
SOAP Web Services

Brian Suda
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2003

Abstract

SOAP based web services are designed with a common XML-based protocol. The

goal is to allow for a machine readable document to be passed over any and/or mul-

tiple connection protocols to create a decentralized, distributed system. This project

demonstrates an RPC client-server model service that provides bibliography informa-

tion. Any SOAP aware program could use this service by sending the proper values to

the server and in return getting back a full listing of bibliographic information. This

paper also discusses the advatages and disadvantages of the SOAP protocal, how it

compares to various other distributed system protocols such as; CORBA, XML-RPC,

and JAVA-RMI, and how SOAP fits into the distributed acritecture.

i

Acknowledgements

Special thanks to Henry Thompson as my Advisor, he answered all my questions and

queries, to Alexander Holt for his help with the old COGSCI BibTeX database, and to

Jay, Mary, Mary Pat, and others for their many eyes in proofing chapters of this paper.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Brian Suda)

iii

Table of Contents

1 Introduction to Web Services 1

1.1 What is a Web Service? . 1

1.2 What is XML? . 2

1.3 What is SOAP? . 2

1.3.1 RPC . 3

1.3.2 Document . 3

1.4 Description of a SOAP Message . 4

1.5 Why are Web Services Interesting? 5

1.5.1 B2B Services . 6

1.5.2 B2C Services . 6

1.5.3 Device to Device Services 7

1.6 What SOAP is NOT . 8

2 Alternative Distributed Systems 9

2.1 CORBA . 9

2.2 JAVA RMI . 10

2.3 XML-RPC . 11

2.3.1 Similarities and Differences of SOAP and XML-RPC 11

3 Advantages and Disadvantages of the SOAP protocol 12

3.1 Strengths of SOAP . 12

3.1.1 Heterogeneous Environments 12

3.1.2 XML-Based . 13

3.1.3 Platform Independent . 13

iv

3.1.4 Transport Independent . 14

3.1.5 Plain Text Packets . 15

3.1.6 Interoperability . 15

3.1.7 Must Understand . 16

3.1.8 Just In Time Discovery . 16

3.1.9 Robustness . 17

3.2 Weaknesses of SOAP . 18

3.2.1 Big-endian, Little-endian Issues 18

3.2.2 Packet Sizes . 18

3.2.3 Implementation Issues . 19

3.2.4 Security Issues . 19

3.2.5 Versioning Issues . 21

3.2.6 Message Path . 21

3.2.7 Latency . 22

3.2.8 No Objects . 22

3.2.9 Reliability and Trust . 23

3.2.10 Ontology . 23

3.2.11 Statelessness . 24

4 Service Description 25

4.1 Web Service Description Language 25

4.2 What is WSDL? . 25

4.3 Describing Interfaces . 26

4.4 Description and Service Mismatch 26

4.5 Description of a WSDL Document 26

4.6 IBM WSDL Only Client . 27

4.7 BibTeXDB WSDL . 29

4.8 WSDL’s Flexibility . 29

5 Service Discovery 31

5.1 How to Discover a Service . 31

5.2 BibTeXDB Discovery . 31

v

5.3 UDDI . 32

5.3.1 White Pages . 32

5.3.2 Yellow Pages . 33

5.3.3 Green Pages . 33

5.4 Advertisement and Discovery of Service Protocol 33

5.5 Web Service Inspection . 34

6 MSc Project Description 35

6.1 BibTeXDB Description . 35

6.2 BibTeXDB Web Service . 36

6.3 Design and Implementation . 37

6.3.1 Searching . 39

6.3.2 Java Beans . 40

6.4 SOAP Web Service Listener . 41

7 Conclusion 45

7.1 Semantic Web and Web Services . 45

7.2 Improvements and Future Work . 46

7.2.1 Satellite Projects . 46

7.2.2 Better Searching . 46

7.2.3 Internationalisation . 47

7.2.4 Result Format . 47

7.2.5 Java Subclasses . 48

7.2.6 Database Options . 49

7.2.7 Speed and Scalability . 49

7.2.8 Multi-User . 50

A Software Used 51

B Sample SOAP RPC request 52

B.1 SOAP RPC Request . 52

B.2 SOAP RPC Response . 53

B.3 SOAP Fault Message . 54

vi

C Tomcat 4.0 JSP/Servlet Container 56

C.1 Instructions . 56

C.2 Deployment Descriptor . 56

D Web Service Description Language (WSDL) 58

D.1 WSDL File to Describe the BibTeXDB Web Service 58

E BibTeXDB Client 63

F WS-Inspection Document 64

Bibliography 66

vii

Chapter 1

Introduction to Web Services

1.1 What is a Web Service?

The term “Web Service” was and still is quite a buzzword. The definition ranges from

the quite loose “any services that is available over the web” to the more concrete. The

World Wide Web Consortium (W3C)1 defines a web service as the following:

The World Wide Web is more and more used for application to application
communication. The programmatic interfaces made available are referred
to as Web services.(Haas, 2002)

The “Web” in web services is actually a misuse: the term “Internet Services” would

be more appropriate. Web refers to HyperText Transfer Protocol (HTTP) and the World

Wide Web, whereas the word “Internet” refers to the larger network of computers on

multiple protocols. A web service can use any of these protocols to pass a message,

not just HTTP.

Web services have been around since at least 1999, making them a relatively new

technology that has gotten lots of press and praise. There is no secret behind web ser-

vices that will instantly make everything better or work together. The most important

factor to the success and popularity of web services is the fact that its backbone is

XML.
1The W3C is the standards body that makes recommendations regarding internet protocols.

1

Chapter 1. Introduction to Web Services 2

1.2 What is XML?

XML is an acronym for eXtensible Mark-up Language and was developed and final-

ized by the W3C in 1998. XML is a well formed, tree structured, plain text document

that is human readable and machine consumable. It is a lighter and more flexible ver-

sion of its predecessor Standard General Mark-up Language (SGML)2.(ISO, 1986)

XML provides syntax for document mark-up and provides syntax for declaring the

structure of documents.

Originally designed to meet the challenges of large-scale electronic publishing,

XML is also playing an increasingly important role in the exchange of a wide variety

of data on the web and elsewhere. XML is at the heart of web services and this is what

gives them their many strengths. XML is now over five years old, and more and more

practical applications for its mark-up are being discovered each day.

1.3 What is SOAP?

SOAP is designed to be a new protocol for the decentralised, distributed environ-

ment, which utilises the power of the Internet and XML to pass typed information

between nodes. Originally, SOAP stood for Simple Object Access Protocol, but was

later changed simply to SOAP with version 1.2, because it did not directly use Objects.

SOAP is fundamentally a stateless, one-way message exchange paradigm between

SOAP nodes, from a SOAP sender to a SOAP receiver. By combining one-way ex-

changes with features provided by the underlying transport protocol and/or application

specific information, SOAP can be used to create more complex interactions such as

request/response, request/multiple response, etc.(Don Box, 2000)

SOAP is a lightweight protocol that is platform independent, transport independent,

and operating system independent, all because it is built using time testing systems like

the HTTP protocol and text mark-up in XML.

SOAP is a W3C recommendation, which means that it is a technical report that is

the end result of an extensive consensus building inside and outside of the W3C about

2SGML was published in 1980 by ANSI and in October 1985 a draft ISO standard was published.
SGML was derived from Generalized Mark-up Language (GML) created in 1969.

Chapter 1. Introduction to Web Services 3

a particular technology or policy.

There are two types of SOAP requests. The first is the Remote Procedure Call

(RPC) style request similar to other distributed architectures. This is usually syn-

chronous; the client sends a message and waits to get a response or fault message

back from the server. The second type of SOAP request is the document request. In

this case, a full XML document is passed to/from the client and server, in side a SOAP

message.

1.3.1 RPC

SOAP-RPC is an implementation of a Remote Procedure Call (RPC). In this case, a

function on a remote machine is called as if it were a local function. All of the mar-

shalling and unmarshalling of data is handled by SOAP and is performed in XML.

RPC-style web services are tightly coupled and interface-driven. The clients invoke

the web service by sending parameters and receiving return values. RPC-style web ser-

vices follow call/response semantics; therefore, they are usually synchronous, which

means that the client sends the request and waits for the response until the request is

processed completely.(James Snell, 2001)

In Appendix B.1 there is an example RPC SOAP message.

1.3.2 Document

With a document style message the client and/or server passes an XML document as

the body of the SOAP message instead of parameters.

An example of this is an invoice. The document is marked-up with both XML

and a schema, which is common to both the sender and receiver. The sender is the

consumer, which makes a function call to the web service with some parameters, and

in return the vendor sends back, not data results, but an XML document that contains

all of the information that a normal invoice would have, the difference being that it is

marked-up with XML, and is machine-readable.

Document style messaging has other advantages over a remote procedure call,

which is meant to be relatively static, and any changes to the RPC interface would

Chapter 1. Introduction to Web Services 4

break the contract between the service and the application. Changing the RPC de-

scription would cause all of the applications that rely on a specific method signature

of SOAP-RPC to break. Good design dictates that the method signature of an RPC

message service should never change. With document messaging, the rules are less

rigid and many enhancements and changes can be made to the XML schema without

breaking the calling application, because what is sent is an XML document rather than

a structured return value.

Web service applications should be able to use a guaranteed delivery mechanism

to improve its reliability, scalability, and performance. Since a document message is

usually a self-contained XML file, it is better suited for asynchronous processing and

can be placed directly into the queue. The reliability of the application is improved

because the message queue guarantees the delivery of the message even if the target

application is not currently active, performance is improved because the web applica-

tion simply delivers the document to a queue and is then free to perform other tasks,

and scalability is improved because the document is offloaded to one or more instances

of an application that handles its processing.(James Snell, 2001)

1.4 Description of a SOAP Message

A SOAP message is an XML document that has been standardised and agreed upon.

Figure 1.1 shows the basic outline of a SOAP message. The root element is the enve-

lope tag, which contains two more elements: body and header.

The body element provides a simple mechanism for exchanging mandatory infor-

mation intended for the ultimate recipient of the message.(Don Box, 2000) Here, the

message is contained in an XML format. The body element can contain an XML docu-

ment or if it is an RPC request, it contains structured return data or arguments, or some

fault for error reporting.

The header element is a sort of dumping ground for tags. The header can contain

zero to many custom tags and was purposely left open for flexibility in future appli-

cations. Currently, tags with attributes such as themustUnderstand are placed here.

(see Section 3.1.7). As the SOAP message travels from server to server, these tags are

Chapter 1. Introduction to Web Services 5

Figure 1.1: Diagram of a SOAP Message

read and possibly acted upon. Other tags in the header can be instances of transaction

or session ID tags to create a state, although they can be anything. Thus, SOAP has the

flexibility to deal with situations that have not been created or encountered yet.

1.5 Why are Web Services Interesting?

Web services are interesting for lots of reasons, in lots of different domains. The

Internet gives you a web-sized library of possible components and services to use. It

can tie islands of data, devices, businesses, and people together.

Today’s web usage is browser-oriented. Users browse for information in vast

Chapter 1. Introduction to Web Services 6

databases, and it is presented in user-friendly HTML displays. Once that data is ren-

dered into HTML, it is very difficult to manipulate and use for anything other than

display. Web services are not browser-oriented; they are more like websites with no

user interface, webpages for machines. The data from a web service is returned in

XML format, which is easy to manipulate and use for many things.

