
CSC – Tieteen tietotekniikan keskus Oy
CSC – IT Center for Science Ltd.

Make and makefiles

J. Tarus

GNU make

• The material presented here assumes the
use of gnu make (some parts may not
work with other implementations of make)

• For more information see

– www.gnu.org/software/make/manual/

Make in general
• In practice codes are usually separated

into several different files.

• When compiling the code, one should
either compile everything, which can be
too slow, or have booking to show what
needs to be compiled.

• make makes things life easier by taking
the role of bookkeeper.

• Makefile defines what rules for needed
actions.

Basic form for a makefile

• Syntax for makefile

–

–

• Target is usually the file that is produced
by the command

• Target can also be a name for an action
(for example clean)

target: dependent1 dependent2
command

Basic form for a makefile

• Dependent is a source that is used for
making a target.

• Dependents are not always needed

–

–

–

• Above mentioned command will be always
executed as there there is no target clean

clean:
rm *.o

Basic form for a makefile

• Command is the function make executes
(or to be precise it passes the commands
to shell).

• NOTE: there is a tab character in front of
the commands (not spaces)

• Without tab:

makefile:2: *** missing separator (did you mean TAB
instead of 8 spaces?). Stop.

Basic form for a makefile

• Make checks when the dependents were
last changed. If any the dependents is
newer than the target, the target will be
rebuild according the commands.

• Dependents can be targets for other rules
(for example object files). In that case
make rebuilds dependents first.

Simple example

edit : main.o ali1.o ali2.o ali3.o
f90 −o edit main.o ali1.o ali2.o ali3.o

main.o : main.f90
f90 −c main.f90

ali1.o : ali1.f90
f90 −c ali1.f90

ali2.o : a l i 2 . f90
f90 −c ali2.f90

ali3.o : a l i 3 . f90
f90 −c ali3.f90

clean :
rm edit main.o ali1.o ali2.o ali3.o

Targets

• By, default make starts from the first
target. edit in the previous example.

• You can also define the target from
command line:

make clean

make main.o

Macros

• In the makefile example we had the line
main.o ali1.o ali2.o ali3.o in several
places. Instead of repeating the same line
many times we can use macros. (Macros
are sometimes called variables.)

• They are defined by

MACRO=value

• And referred by

$(MACRO)

Macros

• By convention they are usually all capital
letters.

• In the previous makefile we could use a
macro called OBJ.

Macros
OBJ=main.o ali1.o ali2.o ali3.o
edit : $(OBJ)

f90 −o edit $(OBJ)
main.o : main.f90 type.mod

f90 −c main.f90
ali1.o : ali1.f90 type.mod

f90 −c ali1.f90
ali2.o : ali2 . f90 type.mod

f90 −c ali2.f90
ali3.o : ali3 . f90 type.mod

f90 −c ali3.f90
clean :

rm edit $(OBJ)

Macros

• Some common macros
– CC

– CFLAGS

– FC

– FCFLAGS

– LDFLAGS

– OBJ

– SRC

• These are also used in default/built-in
rules that make uses.

Special macros

• $@

– The name of the target

client: client.c
 $(CC) client.c -o $@

Special macros

• $<

– The name of the first dependent

client: client.c
 $(CC) $< -o $@

Special macros

• $?

– This stores the list of dependents more recent
than the target

client: client.c
$(CC) $? -o $@

Special macros

• $^

– List of all the dependents. Duplicates are
removed

–

–

–

• $+

– Same as $^, but duplicates are not removed

print the source to the screen
viewsource: client.c server.c

less $^

Special macros

• $*

– the prefix shared by target and dependent
files

main.o: main.c
$(CC) -c -o $*.o $*.c

Special characters

• / continues a line

• Everything after # is comment

• Make echos all the commands that are
executed. This can be prevented by using
@ sign at the beginning of the commad

@echo $(USER)

Special characters

• If there is an error in executing a
command make stops. This can be
prevented by a - sign

clean:
-rm edit
-rm $(OBJ)

SHELL variables

• You can also shell variables
(HOME,USER,SHELL...) in the makefile

–

–

–

–

• You can also define your shell

SHELL=/bin/bash

install:
make
mv edit $(HOME)/bin/.
make clean

IMPLICIT RULES

• You can use special characters to define
implicit rules

• Quite often target and dependent share
the name (different extensions). So one
can define an implicit rule for compiling an
object file from a f90 file.

%.o: %.f90
$(F90) $(FFLAGS) -c -o $@ $<

Some GNU make's
functions
• wildcard

SRC=$(wildcard *.f90)

• addprefix

SRCDIR=../src/

SRCM=$(addprefix $(SRCDIR),$(SRC))

• patsubst

OBJ=$(patsubst %.f90,%.o,$(SRC))

VPATH
• Sometimes the source files are distributed

to different directories or your objects will
be written to a different directory

• To locate the sources you can use VPATH.

– VPAT=path1:path2:path2

• Note: There is no `VPATH' support
specified in POSIX. Many `make's have a
form of `VPATH' support, but its
implementation is not consistent amongst
`make's.

Command line options

• -j parallel execution

• -n shows the commands, but will not
execute them

• -p shows default rules and values for
variables

• macro definitions from command line

make ”FFLAGS=−O” ”LDFLAGS=−s ” edit

• make -f makefile_old

Example
SRC=main.f90 ali1.f90 ali2.f90 ali3.f90
OBJ=$(patsubst %.f90,%.o,$(SRC))
F90=gfortran
FFLAGS=
VPATH=../src:../modules
.PHONY: clean

#Implicit rule fore compiling f90 files
%.o: %.f90
 $(F90) $(FFLAGS) -c -o $@ $<

edit: $(OBJ)
 $(F90) $(FFLAGS) -o $@ $(OBJ)
 mv edit ../.
clean:
 -rm *.o
 -rm ../edit
 -rm *.mod
#module dependencies
ali1.o:modules.o
ali2.o:modules.o
ali3.o:modules.o

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

