
 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 1 of 26

JMS 2.0: A simplified API
This document proposes how the JMS API 1.1 might be simplified.

Version 1
8th December 2011

Goals
The simplified API has the following goals:

• To reduce the number of objects needed to send and receive messages, and in particular
to combine the JMS 1.1 Connection, Session, MessageProducer and MessageConsumer
objects as much as possible.

• To take advantage of the fact that this is a new API to simplify method signatures and
make other simplifications which cannot be made to the old API because it would break
backwards compatibility.

• To maintain a consistent style with the existing API where possible so that users of the
old API feel it to be an evolution which that can learn quickly.

• To support, and offer benefits to, both Java EE and Java SE applications.

• To allow resource injection to be exploited in those environment which support it,
whilst still offering significant improvements for those environments which do not.

• To provide the option to send and receive message payloads to be sent and received
directly without the need to use javax.jms.Message objects.

• To remove as much as possible the need to catch JMSException on method calls

• To be functionally complete. The old API will remain to provide backwards
compatibility. However the new API is intended to be functionally as complete as the old
JMS 1.1 API. Users should not need to switch back to the old API to perform an operation
that is unavailable in the new API.

Key features of the new API

Introducing MessagingContext

The main object in the new API is javax.jms.MessagingContext. This combines the
functionality of several JMS 1.1 objects into one: a Connection, a Session and an anonymous
MessageProducer (one with no destination specified). It also combines the functionality of
MessageConsumer, but only for aynchronous message delivery.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 2 of 26

For synchronous delivery a separate object is still needed. This is SyncMessageConsumer
which provides the functionality of MessageConsumer for synchronous message delivery.

In terms of the old API a MessagingContext should be thought of as representing both a
Connection and a Session. These concepts remain relevant in the new API. As described in
JMS 1.1, a connection represents a physical link to the JMS server, and a session represents a
single-threaded context for sending and receiving messages.

Java EE allows only one session to be created on each connection, so combining them in a single
method takes advantage of this restriction to offer a simpler API. Java EE applications will
create MessagingContext objects using new factory methods on the ConnectionFactory
interface.

Java SE applications allow multiple sessions on the same connection. This allows the same
physical connection to be used in multiple threads simultaneously. Java SE applications which
require multiple sessions to be created on the same connection will be permitted to create
connections as they do now and then create MessagingContext objects using new factory
methods on the Connection interface. Java SE applications for which one session per
connection is adequate may also use the new factory methods on the ConnectionFactory
interface.

Sending messages

A MessagingContext works like an anonymous message producer (one with no destination
specified) and offers send methods which allow a message to be delivered to the specified
destination:

MessagingContext context = connectionFactory.createMessagingContext();
TextMesage textMessage = context.createTextMessage(payload);
context.send(inboundQueue,payload);

Complete examples of using the new API in both Java EE and Java SE applications are given in
the "Examples" section below.

Consuming messages

Applications that consume messages asynchronously no longer need to create a
MessageConsumer. Instead MessagingContext offers methods to allow a
MessageListener to be set for a specified destination.

MessagingContext context =
 connectionFactory.createMessagingContext(AUTO_ACKNOWLEDGE);
MessageListener messageListener = new MyListener();
context.setMessageListener(inboundQueue,messageListener);

Applications that consume messages synchronously will continue to need to create a separate
consumer object. A new object SyncMessageConsumer is like a stripped-down
MessageConsumer for synchronous delivery only.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 3 of 26

MessagingContext context = connectionFactory.createMessagingContext();
SyncMessageConsumer syncMessageConsumer =
context.createSyncConsumer(inboundQueue);
TextMessage textMessage = (TextMessage)syncMessageConsumer.receivePayload();

The reason that SyncMessageConsumer needs to be a separate object rather than be
combined with MessagingContext is to allow JMS providers to pre-cache messages in the
consumer when it is first created and before the first call to receive(). Although this might
be thought of as a implementation detail, many JMS providers currently do this and providing
receive() methods directly on the MessagingContext would prevent it.

New methods to allow a payload to be sent directly

Two new methods have been added to MessagingContext which allow a TextMessage or
ObjectMessage to be sent by supplying the payload directly.

void send(Destination destination, String payload) throws JMSException;

void send(Destination destination, Serializable payload) throws JMSException;

The current proposal is to support TextMessage and ObjectMessage only, but it may be
possible to extend this to other message types. It may also be possible to allow conversion code
to be configured by the application.

New methods to allow a payload to be received directly

Three new methods have been added to the new interface SyncMessageConsumer which
allow a message payload to be returned directly

<T> T receivePayload(Class<T> c);

<T> T receivePayload(Class<T> c, long timeout);

<T> T receivePayloadNoWait(Class<T> c);

If the next message is a TextMessage when this should be set to String.class. If the next
message is a ObjectMessage this should be set to Serializable.class. If the next
message is not of the expected type a ClassCastException will be thrown and the message
will not be delivered..

