of	service)	

o Limit	kernel	calls	(limit	container	breakout)	and	Linux	capabilities	

o Restrict	network	access	(prevent	attack	pivot,	data	egress,	-icc=false)	

6. Tools for Docker Audit
As Docker grows in popularity and begins to move into production environment, auditors

will need tools to determine whether containerized applications follow best practices. Ideally,

DevOps teams will use these same tools as part of their deployment processes, stopping security

issues before they ever make it into production (Raising the Floor Consortium, 2016). Current

tools for Docker audit are immature, but evolving rapidly (de la Fuente, 2015). Among the best

of these tools is Docker Bench for Security, which checks for compliance with the CIS Docker

Benchmark (Mouat, 2015b. Docker Bench is both easy to run – launched from its own Docker

container -- and easy to interpret the output, but does have limitations, including the fact that it

isn’t compatible with many of the common hardening guidelines. Batten, another CIS

Benchmark scanner, is similarly easy to run but the output is somewhat less useful than Docker

Bench for Security (de la Fuente, 2015). Banyan Collector, CoreOS Clair, and OpenSCAP

Container Compliance can all check containers or images –either locally or within a registry --

for known vulnerabilities. OpenSCAP Container Compliance is supported only for

RedHat/CentOS/Fedora but is highly customizable and simple to install and to use on these

platforms (Raising the Floor Consortium, 2016). CoreOS Clair and Banyan Collector require

additional work to install but provide additional coverage and Clair provides an API for process

automation (CoreOS, 2016).

7. Conclusion
As use of Docker images in production becomes mainstream – a DevOps.com survey showed

a 96% increase in the use of containers for production environments in 2016 (Ferranti, 2016) –

auditors will need to be familiar with Docker best practices and audit tools. The development

advantages of containers and their alignment to current DevOps and microservices deployment

models make it likely that the growth in Docker use will continue for the foreseeable future

(Kearns, 2016). With the rapid evolution of Docker and its surrounding tools, Docker security

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 14

Alyssa Robinson, lyssanr@yahoo.com

audit is clearly a work in progress. Given the security advantages gained by incorporating audit

tools into continuous deployment pipelines, (Bellis, 2015) as well as the potential pitfalls from

ignoring Docker best practices, the time for creating checklists and understanding the available

tools is now.

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 15

Alyssa Robinson, lyssanr@yahoo.com

8. References
Ankerholz, A. (2016, April 12). 8 Container Orchestration Tools to Know. Retrieved August 22,
2016, from https://www.linux.com/news/8-open-source-container-orchestration-tools-know

Banyanops. Banyanops/collector. GitHub. 2015. Retrieved October 6, 2016 from
https://github.com/banyanops/collector/

Boelen, M. (2015, January 22). Docker Security: Best Practices for your Vessel & Containers.
Retrieved August 27, 2016, from https://linux-audit.com/docker-security-best-practices-for-your-
vessel-and-containers/

Boettiger, C. (2014, August 29). Docker tricks of the trade and best practices thoughts. Retrieved
September 1, 2016, from http://www.carlboettiger.info/2014/08/29/docker-notes.html

Center for Internet Security. (2016). CIS Docker 1.11.0 Benchmark (Vol. 1.0.0, Publication).
Retrieved from
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.11.0_Benchmark_v1.0.0.pdf

Chanezon, P. (2016, March 24). Docker for Mac and Windows Beta: The simplest way to use
Docker on your laptop - Docker Blog. Retrieved August 20, 2016, from
https://blog.docker.com/2016/03/docker-for-mac-windows-beta/

Close, M. (2015, October 15). Protecting Sensitive Information in Docker Container Images.
Retrieved October 17, 2016, from https://www.ctl.io/developers/blog/post/tutorial-protecting-
sensitive-info-docker

Cloud Foundry (2016, June 16). Hope Versus Reality: Containers in 2016. Retrieved August 15,
2016, from https://www.cloudfoundry.org/wp-content/uploads/2016/06/Cloud-Foundry-2016-
Container-Report.pdf

Coreos. Coreos/clair. GitHub. N.p., Sept. 2016. Web. Retrieved October 3, 2016 from
https://github.com/coreos/clair

Cramer, D. (2016, February 04). Got Docker? 4 Docker Management Tips. Retrieved August 18,
2016, from http://www.bmc.com/blogs/got-docker-4-docker-management-tips/

Damato, J. (2014, October 28). HOWTO: GPG sign and verify deb packages and APT
repositories. Retrieved September 03, 2016, from
http://blog.packagecloud.io/eng/2014/10/28/howto-gpg-sign-verify-deb-packages-apt-
repositories/

Datadog. (2016, June). 8 surprising facts about real Docker adoption - Datadog. Retrieved
September 1, 2016, from https://www.datadoghq.com/docker-adoption/

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 16

Alyssa Robinson, lyssanr@yahoo.com

De la Fuente, T. (2015, December 1). Docker Security Tools: Audit and Vulnerability
Assessment. Retrieved September 15, 2016, from http://blyx.com/2015/12/01/docker-security-
tools-audit-and-vulnerability-assessment/

Docker, Inc. (2016). Docker Overview. Retrieved August 2, 2016, from https://docs.docker.com/

Estes, P. (2015, October 13). User namespaces have arrived in Docker! Retrieved July 23, 2016,
from https://integratedcode.us/2015/10/13/user-namespaces-have-arrived-in-docker/

Ferranti, Michael. "ClusterHQ." Survey: 96% Increase in Container Production Usage over past
Year ·. N.p., 16 June 2016. Retrieved October 2, 2016 from
https://clusterhq.com/2016/06/16/container-survey/

Flower, Z. (2015, September 22). Who Controls Docker Containers. Retrieved November 9,
2016, from https://www.sumologic.com/blog-devops/docker-containers/

Fowler, M., & Lewis, J. (2014, March 25). Microservices. Retrieved September 04, 2016, from
http://martinfowler.com/articles/microservices.html

Goldmann, M. (2014, September 11). Resource management in Docker. Retrieved August 28,
2016, from https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/

Greenbone Networks GmbH. "Greenbone Security Manager with Greenbone OS 3.1 - User
Manual¶." Greenbone Security Manager with Greenbone OS 3.1. N.p., n.d. Retrieved October
5, 2016 from http://docs.greenbone.net/GSM-Manual/gos-3.1/en/operation.html

Gürkök, C. (2016, June 21). Securing the Container Pipeline. Speech presented at Dockercon
2016, Seattle, WA. Retrieved from https://blog.docker.com/2016/07/dockercon-2016-videos-use-
case/

Haff, G. (2013, September 13). Connections: What are containers and how did they come about?
Retrieved August 8, 2016, from http://bitmason.blogspot.com.au/2013/09/what-are-containers-
anyway.html

Hausenblas, M. (2015, October 14). Docker Registries: The Good, the Bad & the Ugly.
Retrieved August 22, 2016, from https://mesosphere.com/blog/2015/10/14/docker-registries-the-
good-the-bad-the-ugly/

Hildred, T. (2015, August 28). The History of Containers. Retrieved August 16, 2016, from
http://rhelblog.redhat.com/2015/08/28/the-history-of-containers/

Hoelzer, D. (2015). Auditing & Monitoring Networks, Perimeters & Systems. SANS Institute.

