
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OpenWindows Developer’s Guide:
Motif Conversion Utilities Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xi

1. Introduction to GMF and GUIL . 1

Devguide, GMF, and GUIL. 1

Names and Terminology. 1

Installation and Environment Setting for Devguide, GMF, and
GUIL . 2

Setting Environment Variables for GUIDEUTILHOME . . . 2

Setting Environment Variables for MOTIFHOME. 2

How you interact with Devguide and GMF. 3

2. Getting Started with GMF. 5

Summary of How to Create an Application with GMF 6

Generating User Interface Code from GIL Files. 6

GMF-Generated Files . 7

Compiling and Testing Interface Code . 8

Integrating Application Code with GMF Interface Code 8

Regenerating Code for a Modified Interface 9

iv Devguide: Motif Conversion Utilities Guide—August 1994

3. GMF Functionality in Detail. 11

When Menu Items . 11

Action Menu Items . 12

Using GMF to Generate Code . 12

GMF Command-Line Options . 13

Files Generated for a Single GIL File. 14

_ui.c File . 15

_ui.h File . 17

 _stubs.c. 18

Makefile . 19

Files Generated for a Project. 19

<project_name>.c File . 19

<project_name>.h File. 20

<project_name>.make File . 20

Regenerating Code for a Modified Interface 20

Regenerating Code for an Individual GIL File. 21

Regenerating Code for a Project . 21

Removing Obsolete Callbacks . 21

Integrating Your Application Code with the Interface Code . . 22

Changing Widget Resources . 22

Compiling . 25

4. Internationalization . 27

Overview of Internationalization Concepts 27

Levels of Internationalization . 27

Contents v

GMF Support for Internationalization 29

Generating Code for an Internationalized Application 29

Using GMF Command Line Options 29

Generated Resource Files . 29

Level-3 Resources . 30

Common Resources . 30

Using XFILESEARCHPATH . 30

5. Using GUIL to Create a UIL File . 31

 Generating a UIL File . 31

GUIL Command-Line Options . 32

A. Files Shipped with Devguide Motif Utilities 33

The Bin Subdirectory. 33

The Include Subdirectory . 33

The Lib Subdirectory. 33

The Man Subdirectory. 34

The Src Subdirectory . 34

The demo Subdirectory. 34

B. Unsupported Devguide Features . 35

Bold Labels . 35

Help . 35

Connections Between Base Windows . 35

Miscellaneous Unsupported GUI Elements 36

vi Devguide: Motif Conversion Utilities Guide—August 1994

vii

Figures

Figure 1-1 GMF-Generated Source Files . 3

Figure 3-1 Overview of gmf Files for a Single GIL File 15

Figure 3-2 Example Widget Tree for a Base Window. 17

viii Devguide: Motif Conversion Utilities Guide—August 1994

ix

Tables

Table 3-1 When Items and the Resources Generated for Them. 11

Table 3-2 Devguide Panes & Windows and their gmf Widget Hierarchies 23

Table 3-3 Devguide Control Objects and their gmf Widget Hierarchies 24

x Devguide: Motif Conversion Utilities Guide—August 1994

xi

Preface

This manual describes how to use the GMF or GUIL utilities to generate
Motif® C code or User Interface Language (UIL) files from Devguide GIL files.

Note – gmf and guil are for one-time conversion of a previously-generated
GIL file to Motif C code or to UIL; because Devguide is an OPEN LOOK
application and the conversion to the Motif look and feel is not always perfect
(size and alignment of objects may not be correct, for instance), it is unlikely
that you will want to create a new user interface with Devguide for a Motif
application, nor is it likely that you will want to modify your Devguide
interface after once running gmf or guil .

Who Should Use This Book
This manual is for applications programmers who have an existing Devguide
user interface; they can use gmf to generate Motif C code and integrate this
code with their own application code or use guil to generate UIL files.