1.5.1 B2B Services

Business to Business services are at the heart of every company. Sharing data with

your business partners has always been possible, but it was costly and time consum-

ing. The set up of Virtual Private Networks (VPN), static IP’s for specific businesses

to access, or a complete systems of usernames and passwords for each business partner

was a business in and of itself, but it allowed for special access to things like querying

inventory, buying or selling parts at the discounted prices, or access to confidential

information only available to select individuals. Inevitably, each company was using

different accounting, tracking, and fulfilment software, which made passing and con-

verting the data only slightly faster than retyping on each system.

Web services help by streamlining communications between all of the different

data sources. Now any vendor can gain access to the information in a much more

structured process. This allows smaller companies, which were previously not worth

spending the time to set up and maintain within the previous system, to gain many of

the same benefits as the larger companies. While a small business does not need the

same large scale accounting packages, it is still able to interact with them through a

SOAP interface.

There are still several hurdles that web services must considered before transac-

tions, reliability, accountability, and security, make it successful. Other such hurdles

that SOAP must overcome are mentioned later in Section 3.2.

1.5.2 B2C Services

Business to Consumers services allow for more interaction with end-users. If you have

information that you want to share with a small group of vendors or partners, then

Chapter 1. Introduction to Web Services 7

there are lots of “work arounds” that could be put in place. This was never feasible

with consumers, because you could have many, many, more consumers than vendors

or partners. It would be a nightmare to manage thousands of consumers accessing the

information. With SOAP it is possible to create specialised functions that gives them

access to specific data. This creates a paradigm shift in the way data is gathered, used,

and accessed for consumers.

Amazon.com, for example, would be willing to spend a lot of money allowing part-

ners and vendors to access their system. It does this because the cost of setting up this

system saves them money in the long term. Setting up a similar system for consumers

on an individual basis would certainly be too expensive for most companies. With

SOAP, Amazon.com now has services for individual consumers, which allow anyone

to query the Amazon.com database for books and other merchandise. Since this was

accomplished with SOAP, Amazon.com avoided writing several different interfaces in

different languages for different platforms. With the power of SOAP in the hands of

Amazon.com’s consumers, it is now possible for individuals to pull data into their own

websites and to build applications that searched Amazon.com in ways that were not

previously thought of, thus increasing sales, and off-setting the initial investment of

the creation of the SOAP web service.

1.5.3 Device to Device Services

Since the SOAP protocol is transport-independent, it is ideal for device to device com-

munication as well. If you have to write software for a device that has several different

ways of moving data including USB, Infrared, Bluetooth, TCP/IP, and more, the prob-

lem can be broken down into two simple steps. First, the software must be written

to convert the message into a SOAP message, which will be sent over the transport

protocol. Second, each transport protocol must be written, but instead of writing a pro-

prietary marshalling format for each of the protocols and an unmarshalling format for

each receiver, all the messages can be SOAP messages. This enables the programmer

to write the data packaging code only once, which each of the multiple protocols will

use that as the data encoding. Then each receiver will only have to be able to decode a

SOAP message, instead of each proprietary format.

Chapter 1. Introduction to Web Services 8

1.6 What SOAP is NOT

SOAP is not an end-all be-all architecture.

A major design goal for SOAP is simplicity and extensibility. This means that there

are several features from traditional messaging systems and distributed objects that are

not part of the core SOAP specification.(Don Box, 2000) Such features include:

• Distributed garbage collection

• Boxcarring or batching of messages

• Objects-by-reference (which requires distributed garbage collection)

• Activation (which requires object-by-reference)

SOAP was designed to be a simple message passing protocol. It will not solve

every problem. Later, in Chapter 3, I discuss all of the strengths and weakness of

SOAP and future plans for the protocol. After reviewing all the pros and cons, it will

be evident that SOAP has its place for some activities; however, in other areas different

protocols will excel.

SOAP is not the silver bullet that will revolutionise the way distributed systems are

designed and it will not replace all other protocols, as some may say.

There has been a lot of hype about web services and what they can do. Some of the

claims have not been fulfilled, but someday they may be. Until then, all of the options

must be taken into consideration for each situation, and SOAP will be the best solution

for only some of these problems.

Chapter 2

Alternative Distributed Systems

2.1 CORBA

CORBA is another distributed language created in 1991 that is used to access informa-

tion across a network. CORBA 1.0 uses a language-independent way of communica-

tions, but the ORB that passes the requests to and from the client and server was left

up to individual vendors to implement. This lead to confusion about CORBA and the

misconception that it is has a closed protocol. With CORBA 2.0 a new protocol was

introduced called Inter-ORB Protocol (IIOP) which runs over TCP/IP, among other

network protocols.(Cohen, 2001)

The CORBA ORB can save the state of an object and make it persistent, which is

something that is not yet possible with SOAP. If SOAP wants to support some state

mechanisms and atomic transactional requests, new features will need to be defined

and implemented.

Both SOAP and CORBA have open specifications and are not proprietary. The

difference is that CORBA is a complete architecture whereas SOAP is only the mes-

sage passing protocol. CORBA consists of both the encoding and transport protocols,

where SOAP uses XML simply for encoding and is transport independent.

CORBA was designed for speed. SOAP was not, so the same information repre-

sented as a SOAP-RPC request is about four times the size of an equivalent CORBA

message. The overhead time it takes to actually parse the SOAP-RPC message must

9

Chapter 2. Alternative Distributed Systems 10

also be taken into consideration. Depending on the needs of the system, these differ-

ences can be either pros or cons.

SOAP-Document style is good for data that has a lot of depth but is loosely struc-

tured, whereas, CORBA is optimised for parameter passing, not document passing.

SOAP-Document style can actually out perform a similar CORBA request, because of

the structured document attributes of XML.

2.2 JAVA RMI

Java RMI is Java’s Remote Method Invocation protocol. This is how Java implements

a distributed system. Java RMI has an Interface Description Language (IDL) similar

to CORBA, which is the equivalent of SOAP’s Web Service Description Language

(WSDL) document. The Java IDL can be generated from the Java code itself or written

by hand. The IDL interface for a Java application is Java, making it easy to understand

and use.

The major draw back to Java RMI is that it is a Java only solution. Both the client

and server must be running Java. It is possible to make Java calls out to external code,

but that still requires a Java wrapper class. This makes it difficult to interface with

legacy or existing systems.

Java RMI is also only a client-server design paradigm and is not very well suited

to peer-to-peer systems. As personal computer become even more powerful, the idea

of P2P networks will only increase. This is something that does not affect SOAP.

Since Java RMI is a Java only solution you do get all the benefits and features of

the Java Security Manager, which SOAP does not have. It is also possible to utilise

Java’s ability to serialize and deserialize objects, therefore gaining the ability to pass

objects rather than just parameters.

Java RMI also uses its ownrmi:// protocol to transport message back and forth

between applications, making it transport dependant.

Chapter 2. Alternative Distributed Systems 11

2.3 XML-RPC

XML-RPC was designed in 1999 by UserLand as an XML-based RPC. The specifica-

tion was written and has not changed since, making it a dependable protocol to use.

XML-RPC and SOAP accomplish many of the same things in slightly different ways.

XML-RPC is a Remote Procedure Calling protocol that works over the
Internet.

An XML-RPC message is an HTTP-POST request. The body of the re-
quest is in XML. A procedure executes on the server and the value it re-
turns is also formatted in XML.

Procedure parameters can be scalars, numbers, strings, dates, etc.; and can
also be complex record and list structures.(Winer, 1999)

2.3.1 Similarities and Differences of SOAP and XML-RPC

XML-RPC is very simple, whereas SOAP can be as simple or as complex as needed.

XML-RPC only supports basic variable types and custom types as structs or arrays of

basic types. SOAP, on the other hand, supports basic types, multiple references within

the same document, and user-defined types through the use of XML Schemas. SOAP

is Unicode compliant, whereas XML-RPC is only ASCII compliant. To get around

Unicode in XML-RPC, information is base64 encoded. This is how binary data is

packaged in both protocols. With XML-RPC parameter passing, order is important.

When executing an operation such as division, as XML-RPC message must have the

variables in the correct order, otherwise, there might be an unexpected result. SOAP

uses named parameters, so whether the numerator or divisor comes first or second is

irrelevant. The remote application gathers the variables by name and correctly executes

the procedure. Finally, the XML-RPC specification is only for XML over HTTP, but

it is not impossible to conceive XML-RPC over another protocol. SOAP is transport

protocol independent and can be used over any number of protocols.

Chapter 3

Advantages and Disadvantages of the

SOAP protocol

Many of SOAPs’s strengths are also its weaknesses. For SOAP to be simple, flexible,

and extensible, it had to make trade-offs, such as the size of the message verse the

ability to look inside it.

3.1 Strengths of SOAP

3.1.1 Heterogeneous Environments

SOAP is heterogeneous because of its ability to works on any platform, any operating

system, in any computing environment, with any programming language, and over

any protocol. It is this heterogeneousness that has made SOAP a popular middleware

between legacy systems. A perl script client can invoke and retrieve data from a web

service that is a front end to a mainframe system with the ability to extract data that

was previously locked away.

There are a few large-scale real world applications of this technology. The Univer-

sity of California Berkeley began to implement web services for many of their legacy

systems on a test basis in mid-2002.

On the front end, users were able to access either by dialling a single number or use

an IP address from any device to receive their emails, voice mails, faxes, calendaring

12

Chapter 3. Advantages and Disadvantages of the SOAP protocol 13

and scheduling information. The system also gave callers the ability to get personal

data our of back-end systems such as accessing medical or enrolment information, as

well as class availability.

All of these systems existed on the university campus before, but as distinct silos

of information. Web services made it possible to connect the existing networks into a

single provisioning platform.(Schwartz, 2002)

3.1.2 XML-Based

By having an XML-based protocol you instantly get all the advantages of XML for

free. This includes well-formedness, document structures, human readable text, and

it is machine consumable. Web services have sometimes been called webpages for

machines. None of this would be possible without XML.

XML is not only at the heart of SOAP, but also Web Service Description Language

(WSDL) files, Universal Description, Discovery Integration (UDDI) registries, and

other web service extensions.

It must be said that there is a debate about XML being the de facto standard for the

SOAP message packaging. Since SOAP is so flexible at the transport level, it would

seem logical to keep SOAP flexible at the encoding level as well. Constituents of

other mark-up languages, such as DARPA Agent Mark-up Language (DAML)1, have

contested that XML should not be the only way to encode a message.

3.1.3 Platform Independent

SOAP is the message passing protocol and is not tied to any single platform. This

is one of the points that add to the heterogeneous nature of web services. If SOAP

were tied to a single platform it would impossible to make an RPC request to a server,

which you know nothing about, and expect it to work. This allows a client and server,

written in any language, on any platform, to be able to communicate. One issue that

arises in dealing with different platforms and different operating systems is the size

of basic variable types, such as; integers, floats, etc. SOAP avoids these problems by

1DARPA is the Defence Advanced Research Project Agency, they have been working on DAML
aimed at facilitating agent interaction on the web.

Chapter 3. Advantages and Disadvantages of the SOAP protocol 14

using XML Schema to define some basic types that are built on. Knowledge of these

basic types allows each platform the ability to interoperate by packaging the variables

into the proper format and mapping them to their own internal type system. This is

discussed more in Section 3.2.1.