Humble, J. (2010). Introduction. Retrieved July 04, 2016, from https://continuousdelivery.com/

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 17

Alyssa Robinson, lyssanr@yahoo.com

Janetakis, N. (2016, May 02). Save Yourself from Years of Turmoil by Using Docker Today -.
Retrieved August 08, 2016, from http://nickjanetakis.com/blog/save-yourself-from-years-of-
turmoil-by-using-docker-today

Kearns, A. (2016, September 01). 3 facts about container adoption you don't know. Retrieved
September 04, 2016, from https://www.oreilly.com/ideas/3-facts-about-container-adoption-you-
dont-know?imm_mid=0e7611

Koohgoli, M . (2014, July 16). Tips for Tracking Open-Source Security Vulnerabilities -
Law360. Retrieved October 16, 2016, from http://www.law360.com/articles/555153/tips-for-
tracking-open-source-security-vulnerabilities

Kuusik, K. (2015, June 19). Docker Security – Admin Controls - Container Solutions. Retrieved
September 03, 2016, from http://container-solutions.com/docker-security-admin-controls-2/

Linthicum, D. (2015, October). Securing Docker containers should top IT's to-do list. Retrieved
August 25, 2016, from http://searchitoperations.techtarget.com/tip/Securing-Docker-containers-
should-top-ITs-to-do-list

McGuire, K. (2015, August 17). The Truth About Docker Container Lifecycles. Retrieved July
5, 2016, from http://events.linuxfoundation.org/sites/events/files/slides/cc15_mcguire.pdf

Miell, I. (2016, July 08). A checklist for Docker in the Enterprise. Retrieved August 10, 2016,
from https://zwischenzugs.wordpress.com/2016/07/08/a-checklist-for-docker-in-the-enterprise/

Mouat, A. (2014, February 17). 6 Dockerfile Tips from the Official Images - Container
Solutions. Retrieved August 27, 2016, from http://container-solutions.com/6-dockerfile-tips-
official-images/

Mouat, A. (2015a, October 20). Swarm v. Fleet v. Kubernetes v. Mesos. Retrieved August 22,
2016, from https://www.oreilly.com/ideas/swarm-v-fleet-v-kubernetes-v-mesos

Mouat, A. (2015b). Using Docker. Sebastopol, CA: O'Reilly Media.

MSV, J. (2016, May 11). From Containers to Container Orchestration - The New Stack.
Retrieved August 22, 2016, from http://thenewstack.io/containers-container-orchestration/

Newman, A. (2015, December 14). Top 5 Docker Logging Methods to Fit Your Container
Deployment Strategy. Retrieved August 23, 2016, from https://www.loggly.com/blog/top-5-
docker-logging-methods-to-fit-your-container-deployment-strategy/

Nickeloff, J. (2015, February 03). Hardening Docker Containers: Disable SUID Programs.
Retrieved September 1, 2016, from https://blog.tutum.co/2015/02/03/hardening-containers-
disable-suid-programs/

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 18

Alyssa Robinson, lyssanr@yahoo.com

Nieto, C. (2015, April 2). Reventlov's silly hacks. Retrieved August 27, 2016, from
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host

Open Source Initiative. Frequently Answered Questions. (n.d.). Retrieved October 13, 2016,
from https://opensource.org/faq

OWASP. (2016, January 20). Logging Cheat Sheet. Retrieved September 23, 2016, from
https://www.owasp.org/index.php/Logging_Cheat_Sheet

Petazzoni, J. (2015, May 27). Someone said that 30% of the images on the Docker Registry
contain vulnerabilities. Retrieved August 16, 2016, from
https://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/

Puppet Labs, & DORA. (2016). State of DevOps Report. Retrieved August 8, 2016, from
https://puppet.com/system/files/2016-06/2016 State of DevOps Report_0.pdf

Raising the Floor Consortium. "Vulnerability Assessment." GPII. N.p., 7 July 2016. Web. 15
Sept. 2016.

Shaikh, I. (2016, January 22). Runtime secrets with Docker containers. Retrieved August 23,
2016, from http://elasticcompute.io/2016/01/21/runtime-secrets-with-docker-containers/

Smith, J. (2016, April 19). The Three R’s of Enterprise Security: Rotate, Repave, and Repair
Retrieved April 27, 2016 from https://medium.com/built-to-adapt/the-three-r-s-of-enterprise-
security-rotate-repave-and-repair-f64f6d6ba29d?imm_mid=0e30ba&cmp=em-na-na-na-
newsltr_security_20160426#.8780qrvlt

Van Stijn, S. (2015, May 26). Secrets: Write-up best practices, do's and don'ts, roadmap · Issue
#13490 · docker/docker. Retrieved July 22, 2016, from
https://github.com/docker/docker/issues/13490

Walsh, D. (2014, July 22). Are Docker containers really secure? Retrieved July 07, 2016, from
https://opensource.com/business/14/7/docker-security-selinux

Wang, C. (2016, May 26). Containers 101: Linux containers and Docker explained. Retrieved
August 20, 2016, from http://www.infoworld.com/article/3072929/linux/containers-101-linux-
containers-and-docker-explained.html

Weins, K. (2016, February 26). Cloud Computing Trends: 2016 State of the Cloud Survey.
Retrieved July 05, 2016, from http://www.rightscale.com/blog/cloud-industry-insights/cloud-
computing-trends-2016-state-cloud-survey

World Shipping Council - Partners in Trade. (2016). Retrieved August 16, 2016, from
http://www.worldshipping.org/about-the-industry/history-of-containerization

 	

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 19

Alyssa Robinson, lyssanr@yahoo.com

Appendix A: Audit Checklist
1. Ensure good host security

o Patch	hosts	

o Install	only	needed	components	

o Hardened	kernel	(Grsecurity,	PaX)	

o AppArmor/SElinux	

o Segregate	containers	by	data	sensitivity	–	requires	manual	audit	unless	images	

can	be	named	or	tagged	with	sensitivity	levels	

o Update	Docker	software	regularly	

2. Check	Image	Provenance	
o Enable	DOCKER_CONTENT_TRUST	environment	variable,	so	that	only	signed	

images	can	be	pulled.	

o Store	root	key	offline	–	manual/process	check	required	

o Back	up	signing	keys;	rotate	&	expire	old	keys	–	manual/process	check	required	

o Check	image	digest	at	deployment	

3. Monitor	Containers		
o Capture	host	logs	

o Capture	logs	from	Docker	infrastructure	

o Capture	container	logs	

o Ensure	adequate	log	information	at	the	containers	

o Ensure	–log-level	is	set	to	INFO	(default)	(CIS,	2016)	

4. Do	Not	Run	Container	Processes	as	Root	
o Container	processes	run	as	non-privileged	USER	

o If	process	must	run	as	root,	use	Docker	User	Namespace	feature	to	re-map	to	

non-privileged	user	on	host	

o Limit	access	to	run	Docker	

o Remove	setUID/setGID	binaries	

5. Do	Not	Store	Secrets	in	Containers	
o Secrets	are	not	stored	in	the	Dockerfiles/included	in	the	image	

o Secrets	are	not	stored	in	environment	variables	

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 20

Alyssa Robinson, lyssanr@yahoo.com

o Secrets	are	not	stored	in	volume	mounts	on	the	host	

o Secrets	are	stored	in	a	dedicated	secrets	management	system	

o Secrets	are	rotated	frequently	

6. Base	Image	Security	
o Specify	package	versions	and	hash	in	FROM	tag	

o Understand	the	contents	of	running	images	

o Scan	images	regularly	for	vulnerabilities	

o Update	base	image	regularly	and	re-deploy	containers	

7. Limit	container	resources	
o Mount	filesystems	read-only	(prevent	writing	malicious	code)	

o Place	limits	on	system	resources	(limit	denial	of	service)	

o Limit	kernel	calls	(limit	container	breakout)	and	Linux	capabilities	

o Restrict	network	access	(prevent	attack	pivot,	data	egress,	-icc=false)	

Appendix B: Audit Tools Step by Step

1.Ensure good host security
1.1 Checklist:

o Patch	hosts	

o Install	only	needed	components	

o Hardened	kernel	(Grsecurity,	PaX)	

o AppArmor/SElinux	

o Segregate	containers	by	data	sensitivity	–	requires	manual	audit	unless	images	

can	be	named	or	tagged	with	sensitivity	levels	

o Update	Docker	software	regularly	

	

1.2 OpenVAS Scan showing host vulnerabilities:
OpenVAS is an open source scanner that does both external and authenticated scans. It uses a
CVE feed as well as compliance scans for auditing:

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 21

Alyssa Robinson, lyssanr@yahoo.com

Figure 3 OpenVAS scan showing unpatched vulnerabilities

1.3 Running Batten scan to check for non-essential services running:

Batten checks Docker and host configuration against the Docker CIS Benchmark. It is
automated and easy to run, but the output is not as useful as Docker Bench.

ubuntu@ip-192-168-0-235:~$ docker run -v
/var/run/docker.sock:/var/run/docker.sock jerbi/batten
[1/68] FAILED [CIS-Docker-Benchmark-1.1] Create a separate
partition for containers
 Description | All Docker containers and their data and metadata
is stored under
 | /var/lib/docker directory. By default,
/var/lib/docker would be mounted
 | under / or /var partitions based on availability.
 Remediation | For new installations, create a separate partition
for /var/lib/docker
 | mount point. For systems that were previously
installed, use the Logical
 | Volume Manager (LVM) to create partitions.
[2/68] PASSED [CIS-Docker-Benchmark-1.2] Use the updated Linux
Kernel
[3/68] PASSED [CIS-Docker-Benchmark-1.3] Do not use development
tools in production
[4/68] PASSED [CIS-Docker-Benchmark-1.4] Harden the container host
[5/68] PASSED [CIS-Docker-Benchmark-1.5] Remove all non-essential
services from the host
[6/68] PASSED [CIS-Docker-Benchmark-1.6] Keep Docker up to date
[7/68] PASSED [CIS-Docker-Benchmark-1.7] Only allow trusted users
to control Docker daemon

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 22

Alyssa Robinson, lyssanr@yahoo.com

1.4 CIS-CAT Scan after SELinux configured with Docker Profile:

[ec2-user@ip-192-168-0-239 ~]$ sudo sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

Figure 4 CIS-CAT Scan output showing SElinux enabled

1.5	Docker	Bench	for	Security,	showing	updated	Docker	versions:	
> docker/docker-bench-security

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best practices around deploying
Docker containers in production.
Inspired by the CIS Docker 1.11 Benchmark:

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 23

Alyssa Robinson, lyssanr@yahoo.com

https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110

Initializing Sun Oct 9 21:02:45 UTC 2016

[INFO] 1 - Host Configuration
[WARN] 1.1 - Create a separate partition for containers
[PASS] 1.2 - Use an updated Linux Kernel
[PASS] 1.4 - Remove all non-essential services from the host -
Network
[PASS] 1.5 - Keep Docker up to date
[INFO] * Using 1.12.1 which is current as of 2016-08-16
[INFO] * Check with your operating system vendor for support
and security maintenance for docker
[INFO] 1.6 - Only allow trusted users to control Docker daemon

2. Check Image Provenance
 2.1 Checklist:

o Enable DOCKER_CONTENT_TRUST environment variable, so that only signed
images can be pulled.

o Store root key offline – manual/process check required
o Back up signing keys; rotate & expire old keys – manual/process check required
o Check image digest at deployment

 2.2 Auditing Docker Content Trust:
Docker Content Trust can be enabled via environment variables or via the docker run command
line.

	
Checking environment variables:

ubuntu@ip-192-168-0-235:~$ env
XDG_SESSION_ID=12
TERM=xterm-256color
SHELL=/bin/bash
USER=ubuntu
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35
:bd=40;33;01:cd=40;33;01:or=40;31;01:su=37;41:sg=30;43:ca=30;41:t
w=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=
01;31:*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;3
1:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;3
1:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz
=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;3
1:*.sar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.
7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01
;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 24

Alyssa Robinson, lyssanr@yahoo.com

.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svg
z=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01
;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:
.m4v=01;35:.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv
=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;3
5:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd
=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;3
5:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.m
id=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=0
0;36:*.ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*
.xspf=00;36:
MAIL=/var/mail/ubuntu
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
:/usr/games:/usr/local/games
PWD=/home/ubuntu
LANG=en_US.UTF-8
SHLVL=1
HOME=/home/ubuntu
LOGNAME=ubuntu
DOCKER_CONTENT_TRUST=1
SSH_CONNECTION=198.135.0.233 40978 192.168.0.235 22
LESSOPEN=| /usr/bin/lesspipe %s
XDG_RUNTIME_DIR=/run/user/1000
LESSCLOSE=/usr/bin/lesspipe %s %s
_=/usr/bin/env

Checking command line:

ubuntu@ip-192-168-0-235:~$ docker run -m 256m -c 512 --name some-
nginx --read-only -v /var/cache/nginx -v /var/run -v
/dev/log:/dev/log --cap-drop SETUID --cap-drop SETGID --security-
opt="no-new-privileges" –restart on-failure:5 --disable-content-
trust=false -d nginx

3. Monitor Containers
3.1 Checklist:

o Capture	host	logs	

o Capture	logs	from	Docker	infrastructure	

o Capture	container	logs	

o Ensure	adequate	log	information	at	the	containers	

o Ensure	–log-level	is	set	to	INFO	(default)	(CIS,	2016)	

o Role-based	monitoring	

3.2 CIS-CAT Scan showing centralized logging for host:
[ec2-user@ip-192-168-0-239 cis-cat-full]$ sudo ./CIS-CAT.sh --find
This is CIS-CAT version 3.0.29

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 25

Alyssa Robinson, lyssanr@yahoo.com

#1 -- CIS AIX 4.3.2, 4.3.3, 5L, 5.1 Benchmark
#2 -- CIS AIX 5.3 and AIX 6.1 Benchmark
#3 -- CIS Amazon Linux Benchmark
#4 -- CIS Apache Tomcat 5.5 and 6.0 Benchmark
#5 -- CIS Apple OSX 10.10 Benchmark
#6 -- CIS Apple OSX 10.11 Benchmark
#7 -- CIS Apple OSX 10.5 Benchmark
#8 -- CIS Apple OSX 10.6 Benchmark
#9 -- CIS Apple OSX 10.8 Benchmark
#10 -- CIS Apple OSX 10.9 Benchmark
#11 -- CIS CentOS Linux 6 Benchmark
#12 -- CIS CentOS Linux 7 Benchmark
#13 -- CIS Cisco Firewall Benchmark
#14 -- CIS Cisco IOS 12 Benchmark
#15 -- CIS Cisco IOS 15 Benchmark
#16 -- CIS Debian Linux 3 Benchmark
#17 -- CIS Debian Linux 7 Benchmark
#18 -- CIS Debian Linux 8 Benchmark
#19 -- CIS Google Chrome Benchmark
#20 -- CIS HP-UX 11i v3 Update 2 Benchmark
#21 -- CIS IBM AIX 7.1 Benchmark
#22 -- CIS MIT Kerberos 1.10 Benchmark
#23 -- CIS Microsoft IIS 7 Benchmark
#24 -- CIS Microsoft IIS 8 Benchmark
#25 -- CIS Microsoft Internet Explorer 10 Benchmark
#26 -- CIS Microsoft Internet Explorer 11 Benchmark
#27 -- CIS Microsoft Office 2013 Benchmark
#28 -- CIS Microsoft Office 2016 Benchmark
#29 -- CIS Microsoft Office Access 2013 Benchmark
#30 -- CIS Microsoft Office Access 2016 Benchmark
#31 -- CIS Microsoft Office Excel 2013 Benchmark
#32 -- CIS Microsoft Office Excel 2016 Benchmark
#33 -- CIS Microsoft Office Outlook 2013 Benchmark
#34 -- CIS Microsoft Office Outlook 2016 Benchmark
#35 -- CIS Microsoft Office PowerPoint 2013 Benchmark
#36 -- CIS Microsoft Office PowerPoint 2016 Benchmark
#37 -- CIS Microsoft Office Word 2013 Benchmark
#38 -- CIS Microsoft Office Word 2016 Benchmark
#39 -- CIS Microsoft SQL Server 2008 R2 Benchmark
#40 -- CIS Microsoft SQL Server 2012 Benchmark
#41 -- CIS Microsoft SQL Server 2014 Benchmark
#42 -- CIS Microsoft Windows 10 Enterprise (Release 1511) Benchmark
#43 -- CIS Microsoft Windows 7 Benchmark
#44 -- CIS Microsoft Windows 8 Benchmark
#45 -- CIS Microsoft Windows 8.1 Benchmark
#46 -- CIS Microsoft Windows Server 2003 Benchmark
#47 -- CIS Microsoft Windows Server 2008 (non-R2) Benchmark
#48 -- CIS Microsoft Windows Server 2008 R2 Benchmark
#49 -- CIS Microsoft Windows Server 2012 (non-R2) Benchmark
#50 -- CIS Microsoft Windows Server 2012 R2 Benchmark