Before You Read This Book
Before you read this manual, you should be familiar with the Motif User
Interface, Devguide, and the C programming language. To use some of the
advanced features described in this manual, you should also understand how
to create user interfaces with the Motif toolkit.

xii Devguide: Motif Conversion Utilities Guide—August 1994

Before you read this manual, you should read the following documents:

• Solaris 2.4 Introduction

• Software Developer Kit Installation Guide

How This Book Is Organized
The following is a brief description of each chapter of this manual.

Chapter 1, “Introduction to GMF and GUIL” provides overviews of the GMF
and GUIL utilities.

Chapter 2, “Getting Started with GMF” gets you acquainted with how GMF
works. It shows you how to generate user interface code and how to compile
this code with your application code. It provides a very simple example.

Chapter 3, “GMF Functionality in Detail” describes GMF, the files it
generates, and the libgmf library routines. If you want to write your own
widget creation routines, you should read this chapter.

Chapter 4, “Internationalization” describes how to internationalize your GMF
application.

Chapter 5, “Using GUIL to Create a UIL File” describes how to use GUIL to
produce User Interface Language (UIL) files from a Devguide GIL file.

Appendix A, “Files Shipped with Devguide Motif Utilities” describes the
Devguide Motif Utilities directory structure and lists the files there. The demo
subdirectory contains a sample program that shows you how to integrate a UIL
file into a working application.

Appendix B, “Unsupported Devguide Features” lists features available in
Devguide that are not supported by GMF.

The Index lists references to important names and topics in alphabetic order.

Related Books
This manual is a supplement to the OpenWindows Developer’s Guide Set,
which contains the following manuals:

• OpenWindows Developer’s Guide: User’s Guide

Preface xiii

• OpenWindows Developer’s Guide: XView Code Generator Programmer’s Guide

• OpenWindows Developer’s Guide: OLIT Code Generator Programmer’s Guide

Note that the OpenWindows Developer’s Guide: User’s Guide includes Appendix
D, ”Devguide 3.0.1 Release Notes”; new features, problems, and bugs are
described in this appendix.

For more reference information on the Motif toolkit and the Xt Intrinsics,
consult:

• Xt Intrinsics Reference Manual, O’Reilly & Associates, Inc., 1991

• OSF/Motif Reference Manual, PTR Prentice Hall, Inc., 1993

• OSF/Motif Programmer’s Manual, PTR Prentice Hall, Inc., 1993

• OSF/Motif Style Guide, PTR Prentice Hall, Inc., 1993

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface
or Symbol Meaning Examples

Courier The names of commands,
files, and directories; on-
screen computer output

Edit your .login file.
Use ls -a to list all files.
.

Courier
Bold

What you type, contrasted
with on-screen computer
output

% su
password:

Palatino
Italic

Command-line placeholder:
replace with a real name or
value

To delete a file, type the
following: rm filename.

Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s
Guide. These are called class
options.
You must be root to do this.

Code samples are included in boxes and may display the following:

xiv Devguide: Motif Conversion Utilities Guide—August 1994

% UNIX C shell prompt % or system%

$ UNIX Bourne shell prompt $ or system$

Superuser prompt, either
shell

or system#

Table P-1 Typographic Conventions

Typeface
or Symbol Meaning Examples

1

Introduction to GMF and GUIL 1

This chapter provides an overview of the GIL-to-Motif (gmf) and GIL-to UIL
(guil) utilities (GIL is the Guide Interface Language output of Devguide).

Devguide, GMF, and GUIL
Devguide is a development tool that enables you to create and test user
interfaces without writing any code.

Devguide produces GIL files that you can convert into Motif C code with the
utility, gmf , or into UIL with the utility, guil.

Names and Terminology
The word “Guide” in the full name, “OpenWindows Developer’s Guide,” is an
acronym for Graphical User Interface Design Editor. The abbreviated name,
“Devguide,” refers to the graphical interface tool you use to develop the user
interface.