3.1.4 Transport Independent

Since SOAP is just the messaging protocol it can be passed over any transport protocol.

This includes both synchronous and asynchronous protocols such as HTTP, SMTP,

BEEP, Jabber, and others. Allowing SOAP and web services the flexibility to adapt to

the future of the Internet. As protocols are replaced, upgraded, or deprecated SOAP

will find new ways to continue sending message across the Internet.

A good analogy of transport independence, and a SOAP message, comes from

the real world post office. When you write a letter to a friend you both agree on the

protocol, in this case the English language. In the case of SOAP the XML Schema

relating to the SOAP specifications. After you have written your letter you place it in

an envelope and address it to the receiver. With SOAP you have constructed the XML

document and you have the URI to the destination, which is the vendor’s service. You

are not concerned directly with how your message gets to the end point, just so long

as it does within certain parameters: time, cost, etc. With your physical letter you drop

it into the mailbox and wait for the post to deliver it. The post could travel from the

office to the sorting station by car, and from that location by train or plain or truck to

the next stop, where it is loaded to another vehicle. This repeats itself until it reaches

the final destination. Your letter is transport independent because it can be carried by

any number of protocols, in this case trains, plains, automobiles, and/or pony express.

SOAP messages work in the same way, part of the message may travel over your

local network, from there it might travel wirelessly, then switch protocol and switch

back before finally reaching the vendor’s service. Since you are not concerned about

and cannot always control the infrastructure between you and the receiver, this design

allows for the most universal way to communicate between the consumer and vendor.

Chapter 3. Advantages and Disadvantages of the SOAP protocol 15

3.1.5 Plain Text Packets

SOAP messages are sent in plain text with a special header in version 1.1 of

Content-Type: text/xml

SOAPAction: ‘‘http://example.com’’

and in SOAP version 1.2 this has been changed to

Content-Type: application/soap+_xml; action=‘‘http://example.com’’

Making this change allows firewalls and packet sniffers to look into these messages

to verify their safety and validity. This transparency is one of the major advantages

over other distributed protocols. Network administrators were never able to look into

a CORBA message, subsequently; they became potential security risks.

On most networks the availability of ports is limited by the firewall. The HTTP

protocol is an older safer plain-text protocol that the firewall can parse and manage

based on content-types. This makes HTTP a good candidate for SOAP to use as the

transport level. The HTTP port is open on most firewalls for messages to pass through

and with the new content-type it is possible for firewalls to flag SOAP packets and

examine them more carefully if necessary. The ability to examine the packet is possible

because SOAP messages are plain text, if they were proprietarily encoded there would

be no way to determine if the packet in question posed any security threat.

3.1.6 Interoperability

SOAP’s ability to work between platforms and operating systems allows for a great

degree of interoperability. Many companies are using SOAP to connect to legacy sys-

tems, pulling the data out as SOAP messages that can be send and consumed by other

applications. SOAP becomes the glue between different interfaces of applications that

never could previously interoperate. It is capable of doing this because the data is

encoded in XML.

XML is basically a Unicode text file with structured mark-up. Since ASCII is a

standard across platforms and XML Unicode can be represented in ASCII, it therefore

can be read over multiple platforms, increasing interoperability.(Martin Dürst, 2003)

Chapter 3. Advantages and Disadvantages of the SOAP protocol 16

3.1.7 Must Understand

The SOAP mustUnderstand global attribute can be used to indicate whether a header

entry is mandatory or optional for the recipient to process. Tagging elements in this

manner assures that this change in semantics will not be silently ignored by those who

may not fully understand it.(Don Box, 2000) This attribute prevents messages from

getting passed to the next node; when in fact the current node did not understand the

tag and did not do any work. If a node gets a SOAP message with a tag that has a

mustUnderstand attribute that it does not understand, the message is not forward and a

mustUnderstand fault is sent back to the client. Since the header of a SOAP message

is where additional information can be placed there needed to be away to determine if

the node could understand and process these tags. If the node was unable, then a fault

needed to be thrown so that the message is not passed along or acted on accidentally.

A typical entry in a SOAP header might be a sessionID for a login. This is an ideal

candidate for the mustUnderstand attribute. If the receiving node did not understand

the tag with the sessionID and continued to complete the login, this is a potential

security risk and can cause fatal errors. With the mustUnderstand fault this node could

return an error instead of unknown data.

3.1.8 Just In Time Discovery

Just-In-Time (JIT) discovery and binding is the ability to build ad hoc applications

from smaller pieces. Instead of “hard-wiring” remote applications together, which re-

quire high costs across all applications during maintenance, applications can be “soft

wired” or “loosely coupled”. This is the ability to find and bind to services in a dy-

namic, ad hoc fashion. When a service gets too costly in terms of time or money, others

can be found, replacing services and providers. Replacements are possible because of

the open standards and wide adoption of web services. When applications are “soft

wired” and mobile, JIT becomes an important way to find services and use them with

little hassle. SOAP accomplishes these things through the use of a service description

language (see Chapter 4) and discovery services (see Chapter 5).

To review how all three parts make up a complete Just-In-Time web service, refer

Chapter 3. Advantages and Disadvantages of the SOAP protocol 17

SOAP
Client

Basic Roles and Operations

VendorVendorVendorVendorVendors Discovery
Service

1

2

3

Figure 3.1: The Three Parts of a Web Service

to Figure 3.1. In Step 1, the vendors publish their available services to some sort of

central repository. This could be a UDDI server or another commonplace system that

describes services to vend. In Step 2, the client application queries the central server

for a list of vendors that offer the service needed. In Step 3, the service is invoked

from the client to the service vendor. At some point the WSDL file was read to get

all the information about binding to the web service. The WSDL file could have been

retrieved from the vendor before Step 3 and after the URI was sent by the discovery

service in Step 2, or the central server could have also supplied the client with a copy

of the WSDL during Step 2.

3.1.9 Robustness

Even though SOAP is designed for simplicity and flexibility, it is more robust than

other XML-Based systems, mainly XML-RPC. SOAP allows you to declare other

Chapter 3. Advantages and Disadvantages of the SOAP protocol 18

namespaces in your document, something XML-RPC cannot. With this it is possi-

ble to add an XML Schema, which can define custom data types.

SOAP has the ability to scales to larger applications, both in transport and messag-

ing. Since SOAP can use the HTTP protocol as the transport layer, it has the ability to

scale with the size of the network. The message protocol is also scalable to larger ap-

plications, because of XML Schema custom data types, the extensibility of the header

tag, and the ability to layer other XML technology onto SOAP.

All the other strengths of SOAP: Just-In-Time, mustUnderstand, Plain Text Pack-

ets, and others all add to the robustness of the protocol.

3.2 Weaknesses of SOAP

3.2.1 Big-endian, Little-endian Issues

SOAP must define some common data types such as string, integer, date, etc. These

data types are not always the same between different programming languages and dif-

ferent operating systems. To get around this, SOAP allows for custom data types

through the use of XML Schemas. This is a strength because it allows for the con-

struction of custom types, but is a weakness because it also adds overhead, confusion,

and creates potential problems of implementation.

3.2.2 Packet Sizes

SOAP’s strength in having plain text messages becomes a weakness when dealing with

size. A SOAP message has a lot of overhead because of the XML and the protocol

design. This can become troublesome when dealing with lots of data because of band-

width limitations or throughput speed of the network. An equivalent CORBA packet

is a fourth the size; so if you are using the full bandwidth using a CORBA application,

expect to use four times that when switching to a SOAP environment.

Along with larger messages come the issues of marshalling, unmarshalling, and

parsing through all that XML once received, and it is not just the sender and receiver

that have to do work, it is all the nodes in between. This all adds overhead and delay

Chapter 3. Advantages and Disadvantages of the SOAP protocol 19

to the protocol.

3.2.3 Implementation Issues

SOAP is currently at version 1.1 and version 1.2 is currently a draft. Different ven-

dors interpreted early specifications slightly differently. For Instance, Apache and

Microsoft’s .NET both implement aBigDecimal data type. However they are not

compatible.(Cohen, 2001)

Today things are much better and interoperability has been restored, but with new

versions of applications and SOAP, there are always potentials for some disagreement.

To help combat vendors from interpreting the implemented standards in incompat-

ible ways, or only partially implementing the standard, the Web Service Interoperabil-

ity Organization (WS-I) group was formed. They have three primary goals to improve

web service interoperability:(Organization, 2002)

• Provide implementation guidance and education to help customers with Web

services adoption.

• Promote consistent and reliable interoperability among Web services across plat-

forms, applications, and programming languages.

• Articulate and promote a common industry vision for Web services interoper-

ability to

– Ease customer decision making,

– Grow industry adoption of Web services and

– Ensure the continued evolution of Web services technologies.

3.2.4 Security Issues

SOAP alone does not support any sort of security. The common thing to do is to send

the data over HTTPS, but this only secures your data at the network level and avoids

addressing the bigger issue of securing content. Currently, there are a few drafts with

the W3C for secure XML protocols that can be used within SOAP.

Chapter 3. Advantages and Disadvantages of the SOAP protocol 20

Some of the security and privacy issues being addressed are accessibility, confiden-

tiality, authentication, authorization, data and content integrity, and non-repudiation.

(Clabby, 2002) All of which are being dealt with by the W3C, because they realise

that these element are crucial to building a secure computing environment. To achieve

a secure, trustworthy environment, the WS-Security specification has been brought

to Organization for the Advancement of Structured Information Standards (OASIS)

to address these shortcomings. OASIS is also handling several other security related

web service specifications including a web service endpoint model (WS-Policy), a

trust model (WS-Trust), secure conversations (WS-SecureConversation), authoriza-

tion (WS-Authorization), a privacy model (WS-Privacy), and federated trust (WS-

Federation) specifications.

The header section of the SOAP message envelope is commonly used to stick au-

thentication information, unique identifiers, but this information is passed as plain text

during a normal run of the protocol and can not be guaranteed to be secure.

None of this prevents web services from serving up weather data, calendar infor-

mation, or other data, but security is very important before web services can be adopted

in enterprise applications.

Web services, in their current state of support, are an excellent application integra-

tion technology. Web services can glue together applications running on two different

messaging product platforms, enable database information from one application to be

made available to others, and enable internal applications to be made available over

the Internet. Web services can also be used between two business partners who al-

ready have business agreements in place.

For point-to-point applications, SSL is already being used for security function-

ality. Web services are being used to offer interfaces to applications that were once

browser-driven, like Google and Amazon.com.