The current proposal is to support TextMessage and ObjectMessage only, but it may be
possible to extend this to other message types. It may also be possible to allow conversion code
to be configured by the application.

Closing the MessagingContext

A MessagingContext needs to be closed after use using the close() method.
MessagingContext will implement java.lang.AutoCloseable to make this simpler.

In the following example close() is automatically called when the try block is completed:

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 4 of 26

try (MessagingContext context = connectionFactory.createMessagingContext();){
 context.send(inboundQueue,payload);
}

If the MessagingContext was created directly from a ConnectionFactory then calling
close() will close both the underlying session and the underlying connection. If the
MessagingContext was created from a Connection object then calling close() will close
only the session. The application will need to close the connection explicitly.

No need to call connection.start()

Developers new to JMS often fail to call connection.start() and are surprised when they
don't receive any messages. The JMS 1.1 specification explains that this method is needed to
allow a client to be fully initialized before the delivery of messages to an asynchronous
MessageListener is started:

Section 4.3.3 "Connection Setup" of the JMS 1.1 specification states "It is typical to leave
the Connection in stopped mode until setup is complete. At that point the Connection’s
start() method is called and messages begin arriving at the Connection’s consumers.
This setup convention minimizes any client confusion that may result from
asynchronous message delivery while the client is still in the process of setting itself
up.

A Connection can be started immediately and the setup can be done afterwards. Clients
that do this must be prepared to handle asynchronous message delivery while they are
still in the process of setting up.

Section 9.1.7, which describes how to synchronously receive messages, explains that
connection.start() is needed "so that the… setup could be done without being
interrupted with asynchronously delivered messages."

This makes it clear that although the JMS 1.1 specification requires connection.start() to
be called to begin both synchronous and asynchronous delivery, this requirement was added to
address an issue which only applies for asynchronous consumers. There is definitely no need
for such a requirement when message delivery is synchronous.

Furthermore, the need to call connection.start() is unnecessary for asynchronous
delivery as well. The specification could have stated that asynchronous message delivery would
begin as soon as the client has called the setMessageListener() method. The application
would then be expected to ensure that the supplied MessageListener object was fully
initialized before the call to setMessageListener() was performed.

The new API will automatically start the underlying connection (if it has not already been
started) when either setMessageListener or createSyncMessageConsumer are called
on the MessageContext object.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 5 of 26

There will be stop() and start() methods on the MessagingContext which can be used
to suspend and resume delivery of message.. However there will be no need to call start()
when the consumer is first established.

Static constants for session type

New static integer constants have been defined for use with the new API.

MessagingContext.AUTO_ACKNOWLEDGE,
MessagingContext. CLIENT_ACKNOWLEDGE,
MessagingContext.DUPS_OK_ACKNOWLEDGE and
MessagingContext. SESSION_TRANSACTED

These have the same values, and the same meaning, as the equivalent constants on Session.
This avoids applications using the new API needing to be dependent on the Session interface.

A deliberate decision was made to use integer constants rather than enums to maintain
consistency (and interchangeability) with the equivalent constants on Session.

Fewer Checked Exceptions

The new API does not throw checked exceptions such as JMSException. Instead, equivalent
unchecked exceptions are thrown instead.

Most methods in the existing JMS 1.1 API were declared to throw checked exceptions (especially
JMSException) even though the circumstances that might cause such an exception were not
defined. Typically the javadoc would state that an exception was thrown in the event of some
"internal error" or because an input value was invalid in some unspecified way. In most cases
the application could not recover from such an exception: all it could do was to log the exception
and rethrow it. In such cases it is considered good practice to throw an unchecked exception
rather than a checked exception.

Although there may be a few special cases where an exception was recoverable, this API has
been designed to throw no checked exceptions at all. This is consistent with modern Java EE
APIs such as the javax.persistence API which never throws checked exceptions.

The new unchecked exceptions, and the checked exceptions to which they correspond (and
which still remain in the old API) are listed below:

Old checked exception Corresponding new unchecked exception

JMSException (checked exception) JMSRuntimeException (unchecked
exception)

TransactionRolledBackException TransactionRolledBackRuntimeException

IllegalStateException IllegalStateRuntimeException

InvalidDestinationException InvalidDestinationRuntimeException

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 6 of 26

InvalidSelectorException InvalidSelectorRuntimeException

MessageFormatException MessageFormatRuntimeException

JMSSecurityException JMSSecurityRuntimeException

InvalidClientIDException InvalidClientIDRuntimeException

The javadocs for the new API list the unchecked exceptions which are expected to be thrown.
These exceptions do not form part of the contract of these methods.