The term gmf refers to the utility that takes the GIL file produced by Devguide
to produce Motif source code for your user interface. This code is referred to as
the UI (user interface) code, which contrasts with the application code.

2 Devguide: Motif Conversion Utilities Guide—August 1994

1

Installation and Environment Setting for Devguide, GMF, and GUIL
To install Devguide and the gmf and guil utilities, follow the instructions in
the Software Developer Kit Installation Guide. See the OpenWindows Developer’s
Guide: User’s Guide for a more complete discussion of the process of setting
environment variables.

Setting Environment Variables for GUIDEUTILHOME

By default, the SUNWgmfu package is installed in the directory,
/opt/SUNWgmfu. Wherever SUNWgmfu is installed, the GUIDEUTILHOME
directory should be set to the directory where the package is stored. For
example, if the package were installed in /export/home/SUNWgmfu , then:

for C shell:

% setenv GUIDEUTILHOME /export/home/SUNWgmfu

for Bourne shell:

$ GUIDEUTILHOME=/export/home/SUNWgmfu
$ export GUIDEUTILHOME

If you want to access gmf and guil from anywhere, GUIDEUTILHOME needs to
be set and the PATH environment variable needs to have
GUIDEUTILHOME/bin in it.

For access to the gmf and guil man pages, MANPATH needs to have
GUIDEUTILHOME/man in it.

Setting Environment Variables for MOTIFHOME

In addition to setting the variable for GUIDEUTILHOME, you should set
MOTIFHOME to the location where Motif is installed
(/usr/opt/SUNWmotif , for example).

If you are using a non-Sun version of Motif, you may have to edit the Makefile
to change -I$MOTIFHOME/include to -I$MOTIFHOME/usr/include and
to change -L$MOTIFHOME/lib to -L$MOTIFHOME/usr/lib .

Introduction to GMF and GUIL 3

1

How you interact with Devguide and GMF
The basic interaction with Devguide is very simple. When you use Devguide to
develop your user interface with the OPEN LOOK look and feel by dragging
and positioning glyphs on interface windows, Devguide saves a description of
the interface in a GIL file. This process is explained in detail in the
OpenWindows Developer’s Guide: User’s Guide.

Note – To see the interface with the Motif look and feel, you have to compile
the generated code.

To create Motif C code from a GIL file, run the gmf utility on the GIL file,
shown below as <fn>.G . The .G suffix is the standard suffix for GIL files. gmf
produces the four files shown in Figure 1-1.

Figure 1-1 GMF-Generated Source Files

gmf also automatically generates a program Makefile.

Devguide allows you to organize several GIL files into projects. Devguide
saves projects in files that have a .P extension. When you run gmf on a project
file, it generates the files shown in Figure 1-1 for each .G file in the project. It
also generates <projectname>.c and <projectname>.h files.

Note – gmf -generated code is identical to handwritten Motif code; you can use
gmf ’s output to learn Motif.

<fn>.G

<fn>_ui.h <fn>_stubs.c <fn>ui_.c<fn>.resource

4 Devguide: Motif Conversion Utilities Guide—August 1994

1

5

Getting Started with GMF 2

This chapter describes how to generate simple user interfaces and integrate
them with your applications. This chapter is intended to be a “quick start
guide” that provides you with the minimal instructions necessary to start using
gmf . The topics discussed here are covered in greater detail in Chapter 3,
“GMF Functionality in Detail.”

Note – Although this chapter discusses the creation of a Devguide user
interface from scratch, remember that Devguide produces Open Look output
and it is unlikely that you will want to use Devguide to create a user interface
if the final application will be a Motif application. If, despite this warning, you
decide to create a new Devguide interface for a Motif application, read the
OpenWindows Developer’s Guide: User’s Guide, setting the Toolkit to OLIT if you
plan on doing connections (note, however, that some connections may not
work for a Motif application).