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 26

Alyssa Robinson, lyssanr@yahoo.com

#51 -- CIS Microsoft Windows XP Benchmark
#52 -- CIS Mozilla Firefox 24 ESR Benchmark
#53 -- CIS Mozilla Firefox 3 Benchmark
#54 -- CIS Mozilla Firefox 38 ESR Benchmark
#55 -- CIS Oracle Database 10g Benchmark
#56 -- CIS Oracle Database 11g Benchmark
#57 -- CIS Oracle Database 11g R2 Benchmark
#58 -- CIS Oracle Database 12c Benchmark
#59 -- CIS Oracle Linux 6 Benchmark
#60 -- CIS Oracle Linux 7 Benchmark
#61 -- CIS Oracle MySQL Community Server 5.6 Benchmark
#62 -- CIS Oracle MySQL Community Server 5.7 Benchmark
#63 -- CIS Oracle MySQL Enterprise Edition 5.6 Benchmark
#64 -- CIS Oracle MySQL Enterprise Edition 5.7 Benchmark
#65 -- CIS Oracle Solaris 10 Benchmark
#66 -- CIS Oracle Solaris 11 Benchmark
#67 -- CIS Oracle Solaris 11.1 Benchmark
#68 -- CIS Oracle Solaris 11.2 Benchmark
#69 -- CIS Oracle Solaris 2.5.1 - 9 Benchmark
#70 -- CIS Red Hat 4 and Fedora Core 1, 2, 3, 4, 5 Benchmark
#71 -- CIS Red Hat Enterprise Linux 5 Benchmark
#72 -- CIS Red Hat Enterprise Linux 6 Benchmark
#73 -- CIS Red Hat Enterprise Linux 7 Benchmark
#74 -- CIS SUSE Linux Enterprise Server 11 Benchmark
#75 -- CIS SUSE Linux Enterprise Server 12 Benchmark
#76 -- CIS Slackware 10.2 Linux Benchmark
#77 -- CIS SuSE Linux Enterprise Server 10.0 SP1 Benchmark
#78 -- CIS SuSE Linux Enterprise Server 9.0 Benchmark
#79 -- CIS Ubuntu 12.04 LTS Server Benchmark
#80 -- CIS Ubuntu Linux 14.04 LTS Benchmark
#81 -- CIS Ubuntu Linux 16.04 LTS Benchmark
#82 -- CIS VMware ESX 3.5 Benchmark
#83 -- CIS VMware ESX 4 Benchmark
#84 -- CIS VMware ESXi 5.5 Benchmark
Which benchmark should be used? (return to exit)
73
Selected CIS Red Hat Enterprise Linux 7 Benchmark

#1 -- xccdf_org.cisecurity.benchmarks_profile_Level_1_-_Server
#2 -- xccdf_org.cisecurity.benchmarks_profile_Level_2_-_Server
#3 -- xccdf_org.cisecurity.benchmarks_profile_Level_1_-_Workstation
#4 -- xccdf_org.cisecurity.benchmarks_profile_Level_2_-_Workstation
Which Profile should be used? (return to exit)
1
Selected Level 1 - Server

Add another benchmark? (Y/n/q)
n

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 27

Alyssa Robinson, lyssanr@yahoo.com

HTML Report written to: /root/CIS-CAT_Results/ip-192-168-0-
239.ec2.internal-20161007T004638Z/ip-192-168-0-239.ec2.internal-
report-20161007T004638Z.html

Figure 5 CIS-CAT Scan output showing logging configuration

3.3 Docker Bench Check for logging configuration:
ubuntu@ip-192-168-0-235:/etc/default$ docker run -m 256m -c 512 --name
log-nginx --log-driver=syslog --read-only -v /var/cache/nginx -v
/var/run -v /dev/log:/dev/log --cap-drop SETUID --cap-drop SETGID --
security-opt="no-new-privileges" --restart on-failure:5 --log-opt
syslog-address=udp://192.168.0.235:514 --disable-content-trust=false -
d nginx

[INFO] 2 - Docker Daemon Configuration
[WARN] 2.1 - Restrict network traffic between containers
[PASS] 2.2 - Set the logging level
[PASS] 2.3 - Allow Docker to make changes to iptables
[PASS] 2.4 - Do not use insecure registries
[WARN] 2.5 - Do not use the aufs storage driver
[INFO] 2.6 - Configure TLS authentication for Docker daemon
[INFO] * Docker daemon not listening on TCP

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 28

Alyssa Robinson, lyssanr@yahoo.com

[INFO] 2.7 - Set default ulimit as appropriate
[INFO] * Default ulimit doesn't appear to be set
[WARN] 2.8 - Enable user namespace support
[PASS] 2.9 - Confirm default cgroup usage
[PASS] 2.10 - Do not change base device size until needed
[WARN] 2.11 - Use authorization plugin
[PASS] 2.12 - Configure centralized and remote logging
[WARN] 2.13 - Disable operations on legacy registry (v1)

4. Do Not Run Container Processes as Root
4.1 Checklist:

o Container	processes	run	as	non-privileged	USER	

o If	process	must	run	as	root,	use	Docker	User	Namespace	feature	to	re-map	to	

non-privileged	user	on	host	

o Limit	access	to	run	Docker	

o Remove	setUID/setGID	binaries	

4.2 Example: Mongodb container running as root user
ubuntu@ip:~/docker_transcripts$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
df97c0c5c9b7 tutum/mongodb "/run.sh" 22 seconds
ago Up 20 seconds 0.0.0.0:27017->27017/tcp, 0.0.0.0:28017-
>28017/tcp drunk_williams
ubuntu@ip:~/docker_transcripts$ docker exec -it drunk_williams
/bin/bash
root@df97c0c5c9b7:/# ps -deaf |grep mongo
root 5 1 0 23:13 ? 00:00:00 mongod --httpinterface
--rest --master --auth

ubuntu@ip-:~/docker_transcripts$ docker run -it --net host --pid host
--cap-add audit_control \
> -v /var/lib:/var/lib \
> -v /var/run/docker.sock:/var/run/docker.sock \
> -v /usr/lib/systemd:/usr/lib/systemd \
> -v /etc:/etc --label docker_bench_security \
> docker/docker-bench-security
--

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 29

Alyssa Robinson, lyssanr@yahoo.com

Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.11 Benchmark:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110
--

[INFO] 4 - Container Images and Build Files
[WARN] 4.1 - Create a user for the container
[WARN] * Running as root: drunk_williams
[WARN] 4.5 - Enable Content trust for Docker
	

4.3 Example: Mongodb running as non-root user
ubuntu@ip:~/docker_transcripts$ docker run -u mongodb -d -p
27017:27017 -p 28017:28017 tutum/mongodb
e907a05054f1d405502b3c297a757804bc9036094a5e79144c48240ae47f9243
ubuntu@ip:~/docker_transcripts$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
e907a05054f1 tutum/mongodb "/run.sh" 3 seconds
ago Up 2 seconds 0.0.0.0:27017->27017/tcp, 0.0.0.0:28017-
>28017/tcp condescending_ritchie
ubuntu@ip:~/docker_transcripts$ docker exec -it condescending_ritchie
/bin/bash
mongodb@e907a05054f1:/$ ps -deaf |grep mongodb
mongodb 1 0 0 23:18 ? 00:00:00 /bin/bash /run.sh
mongodb 6 1 0 23:18 ? 00:00:00 /bin/bash
/set_mongodb_password.sh
mongodb 28 0 0 23:18 ? 00:00:00 /bin/bash
mongodb 48 6 0 23:18 ? 00:00:00 sleep 5
mongodb 49 28 0 23:18 ? 00:00:00 ps –deaf

ubuntu@ip-192-168-0-235:~/docker_transcripts$ docker run -it --net
host --pid host --cap-add audit_control -v /var/lib:/var/lib -
v /var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd -v /etc:/etc --label
docker_bench_security docker/docker-bench-security
--