Web services are also being developed as utilities, or pay-per-use program compo-

nents, like the auto buyers VIN history service that returns the registration and salvage

history of a vehicle. One benefit of this model is that its infrastructure can borrow

from the experience of the telephony utilities industry, especially on user-driven ser-

vice provisioning, usage tracking, and billing. Web service deployments have shown

Chapter 3. Advantages and Disadvantages of the SOAP protocol 21

that existing assets used within a company can readily become revenue-generating as-

sets.(Kreger, 2003)

3.2.5 Versioning Issues

SOAP does not define a traditional versioning model based on major and minor ver-

sion numbers.(Don Box, 2000) As SOAP matures and new versions are written there is

currently no field, attribute, or tag to describe which version of the SOAP specification

you are implementing. This will become a problematic as parts of the protocol are

either depreciated or new features added. The consumer and vendor will have to make

sure they agree on the correct protocol version before message passing, so they under-

stand the complete messages each are receiving. If the consumer and vendor are using

different versions, the SOAP application MUST respond with aVersionMismatch

faultcode message, as described in the W3C recommendation.(Don Box, 2000)

3.2.6 Message Path

With the current version of SOAP there is no way to specify a path the message should

travel. As with normal Internet traffic, the message is routed over the network accord-

ing to several factors, including speed and availability. It is important to understand

what routes the messages are taking. This improves reliability if you can mandate the

path the message must follow through reliable servers. If the path is known, faults are

easier to detect and diagnose. If a transaction is several messages long and a single

message is lost in transport the whole operation somehow must be rolled back to a

previous state. With the message path known, it is possible to create an audit trail of

the individual message, therefore giving both the consumer and vendor a higher level

of trust.

WS-Reliability and HTTP-R are attempts at once and only once reliable messaging.

The HTTP-R specification has been available since July 2001, but has yet to make its

way into any sort of daily use.

There are attempts to route SOAP messages through a known system of nodes,

each of which have some previous knowledge of some of the actions intended. This

Chapter 3. Advantages and Disadvantages of the SOAP protocol 22

is important because of themustUnderstand (see Section 3.1.7) attribute for header

elements. It is possible to define a tag called “logging” and set it tomustUnderstand.

Therefore, every server that is in the message path must implement “logging” other-

wise the message is sent back with a fault. If you could specify the path the message

travels, then there are less worries that a single node in the chain will throw a fault

because it is unable to understand or implement a tag.

3.2.7 Latency

Latency is a problem that distributed systems are not able to get around. Low-bandwidth

connections, congested routers, and overloaded servers have always been problems,

but web services have yet another bottleneck with the SOAP XML parser. As a SOAP

message is passed from node to node in the chain, each node is responsible for looking

at the SOAP header and implementing any tag with themustUnderstand attribute.

This also adds the overhead of parsing each message and possibly acting on it before

passing it along to the next node.

Whenever you are using part of a network that you are not in control of there is

no guarantee of the quality of the service. This is not a unique problem to SOAP as

a distributed environment, other implementations, such as CORBA, have optimised

their messages for speed to off-set latency, where as SOAP optimises for openness and

interoperability.(Asaravala, 2002)

3.2.8 No Objects

The “O” in SOAP originally stood for “Objects”, but with version 1.2 the acronym was

dropped. It is not possible for SOAP to pass a reference to a remote object as a param-

eter, as it is with some other distributed languages. This solves a lot of programming

problems for developers of applications that manage SOAP requests, because they do

not have to deal with things like distributed garbage collection. This trade-off does

limit some of the capabilities of the client application. Without objects it is difficult to

get persistence, or for multiple clients to access the same object, rather than multiple

instances of the same object. Not supporting distributed objects was something that

Chapter 3. Advantages and Disadvantages of the SOAP protocol 23

was decided in the SOAP recommendation, so that it could be a simple and extensible

language.(Don Box, 2000)

3.2.9 Reliability and Trust

When you are letting an unknown source tell you some fact, you must weigh the re-

liability of that source before believing the fact yourself. Even with the simplest of

examples, getting the current temperature, you must assign some level of trust to the

vendor. With the get current temperature example, the vendor could simply be guess-

ing and the consumer would be none the wiser. When web services become more

important, such as; searching for the cheapest bank loan, stock quotes, logging reser-

vations, or other transactional requests, you are assigning a level of trust to the vendor

that they will be supplying the goods, services, or merchandise promised. There is a

potential to lie when the vendors are not the same style brick and mortar business and

cannot be as easily found.

Trust also ties in with security. Do you trust the vendor you are dealing with to not

sell your data or to protect their system from being broken into and your data stolen?

3.2.10 Ontology

XML itself does not have any sort of ontology. This is not necessarily a bad thing,

because the code is lighter and less complex. Problems do occur when the tag names

could be interpreted in more than one way. With a proper ontology, terms are defined

and scoped with a namespaces to fully define each tag name so no ambiguity exists.

Terms such as; title, size, cost, etc. all could be interpreted in different ways. Title

could be interpreted as a prefix to a name (Lord, Lady, Sir), it could be a property

deed, or the name of a document. XML has no inherent way to define the actual

meaning of the tag name. This is why the XML Schema must be agreed upon before

the transmission, so both parties know what type of document to expect and to better

understand the values that are being passed.

Chapter 3. Advantages and Disadvantages of the SOAP protocol 24

3.2.11 Statelessness

SOAP messages are fundamentally one-way transmissions from a sender to a receiver,

but SOAP messages are often combined to implement patterns such as request/response.

(Don Box, 2000) SOAP messages can use HTTP, which is by design stateless; to hold

some sort of state between individual SOAP messages something must be added to

the SOAP protocol. This is where the W3C has left the header field open for addi-

tional tags to be added, possibly to contain some unique identifier or sessionID that

will be used to represent state between the client and server. Figure 1.1 shows a SOAP

message how the header tag is associated with it.

Chapter 4

Service Description

4.1 Web Service Description Language

Web services can be simple or complex, so a standardised way of expressing all the

different types of services needed to be drafted. It is possible to describe a web service

by creating a well-written document that is publicly accessible that written in prose,

about how to implement and bind to the service. This is adequate, but it does not allow

Just-In-Time services to be invoked. Web Service Description Language (WSDL)1

was created to solve this problem.

4.2 What is WSDL?

WSDL stands for Web Service Description Language. It is an XML file that describes

the technical details of how to implement a web service, more specifically the URI,

port, method names, arguments, and data types. Since WSDL is XML, it is both

human-readable and machine-consumable, which aids in the ability to call and bind to

services dynamically.

1WSDL is currently a W3C note, version 1.1

25

Chapter 4. Service Description 26

4.3 Describing Interfaces

Most distributed system programming languages have some sort of interface descrip-

tion language. CORBA has IDL, Java has its interface, and web services have WSDL.

With these interfaces it is possible to generate client and server stubs around which

to write the code. There are several programs that will take a WSDL file and gen-

erate Java stubs to use in a project. This helps maintain continuity, prevents errors

between the vendor and consumer code, and speeds the development time for creating

distributed applications.

4.4 Description and Service Mismatch

Since a WSDL file simply describes the service and is separate from the code, it is pos-

sible that the service could change and not be reflected in the WSDL file, causing prob-

lems when the service is later invoked. Some web service programming environments

try to prevent the WSDL file from getting “stale” by generating the WSDL dynami-

cally from the code itself, thus preventing errors by not divorcing the two files. Until

all programming environments generate the WSDL dynamically, there is a chance for

a drift between the WSDL file and the web service.

4.5 Description of a WSDL Document

A WSDL file is made up of several different sections, each describing a part of the

interface for a web service. Figure 4.1 shows the format of a WSDL file: the items

with a (?) are optional and the items with a (*) can contain zero to many entries.

The WSDL file is an XML file with a definition tag as the root element. The next

possible element is the import tag. While this approach is not yet fully recognised

by all WSDL-enabled tools, the import tag would allow you to point to an external

XSD file. This proposed XML Schema would replace the types tag in describing all

the elements. Currently, it is common to embed the XML Schema into the WSDL

document, thus not requiring the import tag to be used.

Chapter 4. Service Description 27

The next tag is the types tag, which defines user specific types. For example, in

Appendix D the WSDL document to describe the BibTeXDB service contains a user-

defined type calledBibTeXDBResults. This new type is equivalent to a “C” structure,

or a Java Object, and it contains all the values for a BibTeX citation as strings. There is

a second user-defined type to define an array of theBibTeXDBResults, which is what

is returned by the search function.

The message tag binds a user-defined type or standard type to a variable. These be-

come the inputs and outputs for the operations tags in the portType tags. The portType

tags can have zero or more children of type operation. The operation tag is equiva-

lent to the name of the function that resides on the server. The operation tag, then,

has input, output, and fault tags that define the arguments to the function and what is

returned from the RPC.

The binding tags looks as if they are repeating much of the same information as

the portType tags do, but there is additional information not relevant to the input and

output. This additional information is in the SOAP namespace and describes the trans-

port; in the case of Appendix D, HTTP encodes the style of the variables, the style as

RPC or Document (see Section 1.3.1), and adds a Universal Resource Name (URN)

for each operation.

Finally, the service tag contains information about the location of the actual service.

There is a child tag called port, which is not the same port as TCP ports, but that is

so called for the binding to the binding tag. The port tag also has a child tag called

address that is in the SOAP namespace. This address tag has a value of the Universal

Resource Indicator (URI) of where the service is located.

With all of this information it is possible to automatically build stubs for Java

classes or to even to invoke the service dynamically.

4.6 IBM WSDL Only Client

IBM and others have created applications that can call simple web services without

ever writing a single line of client code. This works by invoking their application and

passing a WSDL file as one of the parameters, along with the web service function

Chapter 4. Service Description 28

definitions

import (*)

types (?)
schema (*)

message (*)
part (*)

portType (*)
operation (*) input output fault

binding (*)

operation (*) input output fault

soap:binding (?)

service (*)
port (*)

Figure 4.1: Sample WSDL Document

Chapter 4. Service Description 29

name, arguments, etc. Since the WSDL file contains all the information about where

to locate and bind to a service, the application can parse the WSDL file and make a

connection to pass a custom made SOAP message. The WSDL file contains all the

function names and data types for the service, so the application is able check that the

function and parameters being passed are valid. If all the data validates, the application

can open an HTTP connection with the remote web service, then create and send the

custom valid SOAP message based on the original parameters. The remote web ser-

vice executes and returns the correct data type. This too, is expected by the application

because the WSDL file defines all the return types as well. The returned data is then

displayed for the user to view or logged to a file. By creating this application, there is

no need to create any client code that is specific to a given service. The same appli-

cation can be used to call any SOAP web service saving time and money in rewriting

client code.

4.7 BibTeXDB WSDL

For my project I wrote the WSDL file that can be seen in Appendix D. It lists the three

main functions that are available (Add, Edit, Search) and what arguments are passed

to each, along with all the available information about the service location.

I created a Java class that contained variables and functions related to a BibTeX

citation. To represent this class object in WSDL, I had to use the ComplexType feature

along with the SOAP array feature to build a representation of the data that is passed

to and from the server and client.

4.8 WSDL’s Flexibility

My project did not use some of the more advanced features of WSDL. Since the WSDL

file itself is written in XML, it is very flexible and extensible. One of the many things

possible is operation overloading, the ability to define the same function name with

different parameters, and defining new variable types through XML Schema.

Operation overloading is common in higher level programming languages. This is

Chapter 4. Service Description 30

where multiple functions or mathematical operators have the same name but different

arguments. It is up to the compiler or runtime engine to decide which function to use;

in the case of Java, it is based on the function signature.

The ability to create new data types in SOAP is crucial. WSDL does not aim to cre-

ate a standard for XML data typing. Instead, WSDL is specifically designed for maxi-

mum flexibility and not tied exclusively to any one data typing system. This allows for

extensibility, interoperability between different operating systems and platforms, and

more complex data types such as structures and arrays.

This flexibility does come at a cost: the WSDL file becomes very complex and

verbose, seemingly defining things several times, and becoming less human-readable.