If you already have a Devguide-created GIL file, you can use gmf to convert
the GIL file to Motif C code.

6 Devguide: Motif Conversion Utilities Guide—August 1994

2

Summary of How to Create an Application with GMF
To create an application with Devguide and gmf , follow these steps:

1. Generate Devguide UI code by running gmf on a GIL or project file.
gmf generates three C files and a makefile for each GIL file. The C files
contain the interface source code. The makefile contains the Make utility
commands to build the interface. If you run gmf on a project file, it
generates two additional C files and a supplement to the makefile.

2. Use make to build a test copy of the interface.
gmf generates all the code necessary to create an executable, so you can
compile the code by itself immediately after you generate it. It is
recommended that you test the interface before you add your application
code.

3. Insert your application code in the callback function templates generated
by gmf in the _stubs.c file.
Your application code can change the resources of widgets in the interface or
it can instantiate additional widgets.

4. Run make again to build the application.
The Make utility compiles the interface and your application code into a
complete executable.

Generating User Interface Code from GIL Files
To generate code from a GIL file, run gmf as follows: :

If you are generating code for a project, run gmf on the project file by entering
the following command:

It is not necessary to type the .G or the .P filename extension after the GIL or
project file filenames, since gmf adds the appropriate extension automatically.

% gmf <GIL_filename>

% gmf -p <project_filename>

Getting Started with GMF 7

2

GMF-Generated Files

gmf -generated files contain all the source code necessary to create an
executable that uses the Motif toolkit and the libgmf runtime library.

When you run gmf on a single GIL file, it generates the following files in the
current working directory:

• <GIL_filename>_stubs.c - skeleton main program for the executable. It
includes the callback templates that you insert your application code into.

• <GIL_filename>_ui.c - code that defines the user interface objects.
Unless you are writing advanced applications, you don’t need to look at this
file.

• <GIL_filename>_ui.h - header file that declares the user interface
objects, external callbacks, and external creation procedures. Normally, you
won’t need to look at this file.

• Makefile - a template makefile to build the executable. Makefile contains
make utility commands to compile your interface and any application code
you include in the _stubs.c file

• <GIL_filename> .resource - resource file created by -r (all resources) or -
i (internationalization) flags.

The filenames of these files are based on the name of the GIL file. For example,
if you use gmf to generate source code for a GIL file named display.G , gmf
creates the files, display_ui.c , display_ui.h , and display_stubs.c .

When you run gmf on a project file, it generates the files listed above (except
for the makefile) for each GIL file in the project. It also generates the following
files:

• <project_name>.c - includes the main program which is left out of the
individual _stubs.c files. It also includes templates for callbacks shared by
the GIL files in the project.

• <project_filename>.h - external declarations for callbacks shared by
the GIL files.

• <project_filename>.make - addition to the makefile that is
automatically included.

8 Devguide: Motif Conversion Utilities Guide—August 1994

2

The filenames of these files are based on the name of the project file. For
example, if you use gmf to generate source code for a project file named
myproject.P , gmf creates the files myproject.c , myproject.h , and
myproject.make .

Compiling and Testing Interface Code
To compile the interface code generated by gmf , type the following in the
appropriate directory after you have generated the code:

The make utility compiles and links the gmf -generated code. The resulting
executable has the same name as the GIL file, without the .G filename
extension. If you have generated code for a project, it will have the same name
as the project file without the .P extension.

Note – Devguide provides a test mode that allows you to test an interface while
you are designing it. However, some connections that specify events or actions
specific to gmf do not work in the Devguide test mode. Also, since Devguide
displays an OPEN LOOK look and feel, the interface will look different in the
test mode than it will in the compiled application. Always test your interface
by compiling the generated interface code once and running it before you add
your application code.

The executable you create when you compile the generated code provides a
complete working model of the user interface. When you perform an action in
the interface (for example, a button press) the program prints the name of any
connections associated with that action to the console.