The old API continues to throw the same exceptions as before. This is to maintain backwards
compatibility. Note that since applications using the new API may still need to use methods from
the old API (especially methods on javax.jms.Message and its subtypes) the need to handle
checked exceptions has not been eliminated entirely.

What state does a MessagingContext hold?

A MessagingContext holds the following state:

• A Connection. This can be created when the MessagingContext is created (Java EE
or Java SE), or it can be created separately and passed in when the MessagingContext is
created (Java SE only).

• A Session, including its sessionMode attribute which is passed in when the
MessagingContext is created and cannot be changed.

• An anonymous MessageProducer, including its deliveryMode, priority and
timeToLive attributes which are set using setter methods. These attribute may be
overridden when a message is sent.

• Zero or more MessageConsumer objects used for asynchronous message delivery

A MessagingContext does not hold a destination object as state. When an API method needs
a destination this is always passed in as an argument.

A MessagingContext is a factory for (but does not hold as state)

• SyncMessageConsumer objects

• Message objects

Unchanged interfaces
In addition to the modified ConnectionFactory and Connection objects, and the new
MessagingContext and SyncMessageConsumer objects, the new API uses the following
interfaces in the javax.jms package which are unchanged from JMS 1.1:

• Message (and its subtypes BytesMessage, StreamMessage, MapMessage,
TextMessage and ObjectMessage)

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 7 of 26

• Destination, Queue, Topic, TemporaryQueue, TemporaryTopic,
DeliveryMode

• ExceptionListener, MessageListener

• QueueBrowser

The above interfaces will continue to throw checked exceptions from the old API:

• JMSException (and its subtypes IllegalStateException,
InvalidClientIDException, InvalidDestinationException,
InvalidPropertyException, InvalidSelectorException,
JMSSecurityException, MessageEOFException, MessageFormatException,
MessageNotReadableException, MessageNotWriteableException,
ReadOnlyPropertyException, ResourceAllocationException,
TransactionInProgressException, TransactionRollbackException).

The new API does not throw these exceptions but will throw equivalent unchecked exceptions
instead.

Other issues

The old API will remain, for ever

The new API described in this document will be additional to the existing API, which will remain
a mandatory part of JMS 2.0. There is no intention to remove the existing API from future
versions of JMS.

Relationship to Java Connector API

The new API should remove the need for Java EE applications to explicitly create Connection
objects, though they will still be able to do so if needed.

It is not expected that Java EE containers will need to manage pools of MessagingContext
objects separately from pools of Connection objects. Instead the MessagingContext
objects should be thought of as lightweight wrappers around an existing Connection which
continues to be pooled as now.

No additional API is needed to supported integration with application servers or resource
adapters.

Injection of MessagingContext objects

This document does not describe how to use CDI to inject MessagingContext objects. One of
the goals of this new API is to provide a simplified API to all applications, including those which
are not using CDI or where a CDI environment is not available.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 8 of 26

However it is intended that the simpler API, and in particular the reduced number of objects
that it requires, should make it possible to use CDI to simplify the API still further. A future
revision of this document may address this topic.

Examples

Sending a message (Java EE)
This example compares the old and new API for sending a TextMessage in a Java EE (EJB or
web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

@Resource(lookup = "jms/ connectionFactory ")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public void sendMessageOld(String payload) throws JMSException{

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(inboundQueue);
 TextMessage textMessage = session.createTextMessage(payload);
 messageProducer.send(textMessage);
 connection.close();
}

Here’s how you might do this using the new API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;

public void sendMessageNew(String payload) {

 try (MessagingContext context = connectionFactory.createMessagingContext();){
 context.send(inboundQueue,payload);
 }
}

Note that sendMessageNew does not need to throw JMSException.

Sending a message (Java SE)
This example compares the old and new API for sending a TextMessage in a Java SE
environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 9 of 26

public void sendMessageOld(String payload) throws JMSException, NamingException{

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(inboundQueue);
 TextMessage textMessage = session.createTextMessage(payload);
 messageProducer.send(textMessage);
 connection.close();
}

Here’s how you might do this using the new API.

public void sendMessageNew(String payload) throws NamingException{

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory = (ConnectionFactory)
 initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 try (MessagingContext context = connectionFactory.createMessagingContext();){
 context.send(inboundQueue,payload);
 }
}

Note that receiveMessagesNew does not need to throw JMSException.

