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Preface

Layout in CSS has always been a tricky task: hacking solutions using positioning,

floats, and the one-dimensional flexbox has never been very satisfactory.

Fortunately, there is a new tool to add to our arsenal: CSS Grid Layout>. It is an

incredibly powerful layout system that allows us to design pages using a two-

dimensional grid - offering the kind of fine-grained layout control that print

designers take for granted!

Grid Layout’s been in development for a while, but has recently been made a

W3C candidate recommendation and has been added to most of the major

browsers>, so is ready for prime time.

This short selection of tutorials, hand-picked from SitePoint’s HTML & CSS

channel, will get you up and running with Grid Layout and using it in your own

sites in no time.

Conventions Used

You’ll notice that we’ve used certain layout styles throughout this book to signify

different types of information. Look out for the following items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk.</p>

Some lines of code should be entered on one line, but we've had to wrap them

because of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:
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URL.open("http://www.sitepoint.com/responsive-web-design-real

➥ -user-testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.
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1Chapter

An Introduction to the CSS Grid Layout
Module

by Ahmad Ajmi

As web applications become more and more complex, we need a more natural

way to do advanced layouts easily without hacky solutions that use floats and

other less burdensome techniques. An exciting new solution for creating layouts

comes with the CSS Grid Layout Module.

In this introductory tutorial, I’ll introduce you to this relatively new CSS feature

and I’ll show you using some examples how the CSS Grid Layout Module works.
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What is the CSS Grid Layout Module?

The core idea behind the Grid Layout is to divide a web page into columns and

rows, along with the ability to position and size the building block elements

based on the rows and columns we have created in terms of size, position, and

layer.

The grid also gives us a flexible way to change the position of elements with only

CSS without any change to the HTML. This can be used with media queries to

alter the layout at different breakpoints.

A Grid Layout Example

Let’s start with an example to see the power of Grid Layout, and then I’ll explain

some new concepts in more detail.

Imagine you want to create a Twitter app with four full height columns layout

(Tweets, Replies, Search, and Messages), something abstracted and similar to the

screenshot below.
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Here is our HTML:

<div class="app-layout">

<div class="tweets">Tweets</div>

<div class="replies">Replies</div>

<div class="search">Search</div>

<div class="messages">Messages</div>

</div>

Then we will apply some CSS to the .app-layout container element:

.app-layout {

display: grid; /* 1 */

grid-template-columns: 1fr 1fr 1fr 1fr; /* 2 */

grid-template-rows: 100vh; /* 3 */

}
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View a demo here

Here is the explanation of what we’ve done in the previous CSS:

1. Set the display property to grid.

2. Divide the container element into four columns, each column is 1fr (one

fraction) of the free space within the grid container.

3. Create one row and set the height to be 100vh (full viewport height).

As you can see, the Grid Layout Module adds a new value to the display

property which is grid. The grid value is responsible for setting the .app-layout

element to be a grid container, which also establishes a new grid formatting

context for its contents. This property is required to start using Grid Layout.

The grid-template-columns property specifies the width of each grid column

within the Grid, and in our case it divides the .app-layout container to four

columns; each one is 1fr (25%) of the available space.

The grid-template-rows specifies the height of each grid row, and in our

example we only created one row at 100vh.

A layout with two columns and two rows would look like this:
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And we would use the following CSS:

.app-layout {

display: grid;

grid-template-columns: 1fr 1fr;

grid-template-rows: 50vh 50vh;

}

View a demo here

We can also achieve the above example only on small screens by wrapping the

code inside a media query. This opens up a great opportunity for us to customize

the layout differently in different viewports. For example, we can create the

previous layout only on viewports under 1024px as follows:

@media screen and (max-width: 1024px) {

.app-layout {

display: grid;
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grid-template-columns: 1fr 1fr;

grid-template-rows: 50vh 50vh;

}

}

View a demo here

Grid Layout Module Concepts

Now that you’ve seen a simple example, there are some new concepts that I’d like

to cover to give you a better understanding of Grid Layout. Although there are a

lot of new concepts, I will only take a look at a few of them.

Grid Item

Grid items are the child elements of the grid container. In the above example, the

.tweets, and .replies elements would qualify as grid items.

Grid Lines
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A Grid Line is a line that exists on either side of a column or a row. There are two

sets of grid lines: One set defining columns (the vertical axis), and another set

defining rows (the horizontal axis).

From the above screenshot, which represents the first example, I’ve created four

columns at 1fr each, which will give us five vertical lines. I also created one row,

which gives us two horizontal lines.

Let’s see how we can position a grid item inside the grid container.

Position Items by Using a Line Number

You can refer to an exact line number in a grid by using the properties

grid-column-start and grid-column-end. We then give these properties the

start and end line numbers.

Looking at the previous example, this is how the browser positions the elements

by default for us:

.tweets   {

grid-column-start: 1;

grid-column-end: 2;

grid-row: 1;

}

.replies  {

grid-column-start: 2;

grid-column-end: 3;

grid-row: 1;

}

.search   {

grid-column-start: 3;

grid-column-end: 4;

grid-row: 1;

}

.messages {
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grid-column-start: 4;

grid-column-end: 5;

grid-row: 1;

}

Looking at the code for the .tweet column, this is what each of the three lines in

the CSS does:

1. Position the child element starting from the first vertical line on the left.

2. End the element’s position at the second vertical line.

3. Position the element inside the whole row.

You can change this by changing the order of elements with different positions,

so the order of the elements will be: .search, .replies, .messages, and .tweets.