WSDL files are not easy to code by hand, even for simple services. As time progresses,

better toolkits will become available to generate WSDL files automatically rather than

by hand or the WSDL file will be generated automatically from the code itself.

Chapter 5

Service Discovery

5.1 How to Discover a Service

As part of one of the three steps in Just-In-Time computing, discovery has the most

options. Invocation is conducted by your application via some transport, most likely

HTTP. Description is handled by the WSDL file, but the question remains, how to find

that description and its service? Several ways have emerged to do this, but it is not

clear which will be the most effective. The first is Universal Description, Discovery

and Integration (UDDI). IBM, Microsoft, and a few others with the intent of setting up

a hierarchy to discover services designed it. The second is Advertisement and Discover

of Services Protocol (ADS), which is distributed, much less structured, and relies on

consistency. Thirdly, WS-Inspection is another option for discovering web services.

It describes all the different methods of gathering the service description and lets the

client to choose the best option.

5.2 BibTeXDB Discovery

My project is designed only for the COGSCI department and was never meant for

worldwide consumption; therefore discovery is outside the scope of this project. Dis-

covery, in this instance, would be word of mouth, which is another valid kind of discov-

ery, but does not contribute to Just-In-Time computing. Since discovery is an important

31

Chapter 5. Service Discovery 32

part of all distributed environments it is worth mentioning the different ways in which

discovery is handled for web services.

5.3 UDDI

UDDI acts like Domain Name Server (DNS), but instead of resolving names to loca-

tions, it resolves names to services or vendors. UDDI is not affiliated with the W3C,

but it has been submitted to the OASIS standards body for review. Several large com-

panies including Microsoft and IBM currently run UDDI registers, but it is possible

to set-up a private UDDI registry for your own company’s intranet or extranet. The

listings in the registry can therefore be public or private, depending on how the UDDI

registry is published.

A positive aspect of UDDI is the definition of an ontology for web services. A

problem with UDDI, is that it is centralised by design, both in the single tree ontol-

ogy and in the design based fundamentally on a central registry, with inter-registry

operation as a secondary thing.(Berners-Lee, 2002) Taxonomies, ontologies, and iden-

tifier systems play an important role within UDDI. It is often through categorization

and identification that searchers of UDDI find the businesses and services that meet a

particular need.(Daveid Ehnebuske, 2001)

When you search a UDDI register for a web service, you do so using SOAP mes-

sages. Hence, you use a web service to find web services. Since the UDDI registry is

a web service, it gains all the benefits of XML, SOAP, and Just-In-Time computing.

The UDDI registry is broken down into three main parts, or pages. These pages

each perform a different function; their names are White Pages, Yellow Pages, and

Green Pages.

5.3.1 White Pages

The UDDI white pages follow the traditional real world equivalent. They contain basic

information about the business such as name, telephone, URL, other basic contact

information and an overview of the key services they provide. This is how the publisher

Chapter 5. Service Discovery 33

of a web service register’s itself to the database of vendors. This allows consumers to

search the UDDI database for matching vendors by name or location.

5.3.2 Yellow Pages

Yellow pages are categorised based on existing business taxonomies of classification,

including where the business operates. This allows consumer applications to search

for types of web services in the UDDI database for use in Just-In-Time computing.

5.3.3 Green Pages

The green pages are designed to contain technical information about the web service

and how to interface with it. This was designed without the use of WSDL and attempts

to achieve the same tasks, but what regularly happens is that the green pages become a

pointer to a WSDL file.

5.4 Advertisement and Discovery of Service Protocol

UDDI requires the vendor to update the UDDI registry with the necessary informa-

tion, and certain checks and balances must be put in place to prevent you from editing

other vendors’ information. ADS works on the opposite principal. Similar to web

crawlers, a service crawler would scour the Internet for predefined files that you gen-

erate and control on your own website.Robot.txt files are what web crawlers use to

spider a website, while the web service crawlers will look for an equivalent file called

svcadvt.xml in the root directory of a website. This file advertises all services that

are offered and allows the crawler to compile a centralized list of services that can be

searched similar to any current website search directory. The other option is to place a

new meta tag into your HTML that points to the WSDL file.(Vasudeva, 2001)

<meta

name="serviceDescriptionLocation"

content="http://example.com/bibtexdb.wsdl"

/>

Chapter 5. Service Discovery 34

The different methods of advertisement are relevant to different situations. A

search engine or portal may make use of both advertisement methods in different ways.

Thesvcsadvt.xml file provides a consistent starting point for performing a search for

services provided by a site, while the second method may be used during the standard

indexing of web pages, allowing for the categorization of services based upon contex-

tual information.(William A. Nagy, 2001) With either method the web service crawler

will find your advertised services and save them back to its central database. This will

create a sort of search engine for web services that is updated with each crawl, whereas

the UDDI registry is only updated when the vendor change their entries. ADS has also

been suggested as a way to keep the UDDI server up to date by feeding the results

found on the website back into the registry for each corresponding vendor.

5.5 Web Service Inspection

A WS-Inspection Document is another client-based way to advertise services. It is

a single starting point to an aggregation of pointers to multiple service description

documents. A WS-Inspection documents is an XML file that is fairly easy to write

and maintain. It is just a pointer which may point to a variety of service description

document formats. WS-Inspection documents may be created which allow for the

consumer of the document to pick and choose from the available descriptions and

to access only those that it is able to understand. As new description formats arise,

new references can be added to existing WS-Inspection documents without requiring

a modification to be made to the base WS-Inspection schema.(Keith Ballinger, 2001)

The WS-Inspection Document in Appendix F outlines two different ways to access

the service description. The first description is for the WSDL file that describes all the

functions, arguments, and ports needed to invoke the service. The second description

is for a UDDI registry. With this information you can determine the service vendor

and information about the service from the registry’s yellow, white, and green pages.

It will be a matter of time before any one way of service discovery is widely ac-

cepted. Not only are there technical hurdles, but social hurdles as well.

Chapter 6

MSc Project Description

6.1 BibTeXDB Description

My project was to design and construct a BibTeX database for the COGSCI department

that is accessible using SOAP web service protocol. The project was written in Java

and uses HTTP as the transport mechanism. Having this as a centralized service will

reduce redundancy and allow users to search for other BibTeX sources that someone

else may have entered into the database.

The Java client has three main functions, the ability to query for citations, add a

BibTeX citation, and edit an existing BibTeX citation in the database through the web

service.

The Java servlet application that is used to vend the web services uses an XML file

to store all the BibTeX citations. This is transparent to the consumer and Java client

because SOAP is just the encoding. It acts as the middleware and is independent of the

underlying methods of data storage and retrieval.

A Web Service Description Language (WSDL) file has also been created so the

client application knows the available functions and parameters. With this document it

is possible to generate skeleton code and stubs for the distributed service, or to invoke

the service dynamically.

This project was taken up in Java, but it is possible to demonstrate the ability to

make web service requests through a heterogeneous system by the use of additional

35

Chapter 6. MSc Project Description 36

languages such as perl, for a simple client.

6.2 BibTeXDB Web Service

Figure 6.1 shows the flow of data through the BibTeXDB web service. Step 1 is when

the client application sends a SOAP message to the Tomcat web server listener. Once

the web server gets the message it knows that it is a SOAP message from the content-

type and passes it to the Apache SOAP module to parse the XML data. The Apache

SOAP module parses the message and determines all the arguments, the function to

call, and which class to invoke. Step 3 is the act of actually calling the Java class and

passing the arguments to the proper function. Between Steps 3 and 4 is some of the

Java code that I wrote for the project. This code accesses the XML database and Adds,

Edits, or Searches for entries. When the function has completed, it returns the proper

return values back to the Apache SOAP module in Step 4. The module then marshals

the data back into a SOAP Response message, or a fault to be returned to the client.

A sample SOAP Response message can be seen in Appendix B.2. This message is

passed to the Tomcat web server to be sent back to the client as Step 6. At this point

the original message has been received by the server, parsed, handled, and the results

returned to the client so that it can do something with this data. In the case of this

project the client application will do some sort of reporting, either by telling the user

that the data has been successfully added or edited, or in the case of searching, the

results are printed to standard out.

The portion in the larger grey box is all part of the remote server that the vendor

manages. The client is the other part of the diagram and can be replaced by any number

of different or multiple clients. This is what gives SOAP such power in the distributed

application field. The ability to have clients of different types, languages, or platforms

is something that is not possible with other distributed implementations.

Chapter 6. MSc Project Description 37

Tomcat
J2SE

Client

Apache
SOAP

Java
Method
Java

Method
Java

Method
Java

Method

Server

Service Listener

Service Proxy

Business
Application

1

2

3

4

5

6

Figure 6.1: Diagram of the flow of data through the BibTeXDB Web Service.

6.3 Design and Implementation

Appendix E shows the interface for the client application, it takes all the different

BibTeX types as parameters for an Add or Edit function call and returns feedback

about the function’s success.

There is a second command line program which allows the consumer to search the

database for relevant entries. The search takes a query string and the results are printed

to standard out.

The COGSCI department had a BibTeX database of entries that numbered close to

20,000. This BibTeX database was taken and converted into an XML file that the Java

server servlet could reference as a database. After converting the file, it was validated

using RXP(Tobin, 1997) to check for any errors or anomalies. The final XML file has

a BibTeXDB tag as the root element and one or more citation tags as children. Each

citation tags must have one key tag for unique identification. There are several optional

tags that correspond to all the possible BibTeX types that may also be appear once as

children of a citation tag. The following is a citation from the database:

Chapter 6. MSc Project Description 38

<bibtexdb>
...
<citation>
<entry>InCollection</entry>
<key>9138</key>
<address>Amsterdam</address>
<author>David N Lee</author>
<booktitle>Tutorials in motor behaviour</booktitle>
<editor>G E Stelmach and J Requin</editor>
<publisher>N Holland</publisher>
<title>Visuo-motor co-ordination in space-time</title>
<year>1980</year>

</citation>
...
</bibtexdb>

The resulting XML file is quite large, and will only to grow with use, so I choose

to parse the XML with a SAX parser. Since the XML file is working as a database a

unique identifier was added to the BibTeX XML citation calledKey. This Key value

severed several purposed. Since it was just an incremental integer, it prevented any

collisions from people trying to add an entry with the same value. It also gave a unique

identifier to search on or edit at a later date.

There are two different ways to parse XML the first is to use a DOM tree, which

reads the entire XML file into a tree structure. DOM trees are great for moving through

the tree, but require lots of memory to hold each node and links within the tree. A SAX

parser works by only reading one tag at a time and not holding state or knowledge

of the location within the tree.(Peter Murray-Rust, 2000) SAX is much faster than

DOM because of this, and since the service would be constantly searching through the

database for matches, speed is the most important factor.

