

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 Getting Started With JPA
n	 Mapping an Object
n	 Obtaining and Using an Entity Manager
n	 Transactions
n	 Querying
n	 Hot Tips and more...

The Java Persistence API (JPA) is the Java standard for mapping
Java objects to a relational database. Even though proprietary
mapping products like Hibernate and TopLink still exist, they
are now focused on providing their functionality through
the JPA API, allowing all applications to be portable across
JPA implementations. This refcard will give users enough
to understand the basics of JPA and get started writing JPA
applications. It covers entities, identifiers, O-R mappings,
using an entity manager, creating and executing queries, and
configuration of the persistence.xml file.

GETTING STARTED WITH JPA

MAPPING AN OBJECT

G
et

tin
g

 S
ta

rt
ed

 w
ith

 J
PA

 w
w

w
.d

zo
n

e.
co

m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

By Mike Keith

→

Listing 1 – Pet entity class

@Entity
@Table(name="PET_INFO")
public class Pet {
 @Id
 @Column(name="ID")
 int licenseNumber;
 String name;
 PetType type;
 @ManyToOne
 @JoinColumn(name="OWNER_ID")
 Owner owner;
 ...
}

Listing 2 - Owner entity class

@Entity
public class Owner {
 @Id
 int id;
 String name;
 @Column(name="PHONE_NUM")
 String phoneNumber;
 @OneToOne
 Address address;
 @OneToMany(mappedBy="owner")
 List<Pet> pets;
 ...
}

In a bidirectional relationship pair, such as the @OneToMany
relationship in Owner to Pet and the @ManyToOne relationship
back from Pet to Owner, only one foreign key is required in one
of the tables to manage both sides of the relationship. As a
general rule, the side that does not have the foreign key in it
specifies a mappedBy attribute in the relationship annotation and
specifies the field in the related entity that maps the foreign key.

The basic unit of persistence in JPA is the entity, which is
nothing more than a regular Java class with metadata to
describe how its state maps to the database tables. Metadata
may be in the form of annotations on the entity class itself, or it
may be an accompanying XML file, but we are using annotations
since they are easier to specify and understand.

Every entity class should have an @Entity marker and an
identifier field, indicated by @Id, that is mapped to the primary
key column in the database. When a field contains simple
data and maps to a regular column in the database we call it a
basic mapping, thus an identifier field is a special kind of basic
mapping. When an entity has a field that references one or more
other entities, that field maps to a foreign key column, and is
called a relationship field. Other than the identifier field, basic
mappings do not need to be annotated, but relationships must
be specified by their relationship cardinality.

Defaulting rules in JPA mean that you are not required to specify
table names and column names that an entity is mapped to. If
you are not happy with the JPA-assigned defaults then you can
always override them through the use of additional mapping
metadata. For example, by putting @Table on the entity class
you can make the table name explicit, and by annotating a
basic mapping field with @Column you can define the particular
column that maps the state in that field. Likewise @JoinColumn
is used to override the name of the foreign key column for
relationship references.

An example of two mapped entities are the Pet and Owner
classes shown in Listings 1 and 2.

Hot
Tip

When used together, XML mappings can over-
ride the values specified in annotations

Getting Started with JPA

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

#22

 tech facts at your fingertips

Getting Started with JPA

2

DZone, Inc. | www.dzone.com

Mapping an Object, continued

The possible mapping annotations that can be used are:

Annotations used to override the names of the tables or
columns in the database are:

@Basic
@Embedded
@EmbeddedId

@Enumerated
@Lob
@ManyToMany

@ManyToOne
@OneToMany
@OneToOne

@Temporal
@Transient

@AttributeOverride(s)
@AssociationOverride(s)
@Column
@DiscriminatorColumn
@JoinColumn(s)
@JoinTable

@PrimaryKeyJoinColumn(s)
@SecondaryTable(s)
@SequenceGenerator
@Table
@TableGenerator

Other annotations used to indicate the type of the class or
other aspects of the model are:

@Entity

@Embeddable

@GeneratedValue

@Id

OBTAINING AN ENTITY MANAGER

The EntityManager class is the main API in JPA. It is used
to create new entities, manufacture queries to return sets
of existing entities, merge in the state of remotely modified
entities, delete entities from the database, and more.