And we can do it as follows:
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.tweets {

grid-column-start: 4;

grid-column-end: 5;

grid-row: 1;

}

.replies {

grid-column-start: 2;

grid-column-end: 3;

grid-row: 1;

}

.search {

grid-column-start: 1;

grid-column-end: 2;

grid-row: 1;

}

.messages {

grid-column-start: 3;

grid-column-end: 4;

grid-row: 1;

}

We can also use the grid-column shorthand property to set the start and end lines

in one line:

.tweets {

grid-column: 4 / 5;

grid-row: 1;

}

.replies {

grid-column: 2 / 3;

grid-row: 1;

}

.search {
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grid-column: 1 / 2;

grid-row: 1;

}

.messages {

grid-column: 3 / 4;

grid-row: 1;

}

View a demo here

This has changed the layout structure with only CSS while the markup is still as

it was without any changes. This is a huge advantage of using the Grid Layout

Module. We can rearrange the layout of elements independent of their source

order, so we can achieve any desired layout for different screen sizes and

orientations.

Position Items by Using Named Areas

A grid area is the logical space used to lay out one or more grid items. We can

name a grid area explicitly using the grid-template-areas property, then we can

place a grid item into a specific area using the grid-area property.

To make this concept more clear, let’s redo the four-column example with the

search column placed first:

.app-layout {

display: grid;

grid-template-columns: 1fr 1fr 1fr 1fr;

grid-template-rows: 100vh;

grid-template-areas: "search replies messages tweets";

}

In the last line, we divide the grid container into four named grid areas, each

name for a column. The next step is to position each grid item into a named area:
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.search {

grid-area: search;

}

.replies {

grid-area: replies;

}

.messages {

grid-area: messages;

}

.tweets {

grid-area: tweets;

}

View a demo here

Slack Example

What about using the Grid Layout Module to implement a more complex

example, for example, creating the building blocks of the Slack layout. Since we

are talking about layouts, we will abstract and simplify the Slack design to the

building blocks represented in the grid. Something like this:
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From this layout we will create three vertical columns, and three horizontal rows,

and we can visualize it using the grid lines as follows:

Here is the HTML:
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<div class="app-layout">

<div class="teams">Teams</div>

<div class="channels">Channels</div>

<div class="header">Header</div>

<div class="messages">

<ul class="message-list">

<li></li>

<li></li>

</ul>

</div>

<div class="input">

<input type="text" placeholder="CSS Grid Layout

➥ Module">
</div>

</div>

And the CSS:

.app-layout {

display: grid;

height: 100vh;

grid-template-columns: 100px 250px 1fr;

grid-template-rows: auto 1fr auto;

}

Here I’m using the grid-template-columns property to create three columns at

100px, 250px, and the third column takes up the remaining available space. The

last line creates three rows: The first and third rows with auto height while the

middle row takes up the remaining available space.

The remainder of the CSS looks like this:

.teams {

grid-column: 1;

grid-row: 1 / 4;

}
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.channels {

grid-column: 2;

grid-row: 1 / 4;

}

.header {

grid-column: 3;

grid-row: 1;

}

.messages {

grid-column: 3;

grid-row: 2;

}

.input {

grid-column: 3;

grid-row: 3;

}

View a demo here

We can also create the slack layout using named areas, which you can see in this

demo.

Grid Layout Module vs Flexbox

Since many of you have started using Flexbox, you might wonder: When would it

be appropriate to use Flexbox and when would it be more appropriate to use Grid

Layout?

I found a good explanation from Tab Atkins:

Flexbox is appropriate for many layouts, and a lot of “page component”

elements, as most of them are fundamentally linear. Grid is appropriate
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for overall page layout, and for complicated page components which

aren’t linear in their design.

The two can be composed arbitrarily, so once they’re both widely

supported, I believe most pages will be composed of an outer grid for

the overall layout, a mix of nested flexboxes and grid for the

components of the page, and finally block/inline/table layout at the

“leaves” of the page, where the text and content live

Also, Rachel Andrew says:

Grid Layout for the main page structure of rows and columns.

Flexbox for navigation, UI elements, anything you could linearize.

CSS Grid Layout Module Resources

I have not covered all the Grid Layout concepts and syntax, so I recommend you

check out the following resources to go deeper:

CSS Grid Layout Module spec

CSS Grid Layout Examples

Grid by Example

The future of layout with CSS: Grid Layouts

Follow Rachel Andrew for updates and resources. She is doing a lot of great

work in relation to Grid Layout.

Conclusion

As you’ve seen, the CSS Grid Layout Module is powerful because of its code

brevity and the fact that you have the power to change the layout order without

touching the markup. These features can help us permanently change the way we

create layouts for the web.
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2Chapter

Seven Ways You Can Place Elements Using
CSS Grid Layout

by Nitish Kumar

In this chapter, the focus will be on specific ways in which you can lay out

elements on the web using CSS Grid. Now, let's go over each one of them.
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#1 Specifying Everything in Individual Properties

This is the version we have been using to place the elements in our previous

articles. This method is verbose but easy to understand. Basically, the left/right

and top/bottom bounds of an element are specified using

grid-column-start/grid-column-end and grid-row-start/grid-row-end

properties. If an element is only going to span one row or column, you can omit

the -end properties, this way you will have to write a little less CSS.

In the demo below, element A has been placed in the second row and second

column using the following CSS:

.a {

grid-column-start: 2;

grid-column-end: 3;

grid-row-start: 2;

grid-row-end: 3;

}

The same effect could be achieved by using:
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.a {

grid-column-start: 2;

grid-row-start: 2;

}

See the demo Specifying Everything in individual Properties.

