Application Servers
G22.3033-011

Session S - Sub-Topic 1
Java Naming and Directory Interface (JNDI)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department
Courant Institute of Mathematical Sciences

Agenda

» Naming and directory services
« JNDI

naming

directory

service provider interface

*cQ&A

Naming & Directory Services

* Naming services map names (people-
friendly)
to addresses or objects (machine-friendly)
e.g: www.sun.com => 192.9.48.5

 Directory services add attributes and
attribute-based searching
e.g. find the two-sided printers in my hotel

Wide Range of Scale

* (Global
DNS, X.500

* Enterprise
NIS, NIS+, LDAP, NDS, Active Directory

» Applications and services
spreadsheet, calendars, file system, ...

Usage Examples

* Locating network resources
printers, databases,
Enterprise JavaBeans™ components

* Enterprise-wide namespace
share file systems and other network
services

» Security

Usage Examples (cont.)

 Accessing attributes of people and resources
e-mail, calendars, find nearby color printers

 Support for distributed computing
RMI registry, CORBA object references

What Is JNDI?

A naming and directory interface for
Java applications

Enables access to existing and emerging
naming and directory services

Java language-centric design

JNDI Architecture

Java Application

JNDI API

Naming Manager

JNDI SPI

LDAP, DNS, NIS, NDS, RMI, CORBA
(JNDI Implementation Possibilities)

Naming Interface

» Names are relative
Context
Binding

 Operations include:
lookup

Example: Lookup
e Printer p = (Printer)
ctx.lookup ("speedy") ;
p.print (instream) ;

» Application gets back the object directly

» Naming service implementation(s) are
hidden from application

Example: Bind
e Calendar c;

ctx.bind("alice/cal", c);
» Naming service determines types of objects

* References maximize object portability

Example: Browsing

* void traverse (Context ctx) {
NamingEnumeration bindings =
ctx.listBindings("");
while (bindings.hasMore()) {

Binding binding = (Binding)
bindings.next () ;
Object o = binding.getObject()

// Do something with object...

if (o instanceof Context)
traverse ((Context)o) ;}

Initial Context

Starting point for name resolution

May contain a variety of bindings to
useful and shared contexts

Contents dynamically configurable

Context ictx =
new InitialContext (environment) ;

URLSs as Names

URLSs may be used as names in initial
context

ictx.lookup ("ldap://svr/o=Sun
,c=US") ;

Composite Names

* A name can span multiple namespaces
ctx.lookup("eng.sun.com/printer/speedy")

Directory Interface

* DirContext
» Attribute

 Operations include:
get and set attributes
attribute-based search
examine schema

Example: Get Attribute

e DirContext ctx;
Attributes attrs =
ctx.getAttributes ("speedy") ;

Attribute size =
attrs.get ("paperSize");

Example: Set Attribute

* DirContext ctx;
Attributes attrs =
ctx.getAttributes ("speedy") ;
Attribute size = attrs.get("paperSize");
size.add("legal");
// directory has not yet been updated
ctx.modifyAttributes ("speedy",

REPLACE_ATTRIBUTE ’
attrs);

Example: Search

 Find password of user "Bob":

NamingEnumeration results =

ctx.search("user", " (uid=Bob)",
null) ;
SearchResult r = (SearchResult)

results.next () ;
Attribute password =

r.getAttributes () .get ("userPassword") ;

Service Provider Interface

* Plug in support for naming and directory
services

 Plug in support for new object
types

 Supports federation of multiple systems

Once Again

Share and manage network resources
using naming and directory services

Use JNDI to access these services, either
individually or in federation

Status & Where To Go Next

JNDI 1.1 software shipped February '98

Service providers available for:
LDAP, NDS, NIS, NIS+,
CORBA, SLP, file system, ...

Learn more, download, or send feedback:
http://java.sun.com/jndi

11

Summary

« JNDI Provides network-wide sharing of a
variety of information about users,
machines, networks, services, and
applications.

JNDI 1s an API specified in Java™ that
provides naming and directory functionality
to applications written in Java.

JNDI is designed especially for Java by
using Java's object model

Summary (continued)

Using JNDI, Java applications can store and
retrieve named Java objects of any type.

JNDI provides methods for performing
standard directory operations, such as
associating attributes with objects and
searching for objects using their attributes.

JNDI is also defined independent of any
specific naming or directory service
implementation.

12

Summary (continued)

« JNDI enables Java applications to access
different, possibly multiple, naming and
directory services using a common API.

Different naming and directory service
providers can be plugged in seamlessly
behind this common API.

This allows Java applications to take
advantage of information in a variety of
existing naming and directory services, such
as LDAP, NDS, DNS, and NIS(YP).

Summary (continued)

This also allows Java applications to coexist
with legacy applications and systems.

Using JNDI as a tool, the Java application
developer can build new powerful and
portable applications that not only take
advantage of Java's object model but are
also well-integrated with the environment in
which they are deployed.

13