There are, generally speaking, two main kinds of entity
managers:

Listing 3 – Obtaining a non-managed entity manager

import javax.persistence.*;
...
EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("PetShop");
EntityManager em = emf.createEntityManager();
...
em.close();

In Listing 4 we see how a standard host container can provide a
simpler way to obtain an entity manager. The only catch is that
this is only supported within standard Java EE components (or
containers that are compliant to the JPA container contract), so
this example uses a stateless session bean.

Listing 4 – Injecting a managed entity manager

@Stateless
public class MyBean implements MyInterface {
 @PersistenceContext(unitName="PetShop")
 EntityManager em;
 ...
}

USING AN ENTITY MANAGER

The basic purpose of an entity manager is to perform create/
read/update/delete (CRUD) operations on entities. Listing 5
shows methods that perform these operations.

Listing 5 – Invoking the entity manager

public Pet createPet(int idNum, String name, PetType
type) {
 Pet pet = new Pet(idNum, name, type);
 em.persist(pet);
 return pet;
}
public Pet findPet(int id) {
 return em.find(Pet.class, id);
}

public Pet changeName(int id, String newName) {
 Pet pet = this.findPet(id);
 pet.setName(newName);
 return pet;
}
public void deletePet(int id) {
 Pet pet = this.findPet(id);
 em.remove(pet);
}

Note that finding the pet is the first step to being able to
perform update and delete operations on it. Also, an update
does not even involve invoking the entity manager, but requires
reading the pet, loading it into the entity manager and then
modifying it. The modification will be reflected in the database
when the transaction is committed.

TRANSACTIONS

Since we just mentioned transactions, but didn’t explain them,
now would be a good time to state that JPA supports two
different kinds of transactions.

JTA container transactions Used when running in container mode

resource local transactions Typically used when running in non-container
mode.

JTA transactions are started and committed using the usual
container techniques, either calling the UserTransaction API
or making use of container-managed transaction demarcation
in EJB or Spring. For example, if the methods in Listing 5 were
in a session bean that had a Required transaction attribute
setting then a transaction would be started at the beginning and
committed at the end of each client method invocation.

When using local transactions the transaction must be
demarcated manually by invoking on the EntityTransaction
instance accessed from the entity manager. Each of the three
methods in Listing 5 that caused the database to change would
need to have begin and commit calls, as shown in Listing 6 for
the persist method. Methods that only read from the database
do not need to occur within a transaction.

Hot
Tip

The merge() method can also be used to create
entities, but is most useful for merging in entity
changes made on the client side.

@IdClass

@Inheritance

@DiscriminatorValue

@MapKey

@MappedSuperclass

@OrderBy

@Version

container-managed The managed entity managers may only be obtained
within a container that supports the JPA Service
Provider Interface (SPI).

non-managed Non-managed entity managers may be obtained
in any environment where a JPA provider is on the
classpath. Listing 3 shows an example of obtaining
a non-managed entity manager by first obtaining
an EntityManagerFactory instance from the
Persistence root class.

 tech facts at your fingertips

Getting Started with JPA

3

DZone, Inc. | www.dzone.com

QUERYING

Listing 6 – Using EntityTransaction

public Pet createPet(int idNum, String name, PetType
type) {
 em.getTransaction().begin();
 Pet pet = new Pet(idNum, name, type);
 em.persist(pet);
 em.getTransaction().commit();
 return pet;
}

The complete EntityManager API is listed in Table 1, with a
brief description of what each method does.

Table 1. EntityManager method summary

Dynamic queries are objects that are created from an entity
manager, and then executed. The query criteria are specified
at creation time as a Java Persistence Query Language (JP
QL) string. Before executing the query a number of possible

The entire Query API is shown in Table 2.