#2 Using grid-row and grid-column

Even though the CSS in our first example was readable and easy to understand,

we had to use four different properties to place a single element. Instead of using

four properties, we can just use two — grid-column and grid-row. Both these

properties will take two values separated by a slash where the first value will

determine the start line and the second value will determine the end line of our

element.

Seven Ways You Can Place Elements Using CSS Grid Layout 18

http://codepen.io/SitePoint/pen/LbLjmY/


Here is the syntax you need to use with these properties:

.selector {

grid-row: row-start / row-end;

grid-column: col-start / col-end;

}

To place item C in the bottom right corner of our grid, we can use the following

CSS:

.c {

grid-row: 2 / 4;

grid-column: 2 / 4;

}

See the demo Using grid-row and grid-column.
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#3 Using grid-area

Technically, the item we are laying out covers a specific area of the webpage. The

boundary of that item is determined by the values we provide for the grid lines.

All of these values can be supplied at once using the grid-area property.

This is what your CSS would look like when using this property:

.selector {

grid-area: row-start / col-start / row-end / col-end;

}

If you have trouble remembering the correct order of these values, just keep in

mind that first you have to specify the position of the top-left ( row-start -
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col-start ) corner and then the bottom-right ( row-end - col-end ) corner of your

element.

Just like the previous example, to place item C in the bottom right corner of our

grid, we can use the following CSS:

.c {

grid-area: 2 / 2 / 4 / 4;

}

See the demo Using grid-area.

#4 Using the span Keyword
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Instead of specifying the end line while laying out elements, you can also use the

span keyword to set the number of columns or rows a particular element will

span.

This is the proper syntax when using the span keyword:

.selector {

grid-row: row-start / span row-span-value;

grid-column: col-start / span col-span-value;

}

If your element spans across only one row or column you can omit both the span

keyword and its value.

This time let's place item C in the top left corner of our grid. We can use the

following CSS to do so.

.c {

grid-row: 1 / span 2;

grid-column: 1 / span 2;

}

See the demo Using span with grid lines.
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#5 Using Named Lines

Until now, we have been using raw numbers to specify grid lines and it is easy to

use when we are working with simple layouts. However, when you have to place

several elements, it can get a bit confusing. Most of the times, an element on your

page will fall under a specific category. For example, the header may go from

column line c1 to column line c2 and from row line r1 to row line r2. It would be

a lot easier to properly name all the lines and then place your elements using

these names instead of numbers.
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Let's create a very basic layout to make the concept clearer. First, we will have to

modify the CSS applied to our grid container:

.container {

display: grid;

grid-gap: 10px;

grid-template-columns: [head-col-start] 180px

➥ [content-col-start] 180px [content-col-mid] 180px
➥ [head-col-end];
grid-template-rows: [head-row-start] auto [head-row-end]

➥ auto [content-row-end] auto [footer-row-end];
}

What I have done above is assign names to all the lines based on the type of

content that they will enclose. The idea here is to use names that provide us with

some insight into the placement of different elements. In this particular example,

our header element spans across all the columns. Therefore, assigning the name

"head-col-start" and "head-col-end" to the first and last column line respectively

will make it clear that these lines represent the left and right end of our header.

All other lines can be named in a similar fashion. After all the lines have been

named, we can use the following CSS to place all our elements.

.header {

grid-column: head-col-start / head-col-end;

grid-row: head-row-start / head-row-end;

}

.sidebar {

grid-column: head-col-start / content-col-start;

grid-row: head-row-end / content-row-end;

}

.content {

grid-column: content-col-start / head-col-end;

grid-row: head-row-end / content-row-end;

}
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.footer {

grid-column: head-col-start / head-col-end;

grid-row: content-row-end / footer-row-end;

}

Although we had to write more CSS than usual, now just looking at the CSS will

give us an idea of where an element is located.

See the demo Using Named Lines.
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#6 Using Named Lines with a Common Name and
the span Keyword

In the previous method, all lines had different names marking the starting,

midpoint or the end of an element. For example, "content-col-start" and "content-

col-mid" marked the starting and mid point of the content section of our

webpage. If the content section covered a few more rows, we would have to come

up with additional line names like "content-col-mid-one", "content-col-mid-two"

and so on.
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In situations like these, we can just use a common name like "content" for all grid

lines of our content section and then use the span keyword to specify how many

of those lines an element spans. We can also just mention a number along with

the line name to set the number of rows or columns an element would span.

Using this method, the CSS would look like this:

.selector {

grid-row: row-name row-start-number/ row-name

➥ row-end-number;
grid-column: col-name col-start-number / span col-name

➥ col-to-span;
}

Like the last method, this one also requires you to modify the CSS of your grid

container.

.container {

display: grid;

grid-gap: 10px;

grid-template-columns: [one-eighty] 180px [one-eighty] 180px

➥ [one-eighty] 180px;
grid-template-rows: [head-row] auto [content-row] auto

➥ [content-row] auto [content-row] auto [footer-row] auto;
}

Each of the named column lines has the same name representing their width in

pixels and each named row line represents the rows covered by a specific section

of the webpage. In this demo, I have introduced an advertisement section just

under the sidebar. Here is the CSS:

.header {

grid-column: one-eighty 1 / one-eighty 4;

grid-row: head-row / content-row 1;

}
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.sidebar {

grid-column: one-eighty 1 / one-eighty 2;

grid-row: content-row 1 / content-row 2;

}

.advert {

grid-column: one-eighty 1 / one-eighty 2;

grid-row: content-row 2 / content-row 3;

}

.content {

grid-column: one-eighty 2 / one-eighty 4;

grid-row: content-row 1 / span content-row 2;

}

.footer {

grid-column: one-eighty 1 / span one-eighty 3;

grid-row: content-row 3 / footer-row;

}

See the demo Using Named Lines with Span.
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#7 Using Named Grid Areas

Instead of using lines, we can also place elements by assigning names to different

areas. Again, we will have to make some changes to the CSS of our grid container.

