
1

Application Servers
G22.3033-011

Session 5 - Sub-Topic 1
Java Naming and Directory Interface (JNDI)

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

Agenda

• Naming and directory services
• JNDI

naming
directory
service provider interface

• Q & A

2

Naming & Directory Services

• Naming services map names (people-
friendly)
to addresses or objects (machine-friendly)
e.g: www.sun.com => 192.9.48.5

• Directory services add attributes and
attribute-based searching
e.g: find the two-sided printers in my hotel

Wide Range of Scale

• Global
DNS, X.500

• Enterprise
NIS, NIS+, LDAP, NDS, Active Directory

• Applications and services
spreadsheet, calendars, file system, ...

3

Usage Examples

• Locating network resources
printers, databases,
Enterprise JavaBeansTM components

• Enterprise-wide namespace
share file systems and other network
services

• Security

Usage Examples (cont.)

• Accessing attributes of people and resources
e-mail, calendars, find nearby color printers

• Support for distributed computing
RMI registry, CORBA object references

4

What Is JNDI?

• A naming and directory interface for
Java applications

• Enables access to existing and emerging
naming and directory services

• Java language-centric design

JNDI Architecture

• Java Application
• JNDI API
• Naming Manager
• JNDI SPI
• LDAP, DNS, NIS, NDS, RMI, CORBA
• (JNDI Implementation Possibilities)

5

Naming Interface

• Names are relative

Context

Binding

• Operations include:
lookup

Example: Lookup

• Printer p = (Printer)
 ctx.lookup("speedy");
p.print(instream);

• Application gets back the object directly

• Naming service implementation(s) are
hidden from application

6

Example: Bind

• Calendar c;
...
ctx.bind("alice/cal", c);

• Naming service determines types of objects

• References maximize object portability

Example: Browsing
• void traverse(Context ctx) {
 NamingEnumeration bindings =
 ctx.listBindings("");
 while (bindings.hasMore()) {
 Binding binding = (Binding)
 bindings.next();
 Object o = binding.getObject();

 // Do something with object...

 if (o instanceof Context)
 traverse((Context)o);}
}

7

Initial Context
• Starting point for name resolution

• May contain a variety of bindings to
useful and shared contexts

• Contents dynamically configurable

• Context ictx =
 new InitialContext(environment);

URLs as Names

• URLs may be used as names in initial
context

ictx.lookup("ldap://svr/o=Sun
,c=US");

8

Composite Names

• A name can span multiple namespaces
ctx.lookup("eng.sun.com/printer/speedy")

Directory Interface

• DirContext

• Attribute

• Operations include:
get and set attributes
attribute-based search
examine schema

9

Example: Get Attribute

• DirContext ctx;
...
Attributes attrs =

ctx.getAttributes("speedy");
Attribute size =
attrs.get("paperSize");
…

Example: Set Attribute
• DirContext ctx;

...
Attributes attrs =
 ctx.getAttributes("speedy");
Attribute size = attrs.get("paperSize");
...
size.add("legal");

// directory has not yet been updated

ctx.modifyAttributes("speedy",
 REPLACE_ATTRIBUTE,
 attrs);

10

Example: Search

• Find password of user "Bob":

NamingEnumeration results =
 ctx.search("user", "(uid=Bob)",
null);

SearchResult r = (SearchResult)
 results.next();

Attribute password =

r.getAttributes().get("userPassword");

Service Provider Interface

• Plug in support for naming and directory
services

• Plug in support for new object
types

• Supports federation of multiple systems

11

Once Again

• Share and manage network resources
using naming and directory services

• Use JNDI to access these services, either
individually or in federation

Status & Where To Go Next

• JNDI 1.1 software shipped February '98

• Service providers available for:
LDAP, NDS, NIS, NIS+,
CORBA, SLP, file system, ...

• Learn more, download, or send feedback:
http://java.sun.com/jndi

12

Summary

• JNDI Provides network-wide sharing of a
variety of information about users,
machines, networks, services, and
applications.

• JNDI is an API specified in Javatm that
provides naming and directory functionality
to applications written in Java.

• JNDI is designed especially for Java by
using Java's object model

Summary (continued)

• Using JNDI, Java applications can store and
retrieve named Java objects of any type.

• JNDI provides methods for performing
standard directory operations, such as
associating attributes with objects and
searching for objects using their attributes.

• JNDI is also defined independent of any
specific naming or directory service
implementation.

13

Summary (continued)
• JNDI enables Java applications to access

different, possibly multiple, naming and
directory services using a common API.

• Different naming and directory service
providers can be plugged in seamlessly
behind this common API.

• This allows Java applications to take
advantage of information in a variety of
existing naming and directory services, such
as LDAP, NDS, DNS, and NIS(YP).

Summary (continued)

• This also allows Java applications to coexist
with legacy applications and systems.

• Using JNDI as a tool, the Java application
developer can build new powerful and
portable applications that not only take
advantage of Java's object model but are
also well-integrated with the environment in
which they are deployed.