Query Method Description

List getResultList(); Execute the query and return the results
as a List

Object getSingleResult(); Execute a query that returns a single result

int executeUpdate(); Execute an update or delete statement

Query setMaxResults(
 int maxResult);

Set the maximum number of results to
retrieve

Query setFirstResult(
 int startPosition);

Set the position of the first result to
retrieve

Query setHint(
 String hintName,
 Object value);

Set an implementation-specific query hint

Query setParameter(
 String name,
 Object value);

Bind an argument to a named parameter

Query setParameter(
 String name,

Date value,
TemporalType temporalType);

Bind an instance of java.util.Date to a
named parameter

configuration method calls may be made on the query instance
to configure it. Listing 7 shows an example of creating and
executing a query that returns all the instances of Pet, or the
first 100 if there are more than 100 instances.

Listing 7 – Creating and executing a dynamic query

Query q = em.createQuery("SELECT p FROM Pet p");
q.setMaxResults(100);
List results = q.getResultList();

A named query is a query that is defined statically and then
instantiated and executed at runtime. It can be defined as an
annotation on the entity class, and assigned a name that is
used when the query is created. Listing 8 shows a named query
defined on the Pet entity.

Listing 8 – Defining a named query

@NamedQuery(name="Pet.findByName",
 query="SELECT p FROM Pet p WHERE p.name LIKE :pname")
@Entity
public class Pet {
 ...
}

The last identifier is prefixed with a colon (:) character to indicate
that it is a named parameter that must be bound at runtime
before the query can be executed. Listing 9 shows a method
that executes the query by first instantiating a Query object
using the createNamedQuery() factory method, then binding
the pname named parameter to the name that was passed
into the method, and finally executing the query by invoking
getResultList().

Listing 9 – Executing a named query

public List findAllPetsByName(String petName) {
 Query q = em.createNamedQuery("Pet.findByName");
 q.setParameter("pname", petName);
 return q.getResultList();
}

Querying, continuedTransactions, continued

Hot
Tip

Named queries are not only more efficient than
dynamic queries but are also safer since they
will often get pre-compiled by the persistence
implementation at deployment time

Method Description

void persist(Object entity) Persist an entity

<T> T merge(T entity); Merge the state of an entity into the
database

void remove(Object entity); Remove an entity from the database

<T> T find(
 Class<T> entityClass,
 Object primaryKey);

Find and return an instance of an entity class

<T> T getReference(
 Class<T> entityClass,

Object primaryKey);

Create a holder for the primary key of an
entity

void flush(); Cause all changes to be written out to the
database

void setFlushMode(
 FlushModeType flushMode);

Set the flushing mode for query execution

FlushModeType getFlushMode(); Get the flushing mode for query execution

void lock(
 Object entity,

LockModeType lockMode);

Lock an object to obtain greater isolation
consistency guarantees

void refresh(Object entity); Update the in-memory entity with the state
from the database

void clear(); Make all managed entities become
unmanaged

boolean contains(
 Object entity);

Determine if an entity is managed

Query createQuery(
 String JP QLString);

Create a dynamic query from JP QL

Query createNamedQuery(
 String name);

Create a named query

Query createNativeQuery(
 String sqlString);

Create a query from SQL

Query createNativeQuery(
 String sqlString,

Class entityClass);

Create a query from SQL that returns a given
entity type

Query createNativeQuery(
 String sqlString,

String resultSetMapping);

Create a query from SQL that uses a given
defined mapping

void joinTransaction(); Join an existing JTA transaction

Object getDelegate(); Access the underlying EntityManager
implementation

void close(); Close the EntityManager

boolean isOpen(); Determine whether the EntityManager has
been closed

EntityTransaction
 getTransaction();

Access the EntityManager local transaction

Table 2. Query method summary

 tech facts at your fingertips

Getting Started with JPA

4

DZone, Inc. | www.dzone.com

Table 2. Query method summary, continued

JAVA PERSISTENCE QUERY LANGUAGE

Querying, continued
Query Method Description

Query setParameter(
 String name,

Calendar value,
TemporalType temporalType);

Bind an instance of java.util.Calendar to a
named parameter

Query setParameter(
 int position,

Object value);

Bind a parameter by position

Query setParameter(
 int position,

Date value, TemporalType
temporalType);

Bind an instance of java.util.Date to a
positional parameter

Query setParameter(
 int position,

Calendar value, TemporalType
temporalType);

Bind an instance of java.util.Calendar to a
positional parameter

Query setFlushMode(
 FlushModeType flushMode);

Set the flush mode for the query

The Java Persistence Query Language is SQL-like, but operates
over the entities and their mapped persistent attributes instead
of the SQL schema. Many of the SQL functions and even
reserved words are supported in JP QL.