Receiving a message synchronously (Java EE)
This example compares the old and new API for synchronously receiving a TextMessage in a
Java EE (EJB or web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 10 of 26

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public String receiveMessageOld() throws JMSException {

 Connection connection = connectionFactory.createConnection();
 connection.start();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer = session.createConsumer(inboundQueue);
 TextMessage textMessage=(TextMessage) messageConsumer.receive();
 String payload = textMessage.getText();
 connection.close();
 return payload;
}

Here’s how you might do this using the new API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;

public String receiveMessageNew(){

 String payload = null;
 try (MessagingContext context = connectionFactory.createMessagingContext();) {
 SyncMessageConsumer syncMessageConsumer =
 context.createSyncConsumer(inboundQueue);
 payload = syncMessageConsumer.receivePayload(String.class);
 }
 return payload;
}

Note that receiveMessageNew does not need to throw JMSException.

Receiving a message synchronously (Java SE)
This example compares the old and new API for synchronously receiving a TextMessage in a
Java SE environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 11 of 26

public String receiveMessageOld() throws JMSException, NamingException {
 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer = session.createConsumer(inboundQueue);
 connection.start();
 TextMessage textMessage=(TextMessage) messageConsumer.receive();
 String payload = textMessage.getText();
 connection.close();
 return payload;
}

Here’s how you might do this using the new API.

@Resource(lookup = "jms/connectionFactoryWithClientID")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundTopic")
Topic inboundTopic;

public String receiveMessageNew() throws NamingException {

 String payload = null;

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory = (ConnectionFactory)
 initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 try (MessagingContext messagingContext =
 connectionFactory.createMessagingContext(AUTO_ACKNOWLEDGE);) {
 SyncMessageConsumer syncMessageConsumer =
 messagingContext.createSyncConsumer(inboundQueue);
 payload = syncMessageConsumer.receivePayload(String.class);
 }
 return payload;
}

Note that receiveMessageNew does not need to throw JMSException.

Receiving a message synchronously from a durable
subscription (Java EE)
This example compares the old and new API for synchronously receiving a TextMessage from
a durable topic subscription in a Java EE (EJB or web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 12 of 26

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;

public String receiveMessageOld() throws JMSException {

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer = session.createDurableSubscriber(
 inboundTopic, "mysub");
 connection.start();
 TextMessage textMessage=(TextMessage) messageConsumer.receive();
 String payload = textMessage.getText();
 connection.close();
 return payload;
}

Here’s how you might do this using the new API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/inboundQueue")
Queue inboundQueue;

public String receiveMessageNew() {

 String payload = null;
 try (MessagingContext context = connectionFactory.createMessagingContext();){
 SyncMessageConsumer syncMessageConsumer =
 context.createSyncDurableSubscriber(inboundTopic, "mysub");
 payload = syncMessageConsumer.receivePayload(String.class);
 }
 return payload;
}

Note that receiveMessageNew does not need to throw an exception.

Receiving messages asynchronously (Java SE)
This example compares the old and new API for asynchronously receiving TextMessage
objects in a Java SE environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 13 of 26

public void receiveMessagesOld() throws JMSException, NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = session.createConsumer(inboundQueue);
 MessageListener messageListener = new MyListener();
 consumer.setMessageListener(messageListener);
 connection.start();

 // wait for messages to be received
 // details omitted

 connection.close();
}

Here’s how you might do this using the new API.

public void receiveMessagesNew() throws NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 try (MessagingContext context =
 connectionFactory.createMessagingContext(AUTO_ACKNOWLEDGE);){
 MessageListener messageListener = new MyListener();
 context.setMessageListener(inboundQueue,messageListener);

 // wait for messages to be received - details omitted
 }
}

Note that receiveMessagesNew does not need to throw JMSException.

Receiving a message asynchronously from a durable
subscription (Java SE)
This example compares the old and new API for asynchronously receiving a TextMessage
from a durable topic subscription in a Java EE (EJB or web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 14 of 26

public void receiveMessagesOld() throws JMSException, NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Topic inboundTopic = (Topic) initialContext.lookup("jms/inboundTopic");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 session.createDurableSubscriber(inboundTopic, "");
 TopicSubscriber topicSubscriber =
 session.createDurableSubscriber(inboundTopic, "mysub");
 MessageListener messageListener = new MyListener();
 topicSubscriber.setMessageListener(messageListener);

 connection.start();

 // wait for messages to be received - details omitted
 connection.close();
}

Here’s how you might do this using the new API.

public void receiveMessagesNew() throws NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Topic inboundTopic = (Topic) initialContext.lookup("jms/inboundTopic");

 try (MessagingContext context =
 connectionFactory.createMessagingContext(AUTO_ACKNOWLEDGE);){
 MessageListener messageListener = new MyListener();
 context.setMessageListener(inboundTopic, "mysub", messageListener);

 // wait for messages to be received - details omitted
 }
}

Note that receiveMessagesNew does not need to throw JMSException.