Integrating Application Code with GMF Interface Code
To add your application code to the gmf interface code, modify the callback
templates in the _stubs.c file. If you call functions that you keep in separate
files, you also need to modify the Makefile to compile these files. Use
XtVaSetValues or XtVaGetValues to set or get resources, as you normally
would.

% make

Getting Started with GMF 9

2

Caution – Do not alter the _ui.c or _ui.h files. If you add any code to
these files, you will lose it the next time you run gmf .

Regenerating Code for a Modified Interface
As noted above, it is unlikely that you will want to modify your Devguide
interface after running gmf ; if you do, however, gmf will do the following each
time it is run:

• Overwrite the existing _ui.c and _ui.h files.

• Back up the current _stubs.c file to _stubs.c.BAK .

• Generate a new _stubs.c file that contains templates for all the
connections specified in the GIL file.

• Merge any code that you inserted in the original _stubs.c into the new
_stubs.c .

• Create a _stubs.c.delta file that tells you how it has changed
_stubs.c . This file lists the added text and the affected line numbers.

If you are regenerating code for a project, gmf will perform the steps above for
each of the GIL files in the project. It will also do the following:

• Back up the <projectname>.c and <project_name>.h files to .BAK
files.

• Generate a new <projectname>.c file and merges it with the old one,
listing the changes in a .delta file.

• Overwrite the original <project_name>.h file.

10 Devguide: Motif Conversion Utilities Guide—August 1994

2

11

GMF Functionality in Detail 3

This chapter explains in detail how to use gmf to generate source code and a
makefile. It suggests ways to alter the Makefile and the generated callback
templates. It also describes how to use libgmf functions.

Note – Although this chapter discusses the creation of a Devguide user
interface from scratch, remember that Devguide produces Open Look output
and it is unlikely that you will want to use Devguide to create a user interface
if the final application will be a Motif application. If you already have a
Devguide-created GIL file, you may wish to use gmf to convert the GIL file to
Motif C code.

When Menu Items
Note that gmf generates the same resource for many of the When items; it is up
to the application to distinguish between them. Table 3-1 below lists the
resource generated for each When item.

Table 3-1 When Items and the Resources Generated for Them

When Item Resource

Destroy XmNdestroyCallback

Done XmNpopdownCallback

Notify XmNvalueChangedCallback or XmNactivateCallback

12 Devguide: Motif Conversion Utilities Guide—August 1994

3

Note that the resource generated for Notify depends on the source object.

Action Menu Items
The Action menu items you can choose from are listed below, along with a
brief description of their functionality.

• CallFunction - calls the specified function
• Disable - disables the Target object
• Enable - enables the Target object
• ExecuteCode - executes the specified code
• GetLabel - returns the Target object’s label
• GetValueNumber - returns the Target object’s numeric field value
• Hide - makes the Target object invisible
• LoadTextfile - loads the specified text file
• SetLabel - sets the Target object’s label
• SetValueNumber - sets the Target object’s numeric field value
• Show - displays the Target object

Using GMF to Generate Code
gmf is the executable program that takes the Devguide GIL (.G) or project
(.P) file and generates C files and the Makefile . The format of the gmf
command is as follows:

Where UIFilename is the name of the GIL or project file that you want to
generate code for.

Popdown XmNpopdownCallback

Popup XmNpopupCallback

Repaint XmNexposeCallback

Resize XmNresizeCallback

Unselect XmNdisarmCallback

gmf [option flags] <UIFileName>

Table 3-1 When Items and the Resources Generated for Them

GMF Functionality in Detail 13

3

GMF Command-Line Options

gmf provides the following command-line options:

-h (-help)

Displays a message describing gmf usage and options.

-k or -kandr

Writes K&R C code that doesn’t contain function prototypes. gmf produces
ANSI C code by default.

-m (-main)

Generates code only for the main() program <project_name>.c and
<project_name.h> files. Only works with the -p option. Use the -m option
if you have already run gmf on a project’s .G files.