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.11 Benchmark:

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 30

Alyssa Robinson, lyssanr@yahoo.com

https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110
--

[INFO] 4 - Container Images and Build Files
[PASS] 4.1 - Create a user for the container

4.4 Nginx container running with User Namespace mapping:
ubuntu@ip-192-168-0-235:/etc/default$ docker run -m 256m -c 512 --name
log-nginx --log-driver=syslog -v /var/cache/nginx -v /var/run -v
/dev/log:/dev/log --cap-drop SETUID --cap-drop SETGID --security-
opt="no-new-privileges" --restart on-failure:5 --log-opt syslog-
address=udp://192.168.0.235:514 --disable-content-trust=false -d nginx

Note that Docker Bench cannot be run as a container with user
namespaces enabled:

ubuntu@ip-192-168-0-235:/etc/default$ docker run -it --net host --pid
host --cap-add audit_control -v /var/lib:/var/lib -v
/var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd -v /etc:/etc --label
docker_bench_security docker/docker-bench-security
docker: Error response from daemon: Cannot share the host's network
namespace when user namespaces are enabled.

ubuntu@ip-192-168-0-235:~/docker-bench-security$ sudo ./docker-bench-
security.sh
--

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.11 Benchmark:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110
--

[INFO] 2 - Docker Daemon Configuration
[WARN] 2.1 - Restrict network traffic between containers
[PASS] 2.2 - Set the logging level
[PASS] 2.3 - Allow Docker to make changes to iptables
[PASS] 2.4 - Do not use insecure registries
[WARN] 2.5 - Do not use the aufs storage driver
[INFO] 2.6 - Configure TLS authentication for Docker daemon
[INFO] * Docker daemon not listening on TCP
[INFO] 2.7 - Set default ulimit as appropriate

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 31

Alyssa Robinson, lyssanr@yahoo.com

[INFO] * Default ulimit doesn't appear to be set
[PASS] 2.8 - Enable user namespace support
[PASS] 2.9 - Confirm default cgroup usage
[PASS] 2.10 - Do not change base device size until needed
[WARN] 2.11 - Use authorization plugin
[PASS] 2.12 - Configure centralized and remote logging
[WARN] 2.13 - Disable operations on legacy registry (v1)

4.5 Docker Bench checks regarding users with access to Docker
daemon:

ubuntu@ip-192-168-0-235:~/docker_transcripts$ docker run -it --net
host --pid host --cap-add audit_control -v /var/lib:/var/lib
-v /var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd -v /etc:/etc --label
docker_bench_security docker/docker-bench-security

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best-practices around deploying
Docker containers in production.
Inspired by the CIS Docker 1.11 Benchmark:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110

 [INFO] 1 - Host Configuration
[INFO] 1.6 - Only allow trusted users to control Docker daemon
[INFO] * docker:x:999:ubuntu

5. Do Not Store Secrets in Containers
5.1 Checklist:

o Secrets	are	not	stored	in	the	Dockerfiles/included	in	the	image	

o Secrets	are	not	stored	in	environment	variables	

o Secrets	are	not	stored	in	volume	mounts	on	the	host	

o Are	stored	in	a	secrets	store	

o Secrets	are	rotated	frequently 	

5.2 Docker inspect shows secrets stored in environment variables:
ubuntu@ip-192-168-0-235:~$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 32

Alyssa Robinson, lyssanr@yahoo.com

nginx latest ba6bed934df2
13 days ago 181.4 MB
mysql latest 18f13d72f7f0
13 days ago 383.4 MB
docker/docker-bench-security latest 2d4c144b12a4
6 weeks ago 40.58 MB
quay.io/coreos/clair v1.2.2 4c58038d597f
4 months ago 827.1 MB
jerbi/batten latest 8e6c0e7cf775
15 months ago 539.1 MB
ubuntu@ip-192-168-0-235:~$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

ubuntu@ip-192-168-0-235:~$ docker inspect b7eb67dda521
[
 {
 "Id":
"b7eb67dda52101520968494fed45ad0fa6636cb8cbd7652ca79bfd85d51e1306",
 "Created": "2016-10-07T12:47:35.657229619Z",
 "Path": "docker-entrypoint.sh",
 "Args": [
 "mysqld"
],
 "State": {
 "Status": "running",
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 682,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2016-10-07T12:47:35.928088446Z",
 "FinishedAt": "0001-01-01T00:00:00Z"
 },
 "Image":
"sha256:18f13d72f7f0e105c09e78a9e44b194e91de05e13db93eec39f61fc6e95cd2
94",
 "ResolvConfPath":
"/var/lib/docker/containers/b7eb67dda52101520968494fed45ad0fa6636cb8cb
d7652ca79bfd85d51e1306/resolv.conf",
 "HostnamePath":
"/var/lib/docker/containers/b7eb67dda52101520968494fed45ad0fa6636cb8cb
d7652ca79bfd85d51e1306/hostname",
 "HostsPath":
"/var/lib/docker/containers/b7eb67dda52101520968494fed45ad0fa6636cb8cb
d7652ca79bfd85d51e1306/hosts",
 "LogPath":

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 33

Alyssa Robinson, lyssanr@yahoo.com

"/var/lib/docker/containers/b7eb67dda52101520968494fed45ad0fa6636cb8cb
d7652ca79bfd85d51e1306/b7eb67dda52101520968494fed45ad0fa6636cb8cbd7652
ca79bfd85d51e1306-json.log",
 "Name": "/some-mysql",
 "RestartCount": 0,
 "Driver": "aufs",
 "MountLabel": "",
 "ProcessLabel": "",
 "AppArmorProfile": "",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LogConfig": {
 "Type": "json-file",
 "Config": {}
 },
 "NetworkMode": "default",
 "PortBindings": {},
 "RestartPolicy": {
 "Name": "no",
 "MaximumRetryCount": 0
 },
 "AutoRemove": false,
 "VolumeDriver": "",
 "VolumesFrom": null,
 "CapAdd": null,
 "CapDrop": null,
 "Dns": [],
 "DnsOptions": [],
 "DnsSearch": [],
 "ExtraHosts": null,
 "GroupAdd": null,
 "IpcMode": "",
 "Cgroup": "",
 "Links": null,
 "OomScoreAdj": 0,
 "PidMode": "",
 "Privileged": false,
 "PublishAllPorts": false,
 "ReadonlyRootfs": false,
 "SecurityOpt": null,
 "UTSMode": "",
 "UsernsMode": "",
 "ShmSize": 67108864,
 "Runtime": "runc",
 "ConsoleSize": [
 0,
 0
],