Receiving a message in multiple threads (Java SE)
This example compares the old and new API for asynchronously receiving TextMessage
objects from a queue using multiple threads in a Java SE environment. In this example two
threads are used, which means two sessions are needed. In this example, both sessions use the
same connection.

Here’s how you might do this using the existing JMS 1.1 API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 15 of 26

public void receiveMessagesOld() throws JMSException, NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 Connection connection = connectionFactory.createConnection();

 Session s1 = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer1 = s1.createConsumer(inboundQueue);
 MyListener messageListener1 = new MyListener("One");
 messageConsumer1.setMessageListener(messageListener1);

 Session s2 = connection.createSession(false,AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer2 = s2.createConsumer(inboundQueue);
 MyListener messageListener2 = new MyListener("One");
 messageConsumer2.setMessageListener(messageListener2);
 connection.start();

 // wait for messages to be received - details omitted

 connection.close();
}

Here’s how you might do this using the new API:

public void receiveMessagesNew() throws JMSException, NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");

 Connection connection = connectionFactory.createConnection();
 try (MessagingContext context1 =
 connection.createMessagingContext(AUTO_ACKNOWLEDGE);
 MessagingContext context2 =
 connection.createMessagingContext(AUTO_ACKNOWLEDGE);){
 MyListener messageListener1 = new MyListener("One");
 context1.setMessageListener(inboundQueue,messageListener1);
 context1.start();

 MyListener messageListener2 = new MyListener("Two");
 context2.setMessageListener(inboundQueue,messageListener2);
 context2.start();

 // wait for messages to be received - details omitted

 }
 connection.close();
}

Note that receiveMessagesNew continue to throw JMSException because it uses
connectionFactory.createConnection() and connection.close()from the old
API which continue to throw JMSException.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 16 of 26

Receiving synchronously and sending a message in the same
local transaction (Java SE)
This example considers the use case in which a Java SE application repeatedly consumes a
message from one queue and forwards it to another queue. Each message is received and
forwarded in the same local transaction. This means that the receiving and sending of the
message must be done using the same transacted Session which is then committed.

In this example the application consumes the incoming messages synchronously. However since
this is Java SE the message could also be consumed asynchronously using a
MessageListener.

Here’s how you might do this using the existing JMS 1.1 API.

public void receiveAndSendMessageOld() throws JMSException, NamingException {
 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");
 Queue outboundQueue = (Queue) initialContext.lookup("jms/outboundQueue");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true,SESSION_TRANSACTED);
 MessageConsumer messageConsumer = session.createConsumer(inboundQueue);
 MessageProducer messageProducer = session.createProducer(outboundQueue);
 connection.start();

 TextMessage textMessage = null;
 do {
 textMessage = (TextMessage) messageConsumer.receive(1000);
 if (textMessage!=null){
 messageProducer.send(textMessage);
 session.commit();
 }
 } while (textMessage!=null);
 connection.close();
}

Here’s how the same example might look when using the new API:

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 17 of 26

public void receiveAndSendMessageNew() throws NamingException {

 InitialContext initialContext = getInitialContext();
 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");
 Queue outboundQueue = (Queue) initialContext.lookup("jms/outboundQueue");

 try (MessagingContext context =
 connectionFactory.createMessagingContext(SESSION_TRANSACTED);){
 SyncMessageConsumer syncMessageConsumer =
 context.createSyncConsumer(inboundQueue);
 TextMessage textMessage = null;
 do {
 textMessage = (TextMessage) syncMessageConsumer.receive(1000);
 if (textMessage != null) {
 context.send(outboundQueue, textMessage);
 context.commit();
 }
 } while (textMessage != null);
 }
}

Note that receiveAndSendMessageNew does not need to throw JMSException.

Request/reply pattern using a TemporaryQueue (Java EE)
This example considers how a request/reply pattern might be implemented in Java EE, using
the existing and new JMS APIs. In the code below, a method in a session bean (the requestor)
sends a request message to some queue (the request queue). The setJMSReplyTo property of
the request message is set to a TemporaryQueue, to which the reply should be set. After sending
the request, the session bean listens on the temporary queue until it receives the reply.

Since the request message won’t actually be sent until the transaction is committed, the request
message is sent in a separate transaction from that used to receive the reply.

Here’s how you might implement the requestor this using the existing JMS 1.1 API.

When implementing this pattern, the following features of JMS must be borne in mind:

• The same Connection object that was used to create the TemporaryQueue must also
be used to consume the response message from it. (This is a restriction of temporary
queues).

• If the request message is sent in a transaction then the response message must be
consumed in a separate transaction. That’s why the message is sent in a separate
business which has the transactional attribute REQUIRES_NEW.