-n or -nomerge

Keeps gmf from merging existing and new _stubs.c files. If you are
prototyping an interface and have never added any code to the _stubs.c file,
you should run gmf in -n mode. This prevents unused callbacks from
accumulating in your _stubs.c file. If you have added code to your
_stubs.c file, don‘t use -n , since gmf will overwrite the code you added.

-p project

Generates code for a project. When you use -p , UIFileName must be a project
name.

-r or -resources

Writes all resources into a resource file.

14 Devguide: Motif Conversion Utilities Guide—August 1994

3

-s or -silent

Instructs gmf to operate silently; no messages will appear.

Files Generated for a Single GIL File
gmf names its generated files after the original GIL filename. It strips off the
.G extension and adds new extensions to identify each file. If you generate
code for a single GIL file, gmf generates the following files:

• <GIL_filename>_ui.c
• <GIL_filename>_ui.h
• <GIL_filename>_stubs.c

For example, if you use gmf to generate source code for a GIL file named
newt.G , gmf generates the files newt_ui.c , newt_ui.h , and
newt_stubs.c . gmf also creates a makefile under the name Makefile , if it
doesn’t already exist. Figure 3-1 provides an overview of the files gmf
generates for a single GIL file (fn) and the other files necessary to create an
executable program.

GMF Functionality in Detail 15

3

Figure 3-1 Overview of gmf Files for a Single GIL File

In Figure 3-1, the following conventions apply:

 Rounded boxes indicate programs.

 Square boxes indicate data files.

 Boxes with drop shadows indicate files for which
<fn>.BAK files are created.

 Dashed boxes indicate data files that you can modify.

_ui.c File

Note – Do not modify the _ui.c file by hand. Any changes you make to this
file will be lost when you regenerate code.

<fn>_ui.c

Application Interface

<fn>.G

gmf

Makefile

<fn>_stubs.c

make

Makefile <fn>_ui.h

<fn>

Devguide

libgmfI.h libgmf.h

libgmf.a

16 Devguide: Motif Conversion Utilities Guide—August 1994

3

Note that there isn’t a one-to-one correspondence between objects you design
in Devguide and widgets generated by gmf . Many Devguide objects consist of
a hierarchy of several Motif widgets. For example, a Text Field object with a
label in Devguide is actually three widgets in the gmf -generated code: a
RowColumn containing a textField widget and a label widget.

If a Devguide object comprises more than one widget, gmf adds different
prefixes to the object’s name to create the widget descriptors. For example, if
you create a Text Field object (with a label) named mytextfield in
mygilfile , gmf names the textfield widget description pointer
Mygilfile_mytextfield and the label widget description pointer
Mygilfile_G_Label_mytextfield.

Figure 3-2 shows an example of a widget tree created by gmf . If you create an
interface (called Fn) with a base window (window1) that has a single control
area (Controls1) with a textfield in it (textfield1) and a single popup
window (popup1), gmf generates the widget tree depicted in Figure 3-2.

GMF Functionality in Detail 17

3

Figure 3-2 Example Widget Tree for a Base Window

Table 3-2 and Table 3-3 in “Changing Widget Resources” on page 22 provide a
list of the widgets used to created each Devguide Object.

_ui.h File

This file contains prototypes of all the functions and callbacks. The gmf code
generator automatically places an #include statement in the _ui.c file to
include this header file. Do not modify the _ui.h file by hand.

Normally, you don’t need to look at the _ui.h file. However, it can help you
quickly ascertain the names of gmf -generated widget descriptions available to
the application programmer. At the top of every _ui. h file is a series of
widget declarations that declare all the generated widgets available to the
application programmer.