There are three basic types of JP QL statements, of which the
first is monstrously the most popular and useful: selects, bulk
updates and bulk deletes.

1. select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

2. update_clause [where_clause]
3. delete_clause [where_clause]

A simplified table of most of the supported syntax is in
Table 4. For complete and precise grammar, consult the JPA
specification at http://jcp.org/aboutJava/communityprocess/
final/jsr220/index.html. The primitive terms are shown in Table 3.

Table 3. Primitive terms for JP QL grammar Table 4. Simplified JP QL Grammar

Clause/Term Syntax

select_clause SELECT [DISTINCT] select_exp {,select_exp}*

select_exp variable | state_field_exp | single_rel_exp | aggregate_exp |
constructor_exp

aggregate_exp {{AVG | MAX | MIN | SUM} ([DISTINCT] state_field_exp)} |
COUNT ([DISTINCT] variable | state_field_exp | single_rel_
exp)

constructor_exp NEW constructor_method (constructor_item {,constructor_
item}*)

constructor_item single_rel_exp | aggregate_exp

from_clause FROM variable_decl {, {variable_decl | in_decl}}*

variable_decl entityName [AS] variable {join_exp | fetch_join_exp}*

join_exp [LEFT [OUTER] | INNER] JOIN rel_field [AS] variable

fetch_join_exp [LEFT [OUTER] | INNER] JOIN FETCH rel_field

in_decl IN (multi_rel_exp) [AS] variable

where_clause WHERE conditional_exp

conditional_exp {[NOT] conditional} | {conditional_exp {AND | OR}
conditional_exp}

conditional comparison | between_exp | like_exp | in_exp | compare_
null_exp | compare_empty_exp | compare_member_exp |
exists_exp

comparison compare_string | compare_boolean | compare_enum |
compare_datetime | compare_entity | compare_arithmetic

compare_string string_exp {= | > | >= | < | <= | <>} {string_exp | all_any_
subquery}

compare_boolean boolean_exp {= | <>} {boolean_exp | all_any_subquery}

compare_enum enum_exp {= | <>} {enum_exp | all_any_subquery}

compare_datetime datetime_exp {= | > | >= | < | <= | <>} {datetime_exp |
all_any_subquery}

compare_entity entity_exp {= | <>} {entity_exp | all_any_subquery}

compare_arithmetic arithmetic_exp {= | > | >= | < | <= | <>} {arithmetic_exp |
all_any_subquery}

all_any_subquery {ALL | ANY | SOME} (subquery)

between_exp arithmetic_exp [NOT] BETWEEN arithmetic_exp AND
arithmetic_exp

like_exp string_exp [NOT] LIKE pattern_value [ESCAPE escape_char]

in_exp state_field_exp [NOT] IN ({literal | input_param} {,{literal |
input_param}}*)

compare_null_exp {single_rel_exp | input_param} IS [NOT] NULL

compare_empty_exp multi_rel_exp IS [NOT] EMPTY

compare_member_exp entity_exp [NOT] MEMBER [OF] multi_rel_exp

exists_exp [NOT] EXISTS (subquery)

arithmetic_exp arithmetic | (subquery)

string_exp string | (subquery)

entity_exp variable | input_param | single_rel_exp

enum_exp enum | (subquery)

datetime_ exp datetime | (subquery)

boolean_exp boolean | (subquery)

arithmetic arithmetic_term | {arithmetic { * | / | + | - } arithmetic}

arithmetic_term state_field_exp | literal | input_param | aggregate_exp |
numeric_function | (arithmetic)