SOAP-RPC style encoding was chosen for all three functions. It is intuitive to

use RPC for the Add and Edit, because both simply return integer values for the new

key and error code respectively. The Search function could have been implemented

as a Document style encoding, but was not for several reasons. Document style en-

coding is best for asynchronous connections, but the BibTeXDB uses HTTP, which

is synchronous. It does make some sense for the search function to return an XML

document of all the search results. This would actually be smaller than the current

Chapter 6. MSc Project Description 39

return values. SinceBibTeXResults is a defined data type there are empty tags be-

ing returned in the array. (See Appendix B.2) With Document style those empty tags

could be omitted because they could be set to optional in the XML Schema. With the

extra overhead of passing empty tags the client code can automatically put the SOAP

response directly into local variables, whereas if an XML document where returned

that would have to be parsed and then put into local variables. Thus moving the work

from the server back to the client. An advantage of parsing the XML document locally

is that if it were to change in the future such as; adding more tags, this would not break

the client. If would either omitting these tags or use them properly, but it won’t break

the application. The current client that is waiting to receive the SOAP-RPC response

would not be able directly converted the new XML tags into local variables, it would

break and throw an exception because it would not be able to unmarshal these extra

tags into the old class.

Besides returning a XML document to the client to parse, being a synchronous

connection, and having a well-defined BibTeX vocabulary; SOAP-RPC makes a better

encoding style for the search function and an open document format.

6.3.1 Searching

Searching is the bulk of the operations that the web service has to perform and this is

where most of the effort was spent.

XML has several special characters that need escape sequences, specifically the

ampersand (&) and the less than greater than sign (<). The less than sign is escaped by

the sequence < since it starts with the ampersand that too must be escaped to &.

When converting the BibTeX database to XML these characters had to be changed so

not to break the XML, but needed to be returned as their original form when printed as

a BibTeX citation. This required a bit of pre-processing and post-processing avoiding

any complications.

The next big problem with a BibTeX citation is that it has the ability to define

special characters by surrounding the letters with brackets ({X}). This needed to be

stripped out during searching to see if the query string matched any of the text and put

back into the output if it did match.

Chapter 6. MSc Project Description 40

The searching algorithm implemented is rather simple, both the query string and

the XML database text are converted to uppercase, all special BibTeX command se-

quences are stripped out, and special XML characters are replaced. Then the query

string is compare to each of the possible elements in a BibTeX citation; author, pub-

lisher, notes, etc. If a match is found, the BibTeX citation, in its original form, is placed

into an array, which is returned to the consumer after the entire XML database file has

been searched. If you search for the term “XML” you will get results if the title of the

entry contained the letters XML, and/or XML appeared in the notes, or in any other

field. Currently, it is better to error on the side of returning too many results rather than

being too restrictive.

6.3.2 Java Beans

Earlier in section 3.2.8, it was discussed how SOAP does not use Objects, but my

web service passes aBibTeXResults object to the vendor and as a return value,

gets an array ofBibTeXResults objects. To pass anything besides the basic data

types in Java to the web service, you must write your own Serialize and Deserial-

ize functions. These are functions written that convert a class or object into XML

and back. So it is true that SOAP does not pass objects, but instead passes rep-

resentations of the data in the objects, so that it can be used to create new objects.

Apache SOAP comes with a built-in serialization class calledBeanSerializer. This

class can take a Java Bean and automatically serialize and deserialize it. In Ap-

pendix C the XML Deployment Descriptor has a tag called mappings. This tag de-

scribes the Java Bean, the URN, the Qualified Name, and the Serialize/Deserialize

classes that should be to convert the Java Bean to XML and back. For this project

theorg.apache.soap.encoding.soapenc.BeanSerializer is used to convert the

Java Bean.

My BibTeXResults class was converted into in to a Java Bean so that it could

be automatically serialized and deserialized by the web service listener. To turn the

class into a Java bean, accesser functions were added togetVariableName() and

setVariableName(). Other accesser functions were written to format the private

variables of the Bibtex Java Bean to output to XML, plain text, and BibTeX format.

Chapter 6. MSc Project Description 41

This allows for the results array to be outputted to standard out.

For this project, the client and server were both written in Java, but one of the

advantages of SOAP, is that it is language independent. Even though Java Beans were

used in this project it is not necessary that the client implement them. The WSDL file

describes the objectBibTeXResults as a set of Strings, which can be implemented in

any language. The Serialize function for the Java Bean creates an XML representation

of the Java Bean; this XML can be consumed in another language as a structure, list,

array, or other data type specific to the language.

6.4 SOAP Web Service Listener

The Java class that provides the web service is running in a Java servlet container,

through the use of Tomcat’s J2SE environment. With technology like Common Gate-

way Interface (CGI)1, each server request creates a new instance of the CGI applica-

tion, eating memory and resources. A Java Virtual Machine (JVM) would do a similar

thing with each instance of a Java class, allocating space on the heap, using memory

and resources. The J2SE environment helps to prevent this by creating a common area

where all the classes run, helping to alleviate many of the problems that CGI and the

JVM share. There is still a JVM, but it does not start-up and shutdown with each in-

stance of the class. The J2SE is a constantly running a JVM where classes can start

and stop, but the JVM continues to run, thus cutting some overhead and increasing

response times from the server.

By default, the Tomcat server runs off port 8080 on localhost. All these settings

can be changed in the config files, for testing and debugging purposes I changed the

port settings to 8081. This is because of an application callTcpTunnelGui. With this

tool it is possible to tunnel one port to another. The Java applications would send the

SOAP message on port 8080. This would be captured by TcpTunnelGui and forwarded

to port 8081. The web service would then send the reponse back to the TcpTunnelGui

on port 8081, which was then forwarded back to the consumer on port 8080. This

may seems like an extra step, but the TcpTunnelGui captures all the traffic it forwards.

1CGI is an acronym for Common Gateway Interface, it was developed so that HTML could be
dynamically served in real-time.

Chapter 6. MSc Project Description 42

Once captured it can be printed to the screen for debugging purposes. I used this

tool to watch and capture my SOAP messages. To execute the TcpTunnelGui run the

following command at the prompt:

java org.apache.soap.util.net.TcpTunnelGui 8080 localhost 8081

The command is made-up of several parts, the first part,java, is the path to Java,

the second part,org.apache.soap.util.net.TcpTunnelGui is the name of the Java

class, the thrid part8080 is the listening port followed by the server name, in this case

localhost, and finally the port to forward the traffic to,8081.

After the set-up and debugging of the web service listener is complete, your Java

class must be associated with some RPC name. When the client sends a message to

the listener, it also sends a URN (Universal Resource Name). With this information it

is possible for the Java server to invoke the correct Java class, pass any arguments, and

return any resulting values. Tomcat has two ways to register your class with a URN,

the first is through a web interface running as part of the server administration package.

The second is to create an XML document that describes the class, functions available,

parameters, etc. This XML file is called a Service Descriptor Document; Appendix

C.2 has the service descriptor for the BibTeXDB class. Once that is registered, any

SOAP message that the listener receives will be passed to the correct class and the

listener will wait for a return value that it will marshal back into XML for a SOAP

message.

These returned values are sent back to the client application, where it is parsed and

assigned to some variables in the particular language. This project was built in Java,

so the returned value is an Object that is cast into the proper data type.

Both the Add and Edit functions are conducted through the same Java swing inter-

face. Both functions require the same parameters, which are made up of one or more of

the standard BibTeX values. The Swing application gives feedback as to whether the

operation was successful or if there were any problems. To invoke the BibTeX Editor,

type the following command at the prompt:

java bibtexdb.edit http://localhost:8080/soap/servlet/rpcrouter

Chapter 6. MSc Project Description 43

The command line is made up of three parts, the firstjava is the path to the java

executable. The next partbibtexdb.edit is the name of the package and the program

to invoke. This will start the swing application for adding and editing entries. The

final argumenthttp://localhost:8080/soap/servlet/rpcrouter is the URI of

the SOAP listener. In this case, Tomcat was running locally on port 8080. The path

soap/servlet/rpcrouter is the path to the listener that will unmarshal the actual

SOAP messages and invoke the correct Java class.

The Add function returns an integer value or a SOAP fault. If a SOAP fault is

return then the fault message must be inspected to find where the actual error occurred.

Otherwise, an integer value is return, which represent the key value of the newly added

BibTeX citation.

The Edit Function returns as integer value or a SOAP fault. The integer is an error

code that describes any problems that are not related to SOAP. If the Edit function

returns a “0” then the edit was successful, a return of “1” means the key value supplied

could not be found. The client application takes these values and prints an appropriate

String for the user rather than the error code.

The Search function is invoked slightly different because it is not a swing applica-

tion, but instead it is a command line application. Search takes the same parameters as

the Add and Edit application; path to java, package to invoke, and URI to the SOAP

listener, but a fourth argument is added as well. This argument is the term or terms

to queried. The command would look like the following if you were searching for the

term XML.

java bibtexdb.search http://localhost:8080/soap/servlet/rpcrouter XML

If there is a need to narrow the search more terms can be added to the query by

simply placing all the terms in quotes as follows.

java bibtexdb.search http://localhost:8080/soap/servlet/rpcrouter

‘‘XML W3C’’

The spaces act as an “AND” operator and will return any results that contain all of

the search terms. The more information provided the more refined the search results

become.

Chapter 6. MSc Project Description 44

The search function will return an array of a class calledBibTeXResults. This

contains all the BibTeX values such as author, publisher, notes, etc. Appendix B.2

contains a sample response with a BibTeXDB array. This data is then transformed by

the client application to output it in the proper format. If no records are found then the

array is empty and nothing is printed to standard out. This is because the program could

be used as part of a longer UNIX command where the results from one application are

piped as input into the next. If the next application in the pipe afterbibtex.search is

expecting some BibTeX citations and gets a string saying “no results found” this could

cause a problem. So it was best left to not print anything except null or an expected

list of BibTeX citations.

If there is a fault during processing SOAP will return the appropriate fault code and

fault message. This will help determine where the error occurred, what the problem

was, and possibly how to correct it.

Chapter 7

Conclusion

The BibTeXDB web service system was completed successfully, but has plenty room

for improvement. I learned a lot about the intricacies of SOAP, what it means to be a

web service, the role distributed systems play in computing, and how the Internet will

shape the way services are vended in the future.

7.1 Semantic Web and Web Services

The Semantic Web is not a new Internet, but an extension of the current one, in which

information is given a well-defined, structured meaning, better enabling computers

and people to work in cooperation.(Tim Berners-Lee, 2001) This is currently being

designed in parallel with the current web. SOAP web services are part of the current

web and not intended to be part of the next generation Semantic Web. SOAP uses XML

technology, which is not currently powerful enough to express full relations needed in

the Semantic Web. Instead, Resource Description Framework (RDF), which is a form

of XML, will be the basis for message passing, querying, and data storage.

SOAP web services are used to conduct transactions, pass documents, and to make

remote function calls on systems that are heterogeneous. The Semantic Web will have

a similar more powerful system using DAML and RDF. DAML provides a basic infras-

tructure that allows a machine to make the same sorts of simple inferences that human

beings do. It’s just a start, but is a critical foundation for a web of information that

machines can draw upon.(Pease, 2002) This does not mean SOAP is already a doomed

45

Chapter 7. Conclusion 46

technology, rather the Semantic Web is years away, if ever, from construction. SOAP

solves many problems that exist today and tomorrow, and because of this SOAP will

be used for a long time to come. SOAP is an XML based technology, just like many of

the technologies in the Semantic Web and instead of dropping SOAP it probably will

be integrated or evolve to fit into the Semantic Web.

7.2 Improvements and Future Work

7.2.1 Satellite Projects

There are several smaller projects outside the scope of this MSc project that could be

worked on and integrated.