The CSS for our container should now look like this:

.wrapper {

display: grid;

grid-gap: 10px;

grid-template-columns: 180px  180px  180px;

29 Designing with CSS Grid Layout

http://codepen.io/SitePoint/pen/mOwMQR/
http://codepen.io/SitePoint/pen/mOwMQR/
http://codepen.io/SitePoint/pen/mOwMQR/
http://codepen.io/SitePoint/pen/mOwMQR/
http://codepen.io/SitePoint/pen/mOwMQR/


grid-template-areas:  "header  header   header"

"content content  advert"

"content content  ......"

"footer  footer   footer";

}

A single dot (.) or a sequence of dots will create an empty cell with nothing in it.

All the strings need to have the same number of columns. That's why we had to

add the dots instead of leaving it completely blank. For now, the named grid area

can only be rectangular. However, this may change in future versions of the spec.

Let's take a look at the CSS of all our elements.

.header {

grid-area: header;

}

.content {

grid-area: content;

}

.advert {

grid-area: advert;

}

.footer {

grid-area: footer;

}

Once you have defined all the grid areas, assigning them to various elements is

pretty straightforward. Keep in mind that you can't use any special characters

while assigning names to areas. Doing so will make the declaration invalid.

See the demo Using Named Grid Areas.
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3Chapter

How to Order and Align Items in Grid
Layout

by Nitish Kumar

In this tutorial, you will learn how to control the order in which items are placed

using the Grid Layout module. After that, we will discuss how to control the

alignment of different items in the grid.

How the Order Property Works in Grid Layout

The order property can be used to specify the order in which different items

should be placed inside a grid. By default, the items are placed in the order in

which they appear in the DOM. For example, if item A is above item B in the
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actual source document, it will also be placed in the grid before item B.

Depending on your project, this may or may not be the desired behavior.

The order property can be very useful, especially when there are lots of items or

the items are being added dynamically. In such cases, if you want an item to be

placed always at the end of the grid, you can do so easily using the order

property.

Items with the lowest order value are placed first in the grid. Items with higher

values are placed later. Items which have the same order value will be placed in

the order in which they appear in the source document.

Let's take a look at an example.

This is our markup:

<div class="container">

<div class="item a">A</div>

<div class="item b">B</div>

<div class="item c">C</div>

<div class="item d">D</div>

<div class="item e">E</div>

<div class="item f">F</div>

<div class="item g">G</div>

<div class="item h">H</div>

<div class="item i">I</div>

<div class="item j">J</div>

</div>

Here is the CSS for placing the grid items:

.c {

grid-row-start: 1;

grid-row-end: 2;

}

.e {

grid-row-start: 1;
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grid-row-end: 3;

}

.b, .j {

order: 2;

}

.a, .i {

order: 3;

}

If you recall the steps from the auto-placement algorithm tutorial, you know that

the algorithm will place the items with an explicitly specified row position before

placing items with no definite position. So, even though item D, without a

definite row or column position, comes before item E in the actual document, it

will still be placed after item E (which has a definite row position:

grid-row-start: 1 and grid-row-end: 3).

Among the items with no definite position, items with the lowest order value

will be placed first. That's why items D, F, G and H are placed before items A and
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B. B and J have the same order value, therefore they are placed in the same order

in which they appear in the document. Please note that both B and J are still

placed before placing A and I because they have a lower order value.

See the demo The order Property in Grid Layout.

You need to keep accessibility in mind before reordering grid items using the

order property. This property does not affect ordering of items in non-visual

media. It also does not affect the default traversal order when navigating the

document using sequential navigation modes like tabs. Therefore, don't use this

property unless the visual order of elements needs to be out-of-sync with the

speech and navigation order.

Performing logical reordering of the grid items using the order property will

make the style sheets non-conforming.
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Aligning Content Along the Row Axis in Grid Layout

You can control the alignment of different grid items along the row axis using

justify-self and justify-items .

The justify-self property aligns the content of a single grid item while

justify-items aligns all the items in the grid.

The justify-self property can have four possible values:

end aligns content to the right of the grid area

start aligns content to the left of the grid area

center aligns content to the center of the grid area

stretch fills the whole width of the grid area

The default value of justify-self is stretch.
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The justify-items property also aligns items with respect to the row axis and

takes the same four values as the justify-self property. The default value is

also stretch.

See the demo Aligning Content Along Row Axis.

Aligning Content Along the Column Axis in Grid
Layout

You can also align content along the column axis using align-self for single grid

items and align-items for all the items in the grid.

Just like the previous two properties, both align-self and align-items can have

four possible values: start, end, center and stretch.
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The start and end values align the content to the top and bottom of the grid area

respectively. The center value aligns the content to the center of the grid area

and justify fills the whole height of the grid area.

The extra space between the first and second row in the demo occurs because the

items in the first row are aligned to the top and the items in the second row are

aligned to the bottom.