The details of the responder are omitted here. Typically this will be a MDB which receives the
request message, extracts the TemporaryQueue from the setJMSReplyTo property and sends
the response to it.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 18 of 26

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/requestQueue")
Queue requestQueue;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public String requestReplyOld(String request) throws JMSException {

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 TemporaryQueue temporaryReplyQueue = session.createTemporaryQueue();

 // send request in a separate transaction
 sendRequestOld(request,temporaryReplyQueue);

 // now receive the reply,
 // using the same connection as was used to create the temporary reply queue
 SyncMessageConsumer syncMessageConsumer =
 session.createSyncConsumer(temporaryReplyQueue);
 connection.start();
 TextMessage reply = (TextMessage) syncMessageConsumer.receive();
 String replyString=reply.getText();
 connection.close();
 return replyString;
}

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void sendRequestOld(
 String requestString, TemporaryQueue temporaryReplyQueue)
 throws JMSException {

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,AUTO_ACKNOWLEDGE);
 TextMessage requestMessage = session.createTextMessage(requestString);
 requestMessage.setJMSReplyTo(temporaryReplyQueue);
 MessageProducer messageProducer = session.createProducer(requestQueue);
 messageProducer.send(requestMessage);
 connection.close();
}

Here’s how the same example might look when using the new API.

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 19 of 26

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@Resource(lookup="jms/requestQueue")
Queue requestQueue;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public String requestReplyNew(String request) throws JMSException {

 String replyString = null;
 try (MessagingContext context = connectionFactory.createMessagingContext();) {
 TemporaryQueue temporaryReplyQueue = context.createTemporaryQueue();

 // send request in a separate transaction
 sendRequestNew(request, temporaryReplyQueue);

 // now receive the reply, using the same connection as was used
 // to create the temporary reply queue
 SyncMessageConsumer syncMessageConsumer =
 context.createSyncConsumer(temporaryReplyQueue);
 replyString = syncMessageConsumer.receivePayload(String.class);
 }
 return replyString;
}

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void sendRequestNew(
 requestString, TemporaryQueue temporaryReplyQueue)
 throws JMSException {

 try (MessagingContext context = connectionFactory.createMessagingContext();) {
 TextMessage requestMessage = context.createTextMessage(requestString);
 requestMessage.setJMSReplyTo(temporaryReplyQueue);
 context.send(requestQueue, requestMessage);
 }
}

Note that requestReplyNew and sendRequestNew continue to throw JMSException
because sendRequestNew uses requestMessage.setJMSReplyTo()from the old API which
continue to throw JMSException.

The simplified API in detail

javax.jms.MessagingContext (new)
Methods on MessagingContext Details

All methods have been copied
from Connection except for:

• Creating a Session

Methods copied from Connection:

String getClientID() throws JMSException;

void setClientID(String clientID) throws
JMSException;

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 20 of 26

Methods on MessagingContext Details

• Chapter 8 interfaces ConnectionMetaData getMetaData() throws
JMSException;

ExceptionListener getExceptionListener() throws
JMSException;

void setExceptionListener(ExceptionListener
listener) throws JMSException;

void start() throws JMSException;

void stop() throws JMSException;

void close() throws JMSException;

Methods NOT copied from Connection:

Session createSession(boolean transacted, int
acknowledgeMode) throws JMSException;

ConnectionConsumer
createConnectionConsumer(Destination destination,
String messageSelector, ServerSessionPool
sessionPool, int maxMessages) throws JMSException;

ConnectionConsumer
createDurableConnectionConsumer(Topic topic, String
subscriptionName, String messageSelector,
ServerSessionPool sessionPool, int maxMessages)
throws JMSException;

All methods have been copied
from Session except for:

• Creating a MessageProducer

• Chapter 8 interfaces

The createConsumer methods
which return a
MessageConsumer have been
renamed createSyncConsumer
and return a
SyncMessageConsumer

The two
createDurableSubscriber
methods have been renamed
createSyncDurableSubscriber
and return a
SyncMessageConsumer

The method

Methods copied from Session:

static final int AUTO_ACKNOWLEDGE = 1;
static final int CLIENT_ACKNOWLEDGE = 2;
static final int DUPS_OK_ACKNOWLEDGE = 3;
static final int SESSION_TRANSACTED = 0;

BytesMessage createBytesMessage() throws
JMSException;

MapMessage createMapMessage() throws JMSException;

Message createMessage() throws JMSException;

ObjectMessage createObjectMessage() throws
JMSException;

ObjectMessage createObjectMessage(Serializable
object) throws JMSException;

StreamMessage createStreamMessage() throws
JMSException;

TextMessage createTextMessage() throws
JMSException;