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 34

Alyssa Robinson, lyssanr@yahoo.com

 "Isolation": "",
 "CpuShares": 0,
 "Memory": 0,
 "CgroupParent": "",
 "BlkioWeight": 0,
 "BlkioWeightDevice": null,
 "BlkioDeviceReadBps": null,
 "BlkioDeviceWriteBps": null,
 "BlkioDeviceReadIOps": null,
 "BlkioDeviceWriteIOps": null,
 "CpuPeriod": 0,
 "CpuQuota": 0,
 "CpusetCpus": "",
 "CpusetMems": "",
 "Devices": [],
 "DiskQuota": 0,
 "KernelMemory": 0,
 "MemoryReservation": 0,
 "MemorySwap": 0,
 "MemorySwappiness": -1,
 "OomKillDisable": false,
 "PidsLimit": 0,
 "Ulimits": null,
 "CpuCount": 0,
 "CpuPercent": 0,
 "IOMaximumIOps": 0,
 "IOMaximumBandwidth": 0
 },
 "GraphDriver": {
 "Name": "aufs",
 "Data": null
 },
 "Mounts": [
 {
 "Name":
"8917b6dbda7a4948564cef1c0bd3be762fb7e740b161a11d352661bc26cda51a",
 "Source":
"/var/lib/docker/volumes/8917b6dbda7a4948564cef1c0bd3be762fb7e740b161a
11d352661bc26cda51a/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""
 }
],
 "Config": {
 "Hostname": "b7eb67dda521",
 "Domainname": "",
 "User": "",

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 35

Alyssa Robinson, lyssanr@yahoo.com

 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "ExposedPorts": {
 "3306/tcp": {}
 },
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [
 "MYSQL_ROOT_PASSWORD=my-secret-pw",

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "GOSU_VERSION=1.7",
 "MYSQL_MAJOR=5.7",
 "MYSQL_VERSION=5.7.15-1debian8"
],
 "Cmd": [
 "mysqld"
],
 "Image": "mysql:latest",
 "Volumes": {
 "/var/lib/mysql": {}
 },
 "WorkingDir": "",
 "Entrypoint": [
 "docker-entrypoint.sh"
],
 "OnBuild": null,
 "Labels": {}
 },
 "NetworkSettings": {
 "Bridge": "",
 "SandboxID":
"0cb8bf4fcc4289f3632b63c57eb2d85604abdb5f1d8fa8455a3b5b2a648077ab",
 "HairpinMode": false,
 "LinkLocalIPv6Address": "",
 "LinkLocalIPv6PrefixLen": 0,
 "Ports": {
 "3306/tcp": null
 },
 "SandboxKey": "/var/run/docker/netns/0cb8bf4fcc42",
 "SecondaryIPAddresses": null,
 "SecondaryIPv6Addresses": null,
 "EndpointID":
"b36d1403ef312aee22f378e2a4f76935f011e436541a166e38a27aa6138b76c4",
 "Gateway": "172.17.0.1",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "IPAddress": "172.17.0.2",

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 36

Alyssa Robinson, lyssanr@yahoo.com

 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "MacAddress": "02:42:ac:11:00:02",
 "Networks": {
 "bridge": {
 "IPAMConfig": null,
 "Links": null,
 "Aliases": null,
 "NetworkID":
"599cb4f4bce7afc3b986aefbcb37ebe1d451ce8b6fe4934fe010143b06b485b4",
 "EndpointID":
"b36d1403ef312aee22f378e2a4f76935f011e436541a166e38a27aa6138b76c4",
 "Gateway": "172.17.0.1",
 "IPAddress": "172.17.0.2",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "02:42:ac:11:00:02"
 }
 }
 }
 }
]

5.3 Dockerfile with Secrets Specified
When secrets are stored directly in the Dockerfile, they can be viewed by anyone with access to the
source code, and the Docker image can be reverse-engineered using tools like dockerfile-from-image
(Close, 2015).

Example Dockerfile for imaginary database

FROM ubuntu
MAINTAINER lyssanr@yahoo.com

ENV FAKE_DB_VERSION 1.0.2

Install webserver package
RUN apt-get update && apt-get install -y my-fake-db-$FAKE_DB_VERSION

USER fakedb

Start database and set admin password
RUN /etc/init.d/myfakedb start &&\
 fakedb --cmd "CREATE USER dbuser WITH PASSWORD 'Password123';" &&\
 createdb

Open port for myfakedb
EXPOSE 1234

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 37

Alyssa Robinson, lyssanr@yahoo.com

Add a volume for db data
VOLUME ["/var/myfakedb", "/etc/fakedb-config"]

Default container start command
CMD ["/usr/sbin/start_myfakdeb"]

Using the docker history command against a docker image built from the Docker example
PostgreSQL, which contains several passwords:

[ec2-user@ip-192-168-0-213 ~]$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE
eg_postgresql latest
c8c885dfb805 11 minutes ago 393.9 MB
ubuntu latest
f753707788c5 2 weeks ago 127.1 MB
centurylink/dockerfile-from-image latest
970eaf375dfd 10 months ago 19.16 MB

ubuntu@ip-192-168-0-235:~$ docker history --no-trunc eg_postgresql
|awk '{$1=$2=$3=$4=$5=""; print $0}'
WARNING: Error loading config file:/home/ubuntu/.dockercfg - read
/home/ubuntu/.dockercfg: is a directory
 COMMENT
 -c #(nop) CMD ["/usr/lib/postgresql/9.3/bin/postgres" "-D"
"/var/lib/postgresql/9.3/main" "-c"
"config_file=/etc/postgresql/9.3/main/postgresql.conf"] 0 B
 -c #(nop) VOLUME [/etc/postgresql /var/log/postgresql
/var/lib/postgresql] 0 B
 -c #(nop) EXPOSE 5432/tcp 0 B
 -c echo "listen_addresses='*'" >>
/etc/postgresql/9.3/main/postgresql.conf 20.32 kB
 -c echo "host all all 0.0.0.0/0 md5" >>
/etc/postgresql/9.3/main/pg_hba.conf 4.681 kB
 -c /etc/init.d/postgresql start && psql --command "CREATE USER
docker WITH SUPERUSER PASSWORD 'docker';" && createdb -O docker docker
23.43 MB
 -c #(nop) USER [postgres] 0 B
 -c apt-get update && apt-get install -y python-software-
properties software-properties-common postgresql-9.3 postgresql-
client-9.3 postgresql-contrib-9.3 243.3 MB
 -c echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-
pgdg main" > /etc/apt/sources.list.d/pgdg.list 63 B
 -c apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 -
-recv-keys B97B0AFCAA1A47F044F244A07FCC7D46ACCC4CF8 27.72 kB
 -c #(nop) MAINTAINER SvenDowideit@docker.com 0 B
 -c #(nop) CMD ["/bin/bash"] 0 B
 -c mkdir -p /run/systemd && echo 'docker' >
/run/systemd/container 7 B
 -c sed -i 's/^#\s*\(deb.*universe\)$/\1/g' /etc/apt/sources.list

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 38

Alyssa Robinson, lyssanr@yahoo.com

1.895 kB
 -c rm -rf /var/lib/apt/lists/* 0 B
 -c set -xe && echo '#!/bin/sh' > /usr/sbin/policy-rc.d && echo
'exit 101' >> /usr/sbin/policy-rc.d && chmod +x /usr/sbin/policy-rc.d
&& dpkg-divert --local --rename --add /sbin/initctl && cp -a
/usr/sbin/policy-rc.d /sbin/initctl && sed -i 's/^exit.*/exit 0/'
/sbin/initctl && echo 'force-unsafe-io' > /etc/dpkg/dpkg.cfg.d/docker-
apt-speedup && echo 'DPkg::Post-Invoke { "rm -f
/var/cache/apt/archives/*.deb /var/cache/apt/archives/partial/*.deb
/var/cache/apt/*.bin || true"; };' > /etc/apt/apt.conf.d/docker-clean
&& echo 'APT::Update::Post-Invoke { "rm -f
/var/cache/apt/archives/*.deb /var/cache/apt/archives/partial/*.deb
/var/cache/apt/*.bin || true"; };' >> /etc/apt/apt.conf.d/docker-clean
&& echo 'Dir::Cache::pkgcache ""; Dir::Cache::srcpkgcache "";' >>
/etc/apt/apt.conf.d/docker-clean && echo 'Acquire::Languages "none";'
> /etc/apt/apt.conf.d/docker-no-languages && echo
'Acquire::GzipIndexes "true"; Acquire::CompressionTypes::Order::
"gz";' > /etc/apt/apt.conf.d/docker-gzip-indexes && echo
'Apt::AutoRemove::SuggestsImportant "false";' >
/etc/apt/apt.conf.d/docker-autoremove-suggests 745 B
 -c #(nop) ADD
file:b1cd0e54ba28cb1d6db4b93f98d5e02f5e2bcd96c55cb91731ba499861001e30
in / 127.2 MB