Below is align-self to align content along the column axis in action.

See the demo Aligning Content Along Column Axis.

Aligning the Whole Grid
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Sometimes, the outer edges of the grid may not align with the outer edges of the

container. This can happen when the grid rows or columns have a fixed size. In

such cases, you may want to align the grid in a specific direction.

Just like the previous properties, alignment along the row axis can be achieved

using the justify-content property and alignment along the column axis can be

achieved using the align-content property.

Both these properties are applied to the container grid and besides the usual

start, end, center and stretch values, they also accept space-around,

space-between and space-evenly as valid values.

space-around places an equal amount of space between each grid track and

half of that space between the outer edges of the grid and its container

space-between places an equal amount of space between each grid track and

no space between the outer edges of the grid and its container

space-evenly places an equal amount of space between each grid track as

well as the outer edges of the grid and its container.

The default value of both justify-content and align-content is start.

I have used the CSS below to align the grid items in the following demo:

.container {

justify-content: space-around;

align-content: space-evenly;

}

See the demo Aligning the Whole Grid.

Aligning items this way can also have some unintended side effects like adding

extra width or height to grid items that span more than one column or row

respectively. The amount of width and height that gets added to a grid item in

this case depends on the number of gutters that the item crosses in each

respective direction.
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Conclusion

In this tutorial, we have covered all the basics of ordering and aligning items in

Grid, which can help you to gain precise control over your Grid-based layouts.
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4Chapter

A Step by Step Guide to the Auto-
Placement Algorithm in CSS Grid

by Nitish Kumar

In this tutorial, I'll be going over all the steps the auto-placement algorithm of the

CSS Grid Layout module follows when positioning elements. These steps are

controlled by the grid-auto-flow property.

In Seven Ways You Can Place Elements Using CSS Grid Layout, I explained all

the different ways Grid lets you arrange elements on the web. However, in my

previous articles I explicitly specified the position of just one element in the grid.

As for the rest of the items, they got placed properly based on an algorithm.
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Here, I am going to show you how this algorithm works. This way, the next time

an element ends up in an unexpected location, you are not left scratching your

head wondering what just happened.

Basic Concepts for a Better Grasp of the Auto-
placement Algorithm

Let's go over some fundamental concepts before diving into the workings of the

algorithm.

Anonymous grid items - If you place some text directly inside a grid container

without wrapping it in any tag, it will form its own anonymous grid item. You

can't style an anonymous grid item because there is no element for you to

style, but it still inherits style rules from its parent container. On the other

hand, note that white space inside the grid container will not create its own

anonymous grid item

Value of grid spans - Unlike grid positions, the algorithm has no special rules

to resolve the value of grid spans. If not explicitly specified, their value is set

to 1 (the item only occupies its own cell)

Implicit grid - The grid built on the basis of the value of properties like

grid-template-rows, grid-template-columns and grid-template-areas is

called explicit grid. Now, if you specify the position of a grid item in such a

way that it lies outside the bounds of the explicit grid, the browser will

generate additional grid lines to accommodate the item. These lines, along

with the explicit grid, form the implicit grid. You can read more about it in

Where Things Are at in the CSS Grid Layout Working Draft. The auto-

placement algorithm can also result in the creation of additional rows or

columns in the implicit grid.

Finally, I'd like to make the following preliminary point. The default value of the

grid-auto-flow property, which is the property controlling the algorithm, is row.

This is also the value I am going to assume in the following explanation of the

auto-placement algorithm. On the other hand, if you explicitly set the above

property to column, remember to replace instances of the term row with the term

column in my explanation of the algorithm. For example, the step "Placement of

Elements With a Set Row Position but No Set Column Position" will become

"Placement of Elements With a Set Column Position but No Set Row Position".
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Now, enable the experimental features flag in your favorite modern browser to

follow along and let's go over the details of all the steps the algorithm follows to

build the layout.

Step #1: Generation of Anonymous Grid Items

The first thing that happens when the algorithm is trying to place all the items

inside a grid is the creation of anonymous grid items. As I mentioned earlier, you

cannot style these elements because there is no item to apply the style to.

The markup below generates an anonymous grid item from the inter-element text:

<div class="container">

<span class="nonan">1</span>

Anonymous Item

<div class="nonan floating">2</div>

<div class="nonan">3</div>

<div class="nonan floating">4</div>

<div class="nonan">5</div>

</div>

Besides the generation of an anonymous item, one more thing to notice is that the

grid placement algorithm ignores the CSS floats applied to div 2 and div 4 .
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See the demo Anonymous Grid Items.

Step #2: Placement of Elements with an Explicitly
Specified Position

For this and the next few steps, I will be using a grid of nine different items to

show how they are going to be placed.

Here's the relevant markup:

<div class="container">

<div class="item a">A</div>

<div class="item b">B</div>

<div class="item c">C</div>

<div class="item d">D</div>

<div class="item e">E</div>

<div class="item f">F</div>

<div class="item f">G</div>

<div class="item f">H</div>

<div class="item f">I</div>

</div>
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The first items to be placed in the grid are those with an explicitly set position,

which in the example below are items A and B. Just ignore all other items in the

grid for now. Here is the CSS that explicitly sets the position of A and B:

.a {

grid-area: 1 / 2 / 2 / 3;

}

.b {

grid-area: 2 / 1 / 4 / 3;

}
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The algorithm positions items A and B according to the values of their respective

grid-area property. In particular, the algorithm:

Sets the position of the top left corner of both A and B using the first and

second value of the grid-area property

Sets the position of the bottom right corner of both A and B using the third

and fourth value of thegrid-area property.