TextMessage createTextMessage(String text) throws

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 21 of 26

Methods on MessagingContext Details

getAcknowledgeMode() has
been renamed
getSessionMode()

JMSException;

boolean getTransacted() throws JMSException;

int getAcknowledgeMode() throws JMSException;

void commit() throws JMSException;

void rollback() throws JMSException;

void recover() throws JMSException;

MessageConsumer createConsumer(Destination
destination) throws JMSException;

SyncMessageConsumer createConsumer(Destination
destination, java.lang.String messageSelector)
throws JMSException;

SyncMessageConsumer createConsumer(Destination
destination, java.lang.String messageSelector,
boolean NoLocal) throws JMSException;

Queue createQueue(String queueName) throws
JMSException;

Topic createTopic(String topicName) throws
JMSException;

TopicSubscriber createDurableSubscriber(Topic
topic, String name) throws JMSException;

TopicSubscriber createDurableSubscriber(Topic
topic, String name, String messageSelector,
boolean noLocal) throws JMSException;

QueueBrowser createBrowser(Queue queue) throws
JMSException;

QueueBrowser createBrowser(Queue queue, String
messageSelector) throws JMSException;

TemporaryQueue createTemporaryQueue() throws
JMSException;

TemporaryTopic createTemporaryTopic() throws
JMSException;

void unsubscribe(String name) throws JMSException;

Methods NOT copied from Session:

MessageListener getMessageListener() throws
JMSException;

void setMessageListener(MessageListener listener)
throws JMSException;

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 22 of 26

Methods on MessagingContext Details

public void run();

MessageProducer createProducer(Destination
destination) throws JMSException;

All methods have been copied
from MessageProducer except
those which assume a
destination to have been set
when the producer was created.

Methods copied from MessageProducer:

void setDisableMessageID(boolean value) throws
JMSException;

boolean getDisableMessageID() throws JMSException;

void setDisableMessageTimestamp(boolean value)
throws JMSException;

boolean getDisableMessageTimestamp() throws
JMSException;

void setDeliveryMode(int deliveryMode) throws
JMSException;

int getDeliveryMode() throws JMSException;

void setPriority(int defaultPriority) throws
JMSException;

int getPriority() throws JMSException;

void setTimeToLive(long timeToLive) throws
JMSException;

long getTimeToLive() throws JMSException;

void send(Destination destination, Message message)
throws JMSException;

void send(Destination destination, Message message,
int deliveryMode, int priority, long timeToLive)
throws JMSException;

Methods NOT copied from MessageProducer:

Destination getDestination() throws JMSException;

void send(Message message) throws JMSException;

void send(Message message, int deliveryMode, int
priority, long timeToLive) throws JMSException;

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 23 of 26

Methods on MessagingContext Details

Three new methods have been
added for consuming messages
asynchronously. They are based
on the three methods on
Session for creating a
MessageConsumer, with an
additional argument, the
MessageListener.

void setMessageListener(Destination destination,
MessageListener listener) throws JMSException;

void setMessageListener(Destination destination,
String messageSelector, MessageListener listener)
throws JMSException;

void setMessageListener(Destination destination,
String messageSelector, boolean NoLocal,
MessageListener listener) throws JMSException;

Two new methods have been
added for consuming messages
asynchronously from a durable
subscription. They are based on
the two methods on Session
for creating a durable
TopicSubscriber, with an
additional argument, the
MessageListener.

void setMessageListener (Topic topic, String
subscriptionName, MessageListener listener) throws
JMSException;

void setMessageListener (Topic topic, String
subscriptionName, String messageSelector, boolean
noLocal, MessageListener listener) throws
JMSException;

Two new methods have been
added which allow a
TextMessage or ObjectMessage
to be sent by supplying the
payload directly.

void send(Destination destination, String payload)
throws JMSException;

void send(Destination destination, Serializable
payload) throws JMSException;

Infelicities to review

• If you simply want to create a durable subscriber, but not actually consume messages
from it, you now need to call createSyncDurableSubscriber, even if you intend to
use async consumption in the future (previously you just called
createDurableSubscription). This works but the method name is confusing
when used for this purpose rather than to start sync consumption. Perhaps we need a
void createDurableSubscription(…) method?

javax.jms.ConnectionFactory (modified)
Methods on ConnectionFactory Details

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 24 of 26

Methods on ConnectionFactory Details

Four new methods have been added which
create MessagingContext objects.

These are for use in Java EE applications and
also for Java SE applications when the
application developer wishes to create only
one messaging context (i.e. session) on a
connection.

Four new methods have been added which
create MessagingContext objects.

These are for use in Java EE applications and
also for Java SE applications when the
application developer wishes to create only
one messaging context (i.e. session) on a
connection.