6. Base Image Security
6.1Checklist:

o Specify	package	versions	and	hash	in	FROM	tag	

o Understand	the	contents	of	running	images	

o Scan	images	regularly	for	vulnerabilities	

o Update	base	image	regularly	and	re-deploy	containers	

a. Example	Dockerfile	with	specification	of	package	versions	in	FROM	tag:	

FROM
ubuntu:16.04@sha256:3235a49037919e99696d97df8d8a230717272d848ee4d
dadbca8d54f97ee30cb

ENV MY_APP_VERSION=0.734.
RUN apt-get update && \
 DEBIAN_FRONTEND=noninteractive apt-get install -y my-
app=${MY_APP_VERSION}* && \
 apt-get clean && \
 rm -rf /var/lib/apt/lists/*

WORKDIR /my_app_dir

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 39

Alyssa Robinson, lyssanr@yahoo.com

b. Image	vulnerability	scanning	using	CoreOS	Clair:	

ubuntu@ip-192-168-0-43:~$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE
oscap4docker latest
d5dbedfe803f 3 hours ago 406.3 MB
containercompliance_oscap4docker-test latest
3581f036e997 3 hours ago 256.1 MB
<none> <none>
d30ce74503e7 3 hours ago 406.3 MB
postgres latest
654b61cc82aa 11 days ago 264.7 MB
ubuntu latest
c73a085dc378 2 weeks ago 127.1 MB
nginx latest
ba6bed934df2 2 weeks ago 181.4 MB
mysql latest
18f13d72f7f0 2 weeks ago 383.4 MB
centos 7
980e0e4c79ec 4 weeks ago 196.8 MB
quay.io/coreos/clair latest
a76bf177c731 12 weeks ago 836.6 MB
hello-world latest
c54a2cc56cbb 3 months ago 1.848 kB
dduportal/bats 0.4.0
e055fece8340 8 months ago 149.9 MB
dduportal/oscap4docker 1.0.0
5f272e73d4e3 16 months ago 366.6 MB

ubuntu@ip-192-168-0-43:~$ analyze-local-images 654b61cc82aa
2016-10-11 01:47:19.316667 I | Saving 654b61cc82aa to local disk (this
may take some time)
2016-10-11 01:47:25.220053 I | Retrieving image history
2016-10-11 01:47:25.220199 I | Analyzing 11 layers...
2016-10-11 01:47:25.220207 I | Analyzing
7f1d5a7e7c722d89fb14528ffde7ef6002c737cd4c5e694306e67934f8baee3e
2016-10-11 01:47:25.222376 I | Analyzing
d12a8ea4eea45b28283f0edf8058b94816708a6d110753b3ca2d3ee984f55665
2016-10-11 01:47:25.223978 I | Analyzing
0c3d09bc94687bfc3b55b93d1046d82acfaac6ec0609a6b1e622ee4c7ecc396d
2016-10-11 01:47:25.225271 I | Analyzing
37859a7bd1ae7e4a5b55a1fecd46f12590b8cc8ca7e902d00d50b6f61dfa76d3
2016-10-11 01:47:25.226739 I | Analyzing
2890c2e45866015721938d3e02dc74d7457656fb7626c7f224bb20545abddd97
2016-10-11 01:47:25.228183 I | Analyzing
2f5f35ab6e98d31fdf2916e0fa10500bd27cc15266064dc5edd67bc756e834c3
2016-10-11 01:47:25.229650 I | Analyzing
1424eee3083d5defbc52d6566d351c40c90ef92fbb697cf443c08c64dd615ff0
2016-10-11 01:47:25.230918 I | Analyzing

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 40

Alyssa Robinson, lyssanr@yahoo.com

5520766bc8a3577e2faedce8af3c6ccefa5af1b78436b8d416f7784731fe6ded
2016-10-11 01:47:25.232418 I | Analyzing
0b6bb94658de3448349db8edfe5fedb2f5fc4668daa88af4147032f395d67f19
2016-10-11 01:47:25.233852 I | Analyzing
19c1a9a264b62abda7a801086bab5558ab98d17e73c89bc671a670efbd12d2e2
2016-10-11 01:47:25.235211 I | Analyzing
fc08ba35d0edff25393a24067d20310dbbf6997f45b56e993e1d98589cf9d24c
2016-10-11 01:47:25.236456 I | Retrieving image's vulnerabilities
Clair report for image 654b61cc82aa (2016-10-11 01:47:25.243500896
+0000 UTC)
Success! No vulnerabilities were detected in your image

ENTRYPOINT ["/bin/myapp"]
7. Limit container resources
7.1 Checklist:

o Mount	filesystems	read-only	(prevent	writing	malicious	code)	

o Place	limits	on	system	resources	(limit	denial	of	service)	

o Limit	kernel	calls	(limit	container	breakout)	and	linux	capabilities	

o Restrict	network	access	(prevent	attack	pivot,	data	egress,	-icc=false)	

7.2 Docker_bench run on default mysql container:
ubuntu@ip-192-168-0-235:~$ docker run --name some-mysql -u mysql -e
MYSQL_ROOT_PASSWORD=adhagohrgh9876 -d mysql:latest
5601ba7ab19e9e151e63867a1194ef6877cdeb527fd22331358266a335ccea0e
ubuntu@ip-192-168-0-235:~$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
5601ba7ab19e mysql:latest "docker-entrypoint.sh" 3
seconds ago Up 2 seconds 3306/tcp some-mysql

ubuntu@ip-192-168-0-235:~$ docker run -it --net host --pid host --cap-
add audit_control -v /var/lib:/var/lib -v
/var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd -v /etc:/etc --label
docker_bench_security docker/docker-bench-security
--

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.11 Benchmark:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 41

Alyssa Robinson, lyssanr@yahoo.com

--

[INFO] 5 - Container Runtime
[WARN] 5.1 - Verify AppArmor Profile, if applicable
[WARN] * No AppArmorProfile Found: some-mysql
[WARN] 5.2 - Verify SELinux security options, if applicable
[WARN] * No SecurityOptions Found: some-mysql
[PASS] 5.3 - Restrict Linux Kernel Capabilities within containers
[PASS] 5.4 - Do not use privileged containers
[PASS] 5.5 - Do not mount sensitive host system directories on
containers
[PASS] 5.6 - Do not run ssh within containers
[PASS] 5.7 - Do not map privileged ports within containers
[PASS] 5.9 - Do not share the host's network namespace
[WARN] 5.10 - Limit memory usage for container
[WARN] * Container running without memory restrictions: some-
mysql
[WARN] 5.11 - Set container CPU priority appropriately
[WARN] * Container running without CPU restrictions: some-mysql
[WARN] 5.12 - Mount container's root filesystem as read only
[WARN] * Container running with root FS mounted R/W: some-mysql
[PASS] 5.13 - Bind incoming container traffic to a specific host
interface
[WARN] 5.14 - Set the 'on-failure' container restart policy to 5
[WARN] * MaximumRetryCount is not set to 5: some-mysql
[PASS] 5.15 - Do not share the host's process namespace
[PASS] 5.16 - Do not share the host's IPC namespace
[PASS] 5.17 - Do not directly expose host devices to containers
[INFO] 5.18 - Override default ulimit at runtime only if needed
[INFO] * Container no default ulimit override: some-mysql
[PASS] 5.19 - Do not set mount propagation mode to shared
[PASS] 5.20 - Do not share the host's UTS namespace
[PASS] 5.21 - Do not disable default seccomp profile
[PASS] 5.24 - Confirm cgroup usage
[WARN] 5.25 - Restrict container from acquiring additional privileges
[WARN] * Privileges not restricted: some-mysql

7.3 Docker bench with limited container resources:
ubuntu@ip-192-168-0-235:~$ docker run -m 256m -c 512 --name some-nginx
--read-only -v /var/cache/nginx -v /var/run -v /dev/log:/dev/log --
cap-drop SETUID --cap-drop SETGID --security-opt="no-new-privileges" -
-restart on-failure:5 -d nginx
ubuntu@ip-192-168-0-235:~$ docker run -it --net host --pid host --cap-
add audit_control -v /var/lib:/var/lib -v
/var/run/docker.sock:/var/run/docker.sock -v
/usr/lib/systemd:/usr/lib/systemd -v /etc:/etc --label
docker_bench_security docker/docker-bench-security
--

© 2016 The SANS Institute Author retains full rights.