See the demo Placing Elements with Explicit Positions.

Step #3: Placement of Elements With a Set Row
Position but No Set Column Position

Next, the algorithm places the elements whose row position has been set

explicitly by using the grid-row-start and grid-row-end properties.

For this example, I will be setting only the grid-row values of item C and item D

to give them a definite row position. Here is the CSS for placing both of them:

.c {

grid-row-start: 1;

grid-row-end: 3;

}

.d {

grid-row-start: 1;

grid-row-end: 2;

}

To determine the column position, which is not explicitly set, the algorithm

behaves in one of two ways, according to the packing mode:

sparse packing (default)

dense packing
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Sparse Packing in Step #3

This is the default behavior. The column-start line of our item will be set to the

smallest possible line index which ensures that there won't be any overlap

between the item's own grid area and the cells already occupied by other items.

The column-start line also needs to be past any other item already placed in this

row by this step. Please note that I wrote by this step and not until this step.

To clarify this point further, item D in the demo below did not move to the left of

item A, even though it could fit in there without any overlap. This is due to the

fact that the algorithm does not allow any item with an explicitly set row position

but not set column position to be placed before any other similarly positioned

item in that specific row (item C in this case). In fact, if you remove the grid-row

rules applied to item C, then item D will move to the left of item A.
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In short, item D, which has a definite row position but no explicitly set column

position, can end up being placed before item A, but only if C does not interfere

(interference takes place in this case because C, like D, has a definite row position

but no set column position and is in the same row as D).

See the demo Placing Elements with Definite Grid Positions.

Dense Packing in Step #3

If you want to fill that empty space before item A with item D, you will have to

set the value of the grid-auto-flow property to row dense.

.container {

grid-auto-flow: row dense;

}
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In this case too, the column-start line is placed at the smallest index which does

not cause any overlap with other grid items. The only difference is that this time,

if there is some empty space in a row where our element can fit without any

overlap, it will be placed in that position, without considering the previous item

in the same row with the same position rules (in this case item C).

See the demo Elements with Definite Grid Positions - Dense.

Step #4: Determining the Number of Columns in the
Implicit Grid

Next, the algorithm tries to determine the number of columns in the implicit grid.

This is done by following a series of steps:

The algorithm starts with the number of columns in the explicit grid.
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Then it goes through all the grid items with a definite column position and

adds columns to the beginning and end of the implicit grid to accommodate

all these items.

Finally, it goes through all the grid items without a definite column position. If

the biggest column span among these items is greater than the width of the

implicit grid, it adds columns at the end of the grid to accommodate that

column span.

Step #5: Placement of Remaining Items

At this point, the algorithm has placed all the items whose position has been

explicitly specified as well as items whose row positions are known. Now, it will

position all other remaining items in the grid.

Before we go into more detail, you should know about the term auto-placement

cursor. It defines the current insertion point in the grid, specified as a pair of row

and column grid lines. To start off, the auto-placement cursor is placed at the

start-most row and column in the implicit grid.

Once more, the packing mode, determined by the value of the grid-auto-flow

property, controls how these items are positioned.

Sparse Packing in Step #5

By default, the remaining items are placed sparsely. Here is the process the

algorithm follows to place them.

If the item has no definite position in either axis:

The algorithm increments the cursor's column position until: a) either there is

no overlap between already placed items and the current item b) or the

cursor's column position plus the item's column span overflow the number of

columns in the implicit grid.

If such a non-overlapping position is found, the algorithm sets the item's

row-start and column-start values to the cursor's current position.

Otherwise, it increases the row-position by 1, sets column-start to the start-

most line in the implicit grid and repeats the previous step.
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If the item has a definite column position:

The column position of the auto placement cursor is set to the item's

column-start line. If the value of this new position is less than the cursor's

previous column position, the row position is increased by one.

Next, the row position is increased by one until the algorithm reaches a value

where the grid item does not overlap with any of the occupied grid cells. If

needed, extra rows can be added to the implicit grid. Now the item's row start

line is set to the cursor's row position and the item's row end line is set

according to its span.

Let's clarify the steps listed above with what's happening in the following demo.
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Placement of Items E and F without Definite Position in Either Axis

When the algorithm deals with item E, which has no explicitly set column or row

position, the auto-placement cursor is set to row 1 and column 1. Item E occupies

just one cell and it can fit in the top left corner without any overlap. Therefore,

the algorithm simply places item E at position row 1 / column 1.

The next item without an explicitly set column or row position is F. At this point,

the column position for the auto-placement cursor is increased to 2. However, the

position row 1 / column 2 is already occupied by item A. This means that the

algorithm will have to keep increasing the column position. This goes on until

the auto-placement cursor reaches column 4. Since there are no more columns,

the row position for the auto-placement cursor is increased by 1 and the column

position is set to 1. Now the row position is 2 and the column position is 1. The

algorithm again starts increasing the column position by 1 until it reaches column

4. The space at row 2 and column 4 is currently empty and can be occupied by

item F. The algorithm places item F there and moves on to the next item.

Placement of Items G and H with a Definite Column Position

The remaining items with a definite column position in our demo are G and H.

Let's examine G. The column position of the auto-placement cursor is set to be

equal to the value of the grid-column-start property for item G, which is 3.

Since this new value is less than the previous column value (which was 4), the

row position is increased by one. The current row and column positions are now

3 and 3 respectively. The space at row 3 and column 3 is currently empty and

item G can be placed there without any overlap. Therefore, the algorithm places

item G there. The same steps are then repeated for the placement of item H.