When a LATEX file is compiled using BibTeX it creates an .AUX file for the bibliog-

raphy. It is possible to create a small utility that parses the .AUX file and grabs the list

of all the cite references. It could then invoke the BibTeXDB web service and gather

all the BibTeX citations into a .BIB file that is included in the final run of LATEX. This

would build your bibliography on the fly from the citation references in the document.

7.2.2 Better Searching

Currently the search only matches text string. Future implementations could utilise

the power of regular expressions to search for text strings, allowing for more robust

results. It would also be possible to limit the fields the search is conducted on, to only

author, key, or title, etc. Limiting the fields enables searches of the database for all

authors named “Joe Smith” and not have any results that contain “Joe” or “Smith” in

any of the other fields.

Since the search string is parsed at the space character it is not possible to search

for “New York” without getting results like; “The New English Dictionary, printed

in York”. The current search implementation parses at the spaces and will search for

“New” and do a separate search for “York” and if an entry contains both terms it is

returned in the query. Another problem with parsing at the spaces is that a search

containing “New” will find “New York” with a space after “New” and it will also find

Chapter 7. Conclusion 47

“Newcastle” because it contains the substring “New”. To avoid finding “Newcastle” it

should be easy, just search for “New ” with a trailing space, but because the query is

parsed on spaces this is not possible with the current implementation. To improve the

search capabilities, future implementation could accept a regular expression string as

input and use that to search the database for results. Using regular expressions might

be more processor intensive than the substring match and could increase the time and

utilisation of the application.

Currently, when querying on multiple search terms, the search returns results that

match all of the search terms. The space character between the words acts as an “AND”

operator and will find entries that contain all of these strings or substrings. The search

algorithm could be changed so that an entry would only need to match any the search

terms to be returned. Thus turning the space character into an “OR” operator.

With some more advanced algorithms it could be possible to emulate a query that

is more related to an SQL statement, where “AND” and “OR” operators are intermixed

and wildcard characters are accepted also.

7.2.3 Internationalisation

This ties in with better searching; certain words in the English language are borrowed

from other languages, for example “resume”. It is sometimes spelled with or with-

out the accents in English. As the database grows and different users, with different

language backgrounds, add new entries, each will be slightly different. Therefore,

the system should be implemented to do allow for characters outside the 26 common

letters used in the English language, and should also search for their English equiva-

lence. Search results for “Vitæ” should contain entries with Vitæ and Vitae allowing

for different spellings.

7.2.4 Result Format

Currently, when a search is performed the results are returned as a result object, which

is then cast into aBibTeXDBResult object array. This is then printed to standard out

in BibTeX format. Future versions of the software could use the BibTeX output as

Chapter 7. Conclusion 48

the default, but additional flags could be passed as arguments on the command line

to return the results as plain text, XML, BibTeX, MLA format, or additional formats.

This MSc project is assuming the entries will be used with LATEX, but with additional

styles of outputting the data could be incorporated into different applications.

7.2.5 Java Subclasses

In my undergraduate I learned to program in C/C++, it wasn’t until this year that I

had to use more than the basic knowledge of Java for a large project. Only after most

of the code was written was it evident that it should have been written differently. It

should have been written so that it is more understandable, uses the Object-Oriented

paradigm, and is designed with future editing in mind, specifically the code for the

web server listener when accessing the XML database. I used SAX to parse the XML

file and to search for matching entries, add new entries, and to find and edit existing

ones. The SAX parser works through the use of several predefined functions that

are used to determine the start and end of XML tags and the XML document. These

functions were part of the base BibTeXDB class so each of my three functions (Search,

Add, Edit) had to use these SAX functions to parse the XML database. Problems

arose in determining exactly, which of my three functions called the SAX function and

what exactly to do inside the SAX function that my functions needed. This became

complicated and I essentially used global variables by making private variables in the

base class to tell the SAX function which of my three functions called it.

This could have all been solved if I had made the SAX functions its own class, then

each of my three functions could have instantiated their own specific SAX functions

rather than trying to put code for all three of my functions inside one SAX function.

At the point I realised this I was too far along to fix it, the does code works properly –

it is just not the cleanest.

Another problem with using a SAX parser is that it only knows about the current

tag. It does not know which node in the tree this tag represents, so it is difficult to

keep state. This was a problem with the search function because as the search moved

through each element of the BibTeX citation the application needed to also remember

the tags in the citation it has already seen just in case the last tag matched the search

Chapter 7. Conclusion 49

criteria and the whole citation needed to be returned to the consumer.

7.2.6 Database Options

For this project specification, it was determined that an XML database of BibTeX

citations was to be used. There are several advantages to this, because now with a

master XML file of entries it is possible to use other tools, such as XSLT to search and

manipulate the data.

There are downsides to using an XML file as well; one being that there is no locking

or atomic transactions. Using a different database method to store the BibTeX citations

could solve this. A Relational Database could be used to hold the data. The benefits

of doing this are that Java has a Java Database Connectivity (JDBC) Manager to open

connections to a database and with a pre-built database manager, such as MySQL,

PostGreSQL, or others, things like file locking and atomic transactions are part of the

system. The downside to these systems is that it is another piece of software needs to

be installed and managed, whereas the XML file is just a file on disk.

7.2.7 Speed and Scalability

During most of the project I used a subset of the actual database for testing. This subset

was only the first 15 of thẽ20,000 entries. This allowed me to easily check and see

entries being updated, added, and searched. Toward the end of the project I started to

scale-up the number of entries being parsed, so that I could test for a wider range of

errors and more specific searches. The SAX parser is a fast parser, much faster than

the DOM parser because DOM holds each node in memory and creates a tree structure

data type, which requires lots of memory. Even with the SAX parser’s speed, it must

look at each tag’s contents and compare it to the search string to determine if it is a

match. As the XML file grows in size, so does the work the SAX parser must do. The

final XML database I tested has over 210,000 lines, almost 500,00 words, is more than

6MB on disk, and takes too long to return an answer.

Since Java requires a virtual machine and has a garbage collection system, the

speed of the application is not as fast as one written in C. Even with that in mind, I

Chapter 7. Conclusion 50

think most of the time is spent parsing the XML and is not the overhead of the Java

language. That overhead would be a constant and not dependant on the size of the

XML file. So the time to search the database is directly proportional to the number of

lines in the database.

If nothing can be changed and the delay between request and response is too large

there are a few things that should be done to help the user. One thing that can be

added is a system status; this could take the form of an hourglass or progress bar. The

first item in the list of “Ten Usability Heuristics” is Visibility of System Status. The

system should always keep users informed about what is going on, through appropriate

feedback within reasonable time.(Nielsen, 1994) Another option would be to create a

new thread in the application that handles the SOAP request/response. By doing this,

the application is free to do other things while you wait for the SOAP response.

7.2.8 Multi-User

There are a few problems that could arise in the environment that have not been built-

into this system. There is currently no provision for file locking of the XML database,

this could cause problems if multiple users are editing or adding entries to the database.

Some of the data could be lost as BibTeX citations are written to the file.

It has also been suggested that a multi-tiered systems be implemented so that a

level of rights management can be imposed. The ability to search and add, but not edit

entries for base users or possibly only being able to edit entries that you have added to

the system. This would require adding additional tags to the database that remember

who last edited and who added the data on what date. Higher-level users could delete

entries or edit anyone’s entry along with inheriting lower-level user’s rights of adding

and searching. How the tiers are separated is out of the scope of this MSc project,

but adding this functionality would require an authentication system built on top of

the current system. Building this would mean that all sensitive operations would also

require a session ID or session key to be adding to the function parameters or passed

in the SOAP header that is checked with each function call. Since HTTP is stateless,

every message passed will require the authentication information to be added, be it

name and password or a token, with each message.

Appendix A

Software Used

To construct a webservice I had to install, configure, and run several different pieces of

software. This is a list of the different packages, what their purpose was and how they

were setup.

• Tomcat 4.0 Servlet/JSP Container

• Java 1.4.1

• Xerces Java Parser

• JavaMailTM API 1.3 release

• JavabeansTM Activation Framework 1.0.2 Release

• Microsoft Windows 98 Operating System

• RXP an XML parser

Java 1.4.1 is the newest version of Java and is the most feature rich. It was used

because many of the other Java related items required the most up-to-date software to

be installed. The Javabeans Activation Framework was installed so that it was possible

to use Java Beans with application. The Xerces Java Parser was install to help parse the

SOAP messages that were being sent to and from the server. RXP was used to validate

the BibTeXDB XML file that was created. Finally, Tomcat was set-up on port 8081 to

be the SOAP listener.

51

Appendix B

Sample SOAP RPC request

B.1 SOAP RPC Request

POST /soap/servlet/rpcrouter HTTP/1.0
Host: localhost:8080
Content-Type: text/xml; charset=utf-8
Content-Length: 446
SOAPAction: ""

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

>
<SOAP-ENV:Body>
<ns1:Search
xmlns:ns1="urn:suda:bibtexdb"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

>
<query xsi:type="xsd:string">New York</query>
</ns1:Search>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

52

Appendix B. Sample SOAP RPC request 53

B.2 SOAP RPC Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 1747
Date: Sat, 06 Sep 2003 23:56:26 GMT
Server: Apache Tomcat/4.0.6 (HTTP/1.1 Connector)
Set-Cookie: JSESSIONID=F9824E9D7530755D1491AB32560189A2;
Path=/soap
<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

>
<SOAP-ENV:Body>
<ns1:SearchResponse
xmlns:ns1="urn:suda:bibtexdb"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

>
<return
xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns2:Array" xmlns:ns3="urn:suda"
ns2:arrayType="ns3:bibtexdbresults[1]"

>
<item xsi:type="ns3:bibtexdbresults">
<address xsi:type="xsd:string">New York</address>
<annote xsi:type="xsd:string"></annote>
<author xsi:type="xsd:string">
Jerry A. Fodor and T. G. Bever and M. F. Garrett

</author>
<booktitle xsi:type="xsd:string"></booktitle>
<chapter xsi:type="xsd:string"></chapter>
<edition xsi:type="xsd:string"></edition>
<editor xsi:type="xsd:string"></editor>
<entryType xsi:type="xsd:string">Book</entryType>
<howpublished xsi:type="xsd:string"></howpublished>
<institution xsi:type="xsd:string"></institution>
<journal xsi:type="xsd:string"></journal>
<key xsi:type="xsd:string">14</key>
<month xsi:type="xsd:string"></month>
<note xsi:type="xsd:string"></note>

Appendix B. Sample SOAP RPC request 54

<number xsi:type="xsd:string"></number>
<organization xsi:type="xsd:string"></organization>
<pages xsi:type="xsd:string"></pages>
<publisher xsi:type="xsd:string">McGraw Hill</publisher>
<school xsi:type="xsd:string"></school>
<series xsi:type="xsd:string"></series>
<title xsi:type="xsd:string">
The Psychology of Language

</title>
<type xsi:type="xsd:string"></type>
<volume xsi:type="xsd:string"></volume>
<year xsi:type="xsd:string">1974</year></item>
</return>
</ns1:SearchResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

B.3 SOAP Fault Message

HTTP/1.1 500 Internal Server ErrorContent-Type: text/xml;
charset=utf-8
Content-Length: 4115
Date: Mon, 07 Jul 2003 17:36:01 GMTServer:
Apache Tomcat/4.0.6 (HTTP/1.1 Connector)
Set-Cookie: JSESSIONID=92DAFC3A84D3DBEABE6BB4CEB47DBCFD;
Path=/soap
<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>
Exception from service object:
allrefs.xml (The system cannot find the file specified)
</faultstring>
<faultactor>/soap/servlet/rpcrouter</faultactor>

Appendix B. Sample SOAP RPC request 55

<detail>
<stackTrace>

java.io.FileNotFoundException:
allrefs.xml (The system cannot find the file specified)

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:103)
at java.io.FileInputStream.<init>(FileInputStream.java:66)
at java.io.FileReader.<init>(FileReader.java:41)
at bibtexdb.bibtexService.Search(bibtexService.java:146)
...
at java.lang.Thread.run(Thread.java:536)

</stackTrace>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Appendix C

Tomcat 4.0 JSP/Servlet Container

C.1 Instructions

Tomcat is a Java servlet container that acts as the web service listener. When a SOAP

request comes in, Tomcat forwards the message to the correct Java class. To do this

each Java class has to be registered with the server. The Following is a Deployment

Descriptor, it is an XML document that contains all the instructions to regisiter the

service with the Tomcat server.