string state_field_exp | literal | input_param | aggregate_exp |
string_function

enum state_field_exp | literal | input_param

datetime state_field_exp | input_param | aggregate_exp | datetime_
function

boolean state_field_exp | literal | input_param

Term Description

entityName Name of an entity (which is defaulted to the name of the
entity class)

variable Identifier variable following Java identifier rules

state_field_exp Term that resolves to an entity field containing simple
state (e.g. if Pet is represented by variable p, then p.name
or p.owner.phoneNumber)

single_rel_exp Term that resolves to an entity field containing an one-to-
one or many-to-one relationship (e.g. if Pet is represented
by variable p, then p.owner or p.owner.address)

multi_rel_exp Term that resolves to an entity field containing a one-
to-many or many-to-many relationship (e.g. if Owner is
represented by variable o, then o.pets)

rel_field Term composed of a variable and one of its relationship
fields, with no traversing of intermediate relationships
(e.g. if Pet is represented by variable p, then p.owner)

constructor_method Constructor for a non-entity class (i.e. the name of the
class)

input_param Variable that represents an input parameter and must be
bound before the query can be executed

literal A value of a particular type such as a string or integer (e.g.
‘Iggy Pop’, or 42)

pattern_value A valid SQL pattern string (e.g. “% Smith”)

escape_char A character to be escaped

Java Persistence Query Language, continued

Hot
Tip

Bulk deletes are useful for doing test clean-up
and clearing all of the data from the entity tables
without having to revert to SQL.

 tech facts at your fingertips

Getting Started with JPA

5

DZone, Inc. | www.dzone.com

Java Persistence Query Language, continued

Clause/Term Syntax

string_function CONCAT (string , string) |
SUBSTRING (string , arithmetic , arithmetic) |
TRIM ([[{LEADING | TRAILING | BOTH}] [trim_char] FROM]
string) |
LOWER (string) |
UPPER (string)

datetime_function CURRENT_DATE | CURRENT_TIME | CURRENT_
TIMESTAMP

numeric_function LENGTH (string) |
LOCATE (string , string [, arithmetic]) |
ABS (arithmetic) |
SQRT (arithmetic) |
MOD (arithmetic , arithmetic) |
SIZE (multi_rel_ exp)

subquery SELECT [DISTINCT] {variable | single_rel_exp | aggregate_
exp}
FROM subquery_decl {, subquery_decl}*
[where_clause]

subquery_decl variable_decl | {single_rel_exp [AS] variable} | in_decl

update_clause UPDATE entityName [[AS] variable] SET update_item
{,{update_item}}*

update_item {state_field_exp | single_rel_exp} = new_value

new_value variable | input_param | arithmetic | string | boolean | datetime
| enum | NULL

delete_clause DELETE FROM entityName [[AS] variable]

groupby_clause GROUP BY groupby_item {, groupby_item}*

groupby_item single_rel_exp | variable

having_clause HAVING conditional_exp

orderby_clause ORDER BY orderby_item {, orderby_item}*

orderby_item state_field_exp [ASC | DESC]

Table 4. Simplified JP QL Grammar, continued

CONFIGURATION

Without counting the mappings from the entity to the database
tables, there is really only one unit of JPA configuration needed
to get your application up and running. It is based on the
notion of a persistence unit, and is configured in a file called
persistence.xml, which must always be placed in the META-
INF directory of your deployment unit. Each persistence unit is
a configuration closure over the settings necessary to run in the
relevant environment. The parent element in a persistence.xml
file is the persistence element and may contain one or more
persistence-unit elements representing different execution
configurations. Each one must be named using the mandatory
persistence-unit name attribute.

There are slightly different requirements for configuring the
persistence unit, depending upon whether you are deploying
to a managed container environment or a non-managed one. In
a managed container the target database is indicated through
the jta-data-source element, which is the JNDI name for the
managed data source describing where the entity state is stored

A hierarchical view of the possible XML elements in a
persistence.xml file are shown in Figure 1. All of the elements
are optional and the starred elements may be pluralized.

persistence

provider

jta-data-source

non-jta-data-source

mapping-file

jar-file

class

exclude-unlisted-classes

properties

persistence-unit
 • name
 • transaction type

property
 • name
 • value

*

*

*

*

*

Figure 1. XML elements in persistence.xml file

for that configuration unit. In a non-managed environment
the target database is typically specified through the use
of vendor-specific properties that describe the JDBC driver
and connection properties to use. Also, in non-managed
environments the entity classes must be enumerated in class
elements, whereas in managed containers the entity classes
will be automatically detected. Examples of container and non-
container persistence unit elements are indicated in Listings 10
and 11, respectively.