See the demo Positioning Remaining Items by SitePoint (@SitePoint).

Dense Packing in Step #5

Things are handled a bit differently when the grid-auto-flow property is set to

row dense. When placing a grid item with no definite position, the cursor's

current position is set to the start-most row and column line in the implicit grid

before the item's position is determined.
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Unlike the previous example, item I is placed to the left of item H because the

cursor position gets reset to the start-most row and column line in the implicit

grid instead of starting from the last item placed. At this point, while looking for

a suitable position to place item I without any overlap, the cursor finds the spot

to the left of item H and places it there.

See the demo Positioning Remaining Items - Dense.

Conclusion

In this tutorial, I went over all the steps followed by the auto-placement

algorithm of the CSS Grid Layout module, controlled by the grid-auto-flow

property.
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Have a go at figuring out the final position of different items in a few other

layouts of your own to get a better understanding of the algorithm.
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5Chapter

How I Built a Pure CSS Crossword Puzzle

by Adrian Roworth

Recently I created a pure CSS crossword puzzle implemented using CSS grid that

does not need JavaScript in order to work. It gained heavy interest pretty quickly

on CodePen. As of this writing, it has more than 350 hearts and 24,000+ page

views!

The great CSS Grid Garden tutorial inspired me to build something with Grid

Layout features. I wondered if these features could be put to good use in building

a crossword puzzle — then I thought, let’s try to create the whole thing without

using JavaScript.
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Building the Board/Grid

So, first thing’s first, let’s create the board itself!

I ended up with the following basic structure, with HTML comments included to

show what the different sections will accomplish:

<div class="crossword-board-container">

<div class="crossword-board">

<!-- input elements go here. Uses CSS Grid as its layout

➥ -->

<div class="crossword-board crossword-board--highlight

➥ crossword-board--highlight--across">
<!-- highlights for valid 'across' answers go here. Uses

➥ CSS Grid as its layout -->
</div>

<div class="crossword-board crossword-board--highlight

➥ crossword-board--highlight-down">
<!-- highlights for valid 'down' answers go here. Uses

➥ CSS Grid as its layout -->
</div>

<div class="crossword-board crossword-board--labels">

<!-- row and column number labels go here. Uses CSS Grid

➥ as its layout -->
</div>

<div class="crossword-clues">

<dl class="crossword-clues__list

➥ crossword-clues__list--across">
<!-- clues for all the 'across' words go here -->

</dl>

<dl class="crossword-clues__list

55 Designing with CSS Grid Layout



➥ crossword-clues__list--down">
<!-- clues for all the 'down' words go here -->

</dl>

</div>

</div>

</div>

That puts our basic skeleton in place so we can add more elements and start

styling things.

Using Form Elements for the Squares

The crossword puzzle I’m creating is a 13x13 grid with 44 blank spaces so I need

to create 125 input elements each with its own ID in the format item{row

number}-{column number}, i.e. item4-12. Here’s what the grid will look like:
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Each of the inputs will get have a minlength and maxlength of “1” to emulate the

behaviour of a crossword puzzle (i.e. one letter per square). Each input will also

have the required attribute so that HTML5 form validation will be used. I take

advantage of all of these HTML5 attributes using CSS.

Using the General Sibling Selector

The input elements are visually laid out in groups (exactly how a crossword

puzzle is). Each group of input elements represents a word in the crossword. If

each of the elements in that group is valid (which can be verified using the
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:valid pseudo selector), then we can use CSS to style an element that appears

later in the DOM (using an advanced CSS selector called the general sibling

selector) that will indicate that the word is correct.

Due to how sibling selectors work, and how CSS works in general, this element

has to appear later in the DOM. CSS can only style elements that are after the

currently selected element. It cannot look backwards in the DOM (or up the DOM

tree) and style something before the current element (at the moment at least

anyway).

This means I can use the :valid pseudo-class to style valid elements:

.input:valid {

border: 2px solid green;

}

.input:invalid {

border: 2px solid red;

}

See the demo Valid Pseudo Selector Example.

To style an element later on in the DOM that is a sibling of another element, I can

use the ~ (tilde/general sibling) selector, e.g. A ~ B. This selector will select all

elements that match B, that are a sibling of A and appear after A in the DOM. For

example:
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#input1:valid ~ #input2:valid ~ #input3:valid ~

➥ #input4:valid ~ #input5:valid ~ .valid-message {
display: block;

}

With this code, if all these input elements are valid, the valid-message element

will be displayed.

See the demo Using Sibling Selector to Display a Message.

The general sibling selector is extremely useful here. To make the crossword

work, I needed to make sure that everything was laid out in a way that allowed

me to take advantage of the general sibling selector.

The finished crossword example is using the above technique, starting at line

285. I’ve separated it out in the code block below:

#item1-1:valid ~ #item1-2:valid ~ #item1-3:valid ~

#item1-4:valid ~ #item1-5:valid ~ #item1-6:valid ~

.crossword-board--highlight

➥ .crossword-board__item-highlight--across-1 {
opacity: 1;
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}

This part of the CSS ensures that if all these input elements are valid, then the

opacity of the .crossword-board__item-highlight--across-1 element will be

changed. .crossword-board--highlight is a sibling of all the input elements,

and .crossword-board__item-highlight--across-1 is a child of

.crossword-board--highlight so it’s selectable with CSS!