 A Checklist for Audit of Docker Containers |Page 42

Alyssa Robinson, lyssanr@yahoo.com

Docker Bench for Security v1.1.0

Docker, Inc. (c) 2015-

Checks for dozens of common best-practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.11 Benchmark:
https://benchmarks.cisecurity.org/downloads/show-
single/index.cfm?file=docker16.110
--

[INFO] 5 - Container Runtime
[WARN] 5.1 - Verify AppArmor Profile, if applicable
[WARN] * No AppArmorProfile Found: some-nginx
[PASS] 5.2 - Verify SELinux security options, if applicable
[PASS] 5.3 - Restrict Linux Kernel Capabilities within containers
[PASS] 5.4 - Do not use privileged containers
[PASS] 5.5 - Do not mount sensitive host system directories on
containers
[PASS] 5.6 - Do not run ssh within containers
[PASS] 5.7 - Do not map privileged ports within containers
[PASS] 5.9 - Do not share the host's network namespace
[PASS] 5.10 - Limit memory usage for container
[PASS] 5.11 - Set container CPU priority appropriately
[PASS] 5.12 - Mount container's root filesystem as read only
[PASS] 5.13 - Bind incoming container traffic to a specific host
interface
[PASS] 5.14 - Set the 'on-failure' container restart policy to 5
[PASS] 5.15 - Do not share the host's process namespace
[PASS] 5.16 - Do not share the host's IPC namespace
[PASS] 5.17 - Do not directly expose host devices to containers
[INFO] 5.18 - Override default ulimit at runtime only if needed
[INFO] * Container no default ulimit override: some-nginx
[PASS] 5.19 - Do not set mount propagation mode to shared
[PASS] 5.20 - Do not share the host's UTS namespace
[PASS] 5.21 - Do not disable default seccomp profile
[PASS] 5.24 - Confirm cgroup usage
[PASS] 5.25 - Restrict container from acquiring additional privileges

Last Updated: January 17th, 2019

Upcoming SANS Training
Click here to view a list of all SANS Courses

Cyber Threat Intelligence Summit & Training 2019 Arlington, VAUS Jan 21, 2019 - Jan 28, 2019 Live Event

SANS Dubai January 2019 Dubai, AE Jan 26, 2019 - Jan 31, 2019 Live Event

SANS Las Vegas 2019 Las Vegas, NVUS Jan 28, 2019 - Feb 02, 2019 Live Event

SANS Security East 2019 New Orleans, LAUS Feb 02, 2019 - Feb 09, 2019 Live Event

SANS SEC504 Stuttgart February 2019 Stuttgart, DE Feb 04, 2019 - Feb 09, 2019 Live Event

SANS Northern VA Spring- Tysons 2019 Vienna, VAUS Feb 11, 2019 - Feb 16, 2019 Live Event

SANS London February 2019 London, GB Feb 11, 2019 - Feb 16, 2019 Live Event

SANS FOR610 Madrid February 2019 (in Spanish) Madrid, ES Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Anaheim 2019 Anaheim, CAUS Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Secure Japan 2019 Tokyo, JP Feb 18, 2019 - Mar 02, 2019 Live Event

SANS Scottsdale 2019 Scottsdale, AZUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS New York Metro Winter 2019 Jersey City, NJUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Zurich February 2019 Zurich, CH Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Dallas 2019 Dallas, TXUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Riyadh February 2019 Riyadh, SA Feb 23, 2019 - Feb 28, 2019 Live Event

SANS Reno Tahoe 2019 Reno, NVUS Feb 25, 2019 - Mar 02, 2019 Live Event

SANS Brussels February 2019 Brussels, BE Feb 25, 2019 - Mar 02, 2019 Live Event

Open-Source Intelligence Summit & Training 2019 Alexandria, VAUS Feb 25, 2019 - Mar 03, 2019 Live Event

SANS Baltimore Spring 2019 Baltimore, MDUS Mar 02, 2019 - Mar 09, 2019 Live Event

SANS Training at RSA Conference 2019 San Francisco, CAUS Mar 03, 2019 - Mar 04, 2019 Live Event

SANS Secure India 2019 Bangalore, IN Mar 04, 2019 - Mar 09, 2019 Live Event

SANS London March 2019 London, GB Mar 11, 2019 - Mar 16, 2019 Live Event

SANS St. Louis 2019 St. Louis, MOUS Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Secure Singapore 2019 Singapore, SG Mar 11, 2019 - Mar 23, 2019 Live Event

SANS San Francisco Spring 2019 San Francisco, CAUS Mar 11, 2019 - Mar 16, 2019 Live Event

ICS Security Summit & Training 2019 Orlando, FLUS Mar 18, 2019 - Mar 25, 2019 Live Event

SANS SEC504 Paris March 2019 (in French) Paris, FR Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Secure Canberra 2019 Canberra, AU Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Norfolk 2019 Norfolk, VAUS Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Munich March 2019 Munich, DE Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Doha March 2019 Doha, QA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS Jeddah March 2019 Jeddah, SA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS Miami 2019 OnlineFLUS Jan 21, 2019 - Jan 26, 2019 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=A_Checklist_for_Audit_of_Docker_Containers+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=54485&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=Cyber_Threat_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54485&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=Cyber_Threat_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54905&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Dubai_January_2019
http://www.sans.org/link.php?id=54905&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Dubai_January_2019
http://www.sans.org/link.php?id=54385&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Las_Vegas_2019
http://www.sans.org/link.php?id=54385&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Las_Vegas_2019
http://www.sans.org/link.php?id=54395&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Security_East_2019
http://www.sans.org/link.php?id=54395&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Security_East_2019
http://www.sans.org/link.php?id=56965&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_SEC504_Stuttgart_February_2019
http://www.sans.org/link.php?id=56965&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_SEC504_Stuttgart_February_2019
http://www.sans.org/link.php?id=54405&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Northern_VA_Spring-_Tysons_2019
http://www.sans.org/link.php?id=54405&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Northern_VA_Spring-_Tysons_2019
http://www.sans.org/link.php?id=54925&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_London_February_2019
http://www.sans.org/link.php?id=54925&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_London_February_2019
http://www.sans.org/link.php?id=56835&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_FOR610_Madrid_February_2019_in_Spanish
http://www.sans.org/link.php?id=56835&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_FOR610_Madrid_February_2019_in_Spanish
http://www.sans.org/link.php?id=54400&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Anaheim_2019
http://www.sans.org/link.php?id=54400&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Anaheim_2019
http://www.sans.org/link.php?id=54425&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54425&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54420&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54420&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54415&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54415&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54935&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=54935&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=54410&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=54410&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=55065&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=55065&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=54430&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54430&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54960&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54960&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54490&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54490&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54435&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=54435&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=56970&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=56970&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=54440&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=54440&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=55020&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=55020&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=54455&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54455&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54450&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54450&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54445&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=54445&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=54495&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=54495&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=57475&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=57475&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=54465&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54465&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54460&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=54460&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=55075&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=55075&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=55255&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=55255&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=56030&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=56030&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=54380&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Miami_2019
http://www.sans.org/link.php?id=54380&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_Miami_2019
http://www.sans.org/link.php?id=1032&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=A_Checklist_for_Audit_of_Docker_Containers&rret=SANS_OnDemand