Listing 10 – Container persistence unit configuration

<persistence-unit name="PetShop">
 <jta-data-source>jdbc/PetShopDB</jta-data-source>
</persistence-unit>

Listing 11 – Non-container persistence unit configuration

<persistence-unit name="PetShop">
 <class>com.acme.petshop.Pet</class>
 ...
 <class>com.acme.petshop.Owner</class>
 <properties>
 <property name="eclipselink.jdbc.driver"
 value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"

value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user"
value="scott"/>
 <property name="eclipselink.jdbc.password"
value="tiger"/>
 </properties>
</persistence-unit>

Configuration, continued

Hot
Tip

JP QL queries can return data projections over
entity attributes, averting instantiation of the
actual entity objects

Hot
Tip

A provider implementation will be found by
default, so avoid using the provider element and
binding yourself to a specific provider unless
you really are dependent upon that provider.

6

 tech facts at your fingertips
Getting Started with JPA

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Pro EJB 3: Java Persistence API, Michael Keith and Merrick Schincariol, Apress, May 2006.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-24-0
ISBN-10: 1-934238-24-4

9 781934 238240

5 0 7 9 5

ABOUT THE AUTHOR

Assuming a basic knowl-
edge of Java, SQL and
JDBC, this book will teach
you the Java Persistence
API from the ground up.
After reading it, you will
have an in-depth under-
standing of JPA and learn
many tips for using it in
your applications.

RECOMMENDED BOOK

Mike Keith
Mike Keith was a co-lead of the EJB 3.0 and JPA 1.0 specifications and co-
authored the premier JPA reference book called Pro EJB 3: Java Persistence
API. He has 18 years of teaching, research and development experience in
object-oriented and distributed systems, specializing in object persistence. He
currently works as an architect for Java and persistence strategies at Oracle
and represents Oracle on the JPA 2.0 and Java EE 6 expert groups. He has

authored a host of articles and papers and is a popular speaker at numerous conferences and
events around the world.

BUY NOW
books.dzone.com/books/java-persistence

RESOURCESMOVING ON

As you may have noticed, using JPA is not that hard, and
you win the big prizes of portability and compatibility going
forward. Hopefully you are now feeling ready to cut your teeth
on a JPA application of your very own. The next step is to
download the open source JPA 1.0 Reference Implementation
(TopLink Essentials) and start it up. It is available at https://
glassfish.dev.java.net/downloads/persistence/JavaPersistence.
html and is trivial to install and configure. Happy persisting!

Resource Source

Glassfish Persistence Page https://glassfish.dev.java.net/javaee5/persistence/entity-
persistence-support.html

Oracle Technology Network
JPA resources

http://www.oracle.com/technology/products/ias/toplink/
jpa/index.html

Eclipse JPA (part of Eclipse
Persistence Services Project)

http://www.eclipse.org/eclipselink

Pro EJB 3: Java Persistence
API

By Mike Keith and Merrick Schincariol
Apress, 2006
books.dzone.com/books/java-persistence

Current projects:
n Committer on Eclipse Persistence Project
n Member of JSR 317–JPA 2.0
n Member of JSR 316–Java EE 6
n Member of JSR 318–EJB 3.1
n Member of Java EE subcommittee of

OSGi Alliance EEG

Publications
n Pro EJB 3: Java Persistence API, Mike Keith and Merrick

Schincariol, Apress, May 2006
n ACM Queue, May/June 2008, Exposing the ORM Cache
n JavaLobby, June 2008, Looking Forward to JPA 2.0–Part 2
n JavaLobby, April 2008, Looking Forward to JPA 2.0–Part 1

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