Indicating Correct Answers

Each crossword answer (i.e. group of input elements) has a corresponding

“correct answer indicator”

(.crossword-board__item-highlight--across-{{clue number}}) grid item.

These grid items are placed behind the input elements on the z-axis, and are

hidden using opacity: 0. When a correct word is entered, then the correct

answer indicator grid item is displayed by changing the opacity to 1, as the

pseudo-class selector snippet above demonstrates.
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This technique is repeated for each “word” group of input elements. So this

means manually creating each CSS rule for each of the input elements in the

word group and then selecting the corresponding correct answer indicator grid

item. As you can imagine, this makes the CSS get big fast!

So the logical approach would be to create all the CSS rules that show/hide the

correct answer indicator grid items for all the horizontal (across) clue answers.

Then you would do the same for the vertical clue answers.

Challenges of the Grid System

If, like me, you are trying to use as little CSS as possible, you will quickly realise

that you cannot have overlapping grid areas within the same grid system without

having to explicitely declare it. They can only sit next to each other (1 across, and

1 down share a square at the top right of the board and this is not possible when

using one CSS grid to layout all the correct answer indicator items).

The solution is to wrap each horizontal (across) correct answer indicator grid

item in its own grid system, and each vertical (down) correct answer indicator

grid item in another. This way I can still use CSS to select them (using the general

sibling selector), and they will not interfere with each other and ruin the layout of

the grids.

CSS Grid Layout items act similarly to inline-block elements. This basically

means that if you specify two grid items to occupy the same space, then the

second item will flow around the first item and appear after it in the grid.
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See the demo Grid Layout Module Example.

In the above example, the first grid item is seven columns wide and spans from

the first column to the seventh column. The second grid item is meant to start at

the 4th column and span to the 9th column. CSS grid doesn’t like this so it wraps

it to the next row. Even if you specify grid-row: 1/1 in the second item, that

will take priority and then move the first grid item to the second row.

As explained above, I avoided this by having multiple grids for horizontal and

vertical items. This situation can be avoided by specifying the row and column

span for each element, but I used the above method to reduce the amount of CSS,

and also to have a more maintainable HTML structure.
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Checking for Valid Letter Input

Each input element has a pattern attribute with a regular expression as its value.

The regular expression matches an uppercase or lowercase letter for that square:

<input id="item1-1" class="crossword-board__item"

type="text" minlength="1" maxlength="1"

pattern="^[sS]{1}$" required value="">

This was not ideal because the answers are in the HTML. I wanted to hide the

answers in the CSS, but I could not find a way of doing this successfully. I

attempted the following technique:

.input#item1-1[value="s"],

.input#item1-1[value="S"] {

/* do something... */

}

But this won’t work. The attribute selector will select the element based on what

is actually inside the HTML, and doesn’t consider live changes. So I had to resort

to the :valid pseudo-class approach detailed above, and consequently (and

annoyingly) exposing the answers in the HTML itself.

Highlighting the Clues on Hover

All horizontal (across) clues are wrapped in a div, as are the vertical (down)

clues. These wrapping div elements are siblings of the input elements in the

crossword grid. This is demonstrated in the HTML structure listed above in a

previous code block. This makes it easy to select the correct clue(s) depending on

which input element is being focused/hovered.
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For this, each input element needs :active, :focus, and :hover styles to

highlight the relevant clue by applying a background color when the user

interacts with an input element.

#item1-1:active ~ .crossword-clues

➥ .crossword-clues__list-item--across-1,
#item1-1:focus ~ .crossword-clues

➥ .crossword-clues__list-item--across-1,
#item1-1:hover ~ .crossword-clues

➥ .crossword-clues__list-item--across-1 {
background: #ffff74;

}

Numbering the Clues

The numbers for the clues are positioned using a CSS Grid pattern. Here’s an

example of the HTML, abbreviated:

<div class="crossword-board crossword-board--labels">

<span id="label-1" class="crossword-board__item-label

➥ crossword-board__item-label--1">
<span

➥ class="crossword-board__item-label-text">1</span></span>
<span id="label-2" class="crossword-board__item-label

➥ crossword-board__item-label--2">
<span

➥ class="crossword-board__item-label-text">2</span></span>

<!-- rest of the items here..... -->
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</div>

Then the CSS looks something like this:

.crossword-board__item-label--1 {

grid-column: 1/1;

}

.crossword-board__item-label--2 {

grid-column: 4/4;

}

/* etc... more items here... */

Each number is placed at the start position of its related group of input elements

(or word). The number is then made to be the width and height of 1 grid square

so that it takes up as little space as possible within the grid. It could take up even

less room by implementing CSS Grid differently here, but I opted to do it this

way.

The “Check for Valid Squares” Checkbox

At the top of the crossword, you’ll notice a checkbox labelled “Check for valid

squares”. This allows the user to check if certain letters are correct, even if a

given word is wrong.
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Creating this is rather beautiful as it’s one CSS rule that makes all the valid

squares get highlighted. It’s using the checkbox hack to select all valid input

elements that are after the checked checkbox in the DOM.

Here is the code:

#checkvaliditems:checked ~ .crossword-board-container

➥ .crossword-board__item:valid {
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background: #9aff67;

}

Conclusion

That covers all the main techniques used in the demo. As an exercise, this shows

you how far CSS has come in recent years. There are plenty of features we can get

creative with. I for one can’t wait to try and push other new features to the limits!

If you want to mess around with the CSS from this article, I’ve put all the code

examples into a CodePen collection. The full working CSS crossword Puzzle can

be found here.
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