C.2 Deployment Descriptor

<isd:service
xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:suda:bibtexdb">
<isd:provider type="java"

scope="Application"
methods="Search Add Edit">

<isd:java class="bibtexdb.bibtexService"/>
</isd:provider>

<isd:mappings defaultRegistryClass="">
<isd:map

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:x="urn:suda"
qname="x:bibtexdbresults"
javaType="bibtexdb.ResultsBean"
xml2JavaClassName=

56

Appendix C. Tomcat 4.0 JSP/Servlet Container 57

"org.apache.soap.encoding.soapenc.BeanSerializer"
java2XMLClassName=
"org.apache.soap.encoding.soapenc.BeanSerializer" />

</isd:mappings>

<isd:faultListener>
org.apache.soap.server.DOMFaultListener

</isd:faultListener>
</isd:service>

Appendix D

Web Service Description Language
(WSDL)

D.1 WSDL File to Describe the BibTeXDB Web Service

<?xml version="1.0" encoding="UTF-8"?>
<!--
WSDL File for the BibTeXDB Web Service
Brian Suda
brian.suda@ed.ac.uk
-->
<definitions name="bibtexdbDescription"

targetnamespace="urn:suda:bibtexdb"
xmlns:tns="urn:suda:bibtexdb"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

>
<types>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:suda:bibtexdb">
<xsd:complexType name="BibTeXDBResults">
<xsd:all>
<xsd:element name="Key" type="xsd:string" />
<xsd:element name="Type" type="xsd:string" />
<xsd:element name="Booktitle" type="xsd:string" />
<xsd:element name="Title" type="xsd:string" />
<xsd:element name="Author" type="xsd:string" />

58

Appendix D. Web Service Description Language (WSDL) 59

<xsd:element name="Publisher" type="xsd:string" />
<xsd:element name="Editor" type="xsd:string" />
<xsd:element name="Address" type="xsd:string" />
<xsd:element name="Institution" type="xsd:string" />
<xsd:element name="Organization" type="xsd:string" />
<xsd:element name="School" type="xsd:string" />
<xsd:element name="Month" type="xsd:string" />
<xsd:element name="Year" type="xsd:string" />
<xsd:element name="Journal" type="xsd:string" />
<xsd:element name="Volume" type="xsd:string" />
<xsd:element name="Series" type="xsd:string" />
<xsd:element name="Number" type="xsd:string" />
<xsd:element name="Chapter" type="xsd:string" />
<xsd:element name="Pages" type="xsd:string" />
<xsd:element name="Edition" type="xsd:string" />
<xsd:element name="Howpublished" type="xsd:string" />
<xsd:element name="Annote" type="xsd:string" />
<xsd:element name="Note" type="xsd:string" />

</xsd:all>
</xsd:complexType>

<xsd:complexType name="BibTeXDBResultsArray">
<xsd:complexContent>
<xsd:restriction base="soapenc:Array">

<xsd:attribute
ref="soapenc:arrayType"
wsdl:arrayType="typens:BibTeXDBResults[]"

/>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>
</types>

<!-- variables passes in function -->
<message name="SearchQuery">
<part name="query" type="xsd:string" />

</message>
<message name="SearchResults">
<part name="return" type="tns:BibTexDBResultsArray" />

</message>

Appendix D. Web Service Description Language (WSDL) 60

<message name="AddQuery">
<part name="AddEntry" type="tns:BibTeXDBResults" />

</message>
<message name="AddResult">
<part name="return" type="xsd:integer" />

</message>

<message name="EditQuery">
<part name="EditEntry" type="tns:BibTeXDBResults" />

</message>
<message name="EditResult">
<part name="return" type="xsd:integer" />

</message>

<!-- These are function names and their input/output -->
<portType name="bibtexInterface">
<operation name="Search">

<input message="tns:SearchQuery">
<output message="tns:SearchResults">

</operation>
<operation name="Edit">

<input message="tns:EditQuery">
<output message="tns:EditResult">

</operation>
<operation name="Add">

<input message="tns:AddQuery">
<output message="tns:AddResult">

</operation>
</portType>

<!-- These are the interfaces -->
<binding name="bibtexBinding" type="tns:bibtexInterface">
<soap:binding

style="rpc"
transport="http://schema.xmlsoap.org/soap/http"
/>
<operation name="Search">
<soap:operation soapAction="urn:Search" />
<input>
<soap:body

use="encode"

Appendix D. Web Service Description Language (WSDL) 61

namespace="urn:Search"
encodingStyle="http://schema.xmlsoap.org/soap/encoding/"

/>
</input>
<output>

<soap:body
use="encode"
namespace="urn:Search"
encodingStyle="http://schema.xmlsoap.org/soap/encoding/"

/>
</output>

</operation>
<operation name="Edit">

<soap:operation soapAction="urn:Edit" />
<input>

<soap:body
use="encode"
namespace="urn:Edit"
encodingStyle="http://schema.xmlsoap.org/soap/encoding/"

/>
</input>
<output>

<soap:body
use="encode"
namespace="urn:Edit"
encodingStyle="http://schema.xmlsoap.org/soap/encoding/"

/>
</output>

</operation>
<operation name="Add">

<soap:operation soapAction="urn:Add" />
<input>

<soap:body
use="encode"
namespace="urn:Add"
encodingStyle="http://schema.xmlsoap.org/soap/encoding/"

/>
</input>
<output>

<soap:body
use="encode"
namespace="urn:Add"

Appendix D. Web Service Description Language (WSDL) 62

encodingStyle="http://schema.xmlsoap.org/soap/encoding/"
/>

</output>
</operation>

</binding>

<!-- service location -->
<service name="bibtexService">
<port name="bibtexPort" binding="tns:bibtexBinding">

<soap:address
location="http://localhost:8081/soap/servlet/rpcrouter"

/>
</port>

</service>

</definition>

Appendix E

BibTeXDB Client

This is the screen capture of the Java Client. This client allows you to Add or Edit and

entry by filling in the corresponding fields.

Figure E.1: Figure: BibTeX Java Client

63

Appendix F

WS-Inspection Document

This is a sample Web Service Inspection Document, it points to a WSDL file that

describes the service fully and it points to a UDDI registery that contain information

about the provider and service.

<?xml version="1.0"?>
<inspection
xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsiluddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/"

>
<service>
<abstract>BibTeXDB with two descriptions</abstract>

<!-- Sample WSDL Description -->
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://example.com/BibTeXDB.wsdl"

/>

<!-- Sample UDDI Description -->
<description referencedNamespace="urn:uddi-org:api">

<wsiluddi:serviceDescription
location="http://www.example.com/uddi/inquiryapi"

>
<wsiluddi:serviceKey>
4FA28580-5C39-11D5-9FCF-BB3200333F79

</wsiluddi:serviceKey>
</wsiluddi:serviceDescription>

64

Appendix F. WS-Inspection Document 65

</description>
</service>

<!-- links to other WS-I Documents -->
<link
referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
location="http://example.com/moreservices.wsil"

/>
</inspection>

Bibliography

Asaravala, A. (2002). Can Public Web Services Work? Internet.

http://www.newarchitectmag.com/documents/s=2453/na1102d/.

Berners-Lee, T. (2002). Web Services: Program Integra-

tion across Application and Organization boundaries. Internet.

http://www.w3.org/DesignIssues/WebServices.html.

Clabby, J. (2002). Web Service Gotchas. Internet.

http://www.ibm.com/developerworks/webservices/library/ws-gotcha.html.

Cohen, F. (2001). Myths and misunderstandings surrounding SOAP. Internet.

http://www.ibm.com/developerworks/webservices/library/ws-soap.html.

Daveid Ehnebuske, IBM & Barbara McKee, I. (2001). Versioning Taxonomy and

Identifier Systems. Internet. http://uddi.org/pubs/tn-taxonomy-versioning-v1.05-

Draft-20010906.pdf.

Don Box, David Ehnebuske, G. K. A. L. N. M. H. F. N. S. T. D. W. (2000). Simple

Object Access Protocol (SOAP) 1.1. Internet. http://www.w3.org/TR/2000/NOTE-

SOAP-20000508/.

Haas, H. (2002). Web Services Activity. Internet. http://www.w3c.org/2002/ws/.

ISO (1986). Information processing - Text and office systems - Standard Generalized

Markup Language (SGML). Internet.

James Snell, Doug Tidwell, P. K. (2001).Programming Web Services with SOAP.

O’Reilly & Associates, Inc. http://www.oreilly.com/catalog/progwebsoap/.

66

Bibliography 67

Keith Ballinger, Peter Brittenham, A. M. W. A. N. S. P. (2001). Specifi-

cation: Web Services Inspection Language (WS-Inspection) 1.0. Internet.

http://www.ibm.com/developerworks/library/ws-wsilspec.html.

Kreger, H. (2003). Fulfilling the Web Services promise.Communications of the ACM,

46(6):29–ff.

Martin Dürst, A. F. (2003). Unicode in xml and other markup languages. Internet.

http://www.unicode.org/reports/tr20/.

Nielsen, J. (1994). Ten Usability Heuristics. Internet.

http://www.useit.com/papers/heuristic/heuristiclist.html.

Organization, T. W. S. I. (2002). The Organization and its Work. Internet.

Pease, A. (2002). Why use DAML? Internet. http://www.daml.org/2002/04/why.html.

Peter Murray-Rust, D. M. (2000). SAX. Internet. http://www.saxproject.org.

Schwartz, E. (2002). UC Berkeley to use Web Ser-

vices to deploy unified messaging system. Internet.

http://www.infoworld.com/article/02/03/01/020301hnberkeley1.htm.

Tim Berners-Lee, James Hendler, O. L. (2001). The Semantic Web. Internet.

Tobin, R. (1997). RXP - an XML parser available under the GPL. Internet.

http://www.cogsci.ed.ac.uk/ richard/rxp.html.

Vasudeva, V. (2001). A Web Services Primer. Internet.

http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/.

William A. Nagy, Franciso Cubera, S. W. (2001). The Advertisement

and Discovery of Services (ADS) protocol for Web Services. Internet.

http://www.ibm.com/developerworks/web/library/ws-ads.html.

Winer, D. (1999). XML-RPC Specification. Internet. http://www.xmlrpc.com/spec.