MessagingContext
createMessagingContext() throws
JMSException;

MessagingContext
createMessagingContext(String userName,
String password) throws JMSException;

MessagingContext
createMessagingContext(String userName,
String password, int sessionMode) throws
JMSException;

MessagingContext
createMessagingContext(int sessionMode)
throws JMSException;

javax.jms.Connection (modified)
Methods on Connection Details

A new method has been added
which creates a
MessagingContext object.

This is for use in Java SE
applications when the application
developer wishes to create
multiple messaging contexts (i.e.
sessions) on a connection. It is not
needed in Java EE applications
though it may be used so long as
only one messaging context
(session) is created in a
connection.

MessagingContext createMessagingContext(int
sessionMode) throws JMSException;

javax.jms.SyncConsumer (new)
Methods on SyncConsumer Details

All methods have been copied
from

Methods copied from MessageConsumer:

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 25 of 26

Methods on SyncConsumer Details

javax.jms.MessageConsumer
except for those related
specifically to async message
consumption:

String getMessageSelector() throws JMSException;

Message receive() throws JMSException;

Message receive(long timeout) throws JMSException;

Message receiveNoWait() throws JMSException;

void close() throws JMSException;

Messages NOT copied from MessageConsumer:

void setMessageListener(MessageListener listener)
throws JMSException;

MessageListener getMessageListener() throws
JMSException;

Three new methods have been
added which allow a message
payload to be returned directly.

<T> T receivePayload(Class<T> c);

<T> T receivePayload(Class<T> c, long timeout);

<T> T receivePayloadNoWait(Class<T> c);

javax.jms.RuntimeException
This class is a copy of javax.jms.JMSException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.JMSException .

javax.jms.TransactionRolledBackRuntimeException
This class is a copy of javax.jms.TransactionRolledBackException but changed to
extend java.lang.RuntimeException and with an additional constructor which allows it
to wrap a javax.jms.TransactionRolledBackException.

javax.jms.IllegalStateRuntimeException
This class is a copy of javax.jms.IllegalStateException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.IllegalStateException.

javax.jms.InvalidDestinationRuntimeException
This class is a copy of javax.jms.InvalidDestinationException but changed to
extend java.lang.RuntimeException and with an additional constructor which allows it
to wrap a javax.jms.InvalidDestinationException.

javax.jms.InvalidSelectorRuntimeException

 JMS 2.0 - A simplified API – Version 1 - Dec 8 2011 Page 26 of 26

This class is a copy of javax.jms.InvalidSelectorException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.InvalidSelectorException

javax.jms.MessageFormatRuntimeException
This class is a copy of javax.jms.MessageFormatException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.MessageFormatException.

javax.jms.JMSSecurityRuntimeException
This class is a copy of javax.jms.JMSSecurityException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.JMSSecurityException .

javax.jms.InvalidClientException
This class is a copy of javax.jms.JMSSecurityException but changed to extend
java.lang.RuntimeException and with an additional constructor which allows it to wrap
a javax.jms.JMSSecurityException .

	JMS 2.0: A simplified API
	Goals
	Key features of the new API
	Introducing MessagingContext
	Sending messages
	Consuming messages
	New methods to allow a payload to be sent directly
	New methods to allow a payload to be received directly
	Closing the MessagingContext
	No need to call connection.start()
	Static constants for session type
	Fewer Checked Exceptions
	What state does a MessagingContext hold?

	Unchanged interfaces
	Other issues
	The old API will remain, for ever
	Relationship to Java Connector API
	Injection of MessagingContext objects

	Examples
	Sending a message (Java EE)
	Sending a message (Java SE)
	Receiving a message synchronously (Java EE)
	Receiving a message synchronously (Java SE)
	Receiving a message synchronously from a durable subscription (Java EE)
	Receiving messages asynchronously (Java SE)
	Receiving a message asynchronously from a durable subscription (Java SE)
	Receiving a message in multiple threads (Java SE)
	Receiving synchronously and sending a message in the same local transaction (Java SE)
	Request/reply pattern using a TemporaryQueue (Java EE)

	The simplified API in detail
	javax.jms.MessagingContext (new)
	Infelicities to review

	javax.jms.ConnectionFactory (modified)
	javax.jms.Connection (modified)
	javax.jms.SyncConsumer (new)
	javax.jms.RuntimeException
	javax.jms.TransactionRolledBackRuntimeException
	javax.jms.IllegalStateRuntimeException
	javax.jms.InvalidDestinationRuntimeException
	javax.jms.InvalidSelectorRuntimeException
	javax.jms.MessageFormatRuntimeException
	javax.jms.JMSSecurityRuntimeException
	javax.jms.InvalidClientException