Fn_window1
(ApplicationShell)

Fn_G_Top_Ch_window1
(form)

Fn_Controls1
(bulletinBoard)

Fn_popup1
(popupShell)

Fn_G_Label_textfield1
(label)

Fn_textfield1
(Textfield)

18 Devguide: Motif Conversion Utilities Guide—August 1994

3

 _stubs.c

The _stubs.c file consists of two principal parts: the main() program and
the callbacks.

The main() Program in the _stubs.c File

The main() program performs initialization for the Xt Intrinsics and the Motif
toolkit and sets up an event handling loop. It creates the base window and all
of its children and shells for all other windows. Note that the contents of each
popup window is not created until the popup is displayed.

Callbacks in the _stubs.c File

For each connection you specify in Devguide, gmf generates a callback
function template in the _stubs.c file. There are two principal varieties of
callbacks:

• Predefined action callbacks
These templates are generated for connections for which you specified a
Devguide-defined action (for example, Show or Hide). The template
contains all the code necessary to carry out the action and a printf()
statement that prints the callback name to the console.

• CallFunction callbacks
These templates are generated for connections for which you specified
CallFunction as the action in Devguide. The template uses the function
name that you specified in Devguide. It is empty except for the printf()
statement.

You can add your application code to either type of callback template. The
following arguments are passed to callbacks:

• widget - the Source widget specified for the connection
• clientData - not implemented
• callData - widget specific data for the callback, for example, slider values

GMF Functionality in Detail 19

3

Makefile

This file is a standard C template makefile that builds the executable. When
you run gmf , it checks the current directory to see if a file called Makefile
already exists. If there is no Makefile , it generates one. If it detects a
Makefile , it does not generate one. This feature protects a custom makefile,
ensuring that gmf doesn’t overwrite it.

You can easily customize Makefile to compile your own code files. The
beginning of the Makefile lists the source files in a section labeled
“Parameters.” The five parameters are:

• PROGRAM, which lists the name of the executable file created during
compilation

• SOURCES.c, which lists the names of user-supplied C source files for the
application

• SOURCES.h, which lists the names of user-supplied header files for the
application

• SOURCES.G, which lists the names of GIL files used to store interfaces for
the application

When gmf first generates the Makefile , the SOURCES.c and SOURCES.h
parameters are not set. To add your own source code files to the Parameters
list, you must add their filenames by hand. For example, if you have several C
source files that provide functions called in the callbacks, you must include
their names in the SOURCES.c parameter.

Files Generated for a Project
If you run gmf on a project file, gmf generates _ui.c , _ui.h and _stubs.c
files for each GIL file in the project. It also generates the following files:

• <project_name>.c
• <project_name>.h
• <project_name>.make

<project_name>.c File

When you generate code for a project, gmf generates the main() function in
the <project_name>.c file.

20 Devguide: Motif Conversion Utilities Guide—August 1994

3

This file also contains all callback functions that are common to more than one
.G file in your project. For example, suppose you create a project which
includes two menus saved in separate .G files. Both menus have a Save menu
item for which you specify a CallFunction connection to a function called
mysave . gmf generates the code for mysave in the .c file. The mysave
callback does not appear in the _stubs.c file for either menu.

You can add variable initializations and other application code to the
<project_name>.c file.

<project_name>.h File

This file contains the external declarations for the interface objects in the
project. It includes the _ui.h files from the GIL files in the project and any
objects common to the GIL files. You can add your own declarations to this
file.

<project_name>.make File

This file contains lines that are inserted into the makefile to compile the
_stubs.c files from the different GIL files in the project.

Regenerating Code for a Modified Interface
To regenerate code for an interface after you have modified it, simply re-run
gmf on the GIL or project file. If you want to re-run gmf and immediately
proceed to compile the generated code in one step, just type make.

When you re-run gmf , it overwrites the original _ui.c and _ui.h files.
However, it preserves any application code which you have added to the
_stubs.c , <project_name>.c and <project_name>.h files by merging
this code in with any new code it generates.

Note – If you change the action for a connection in Devguide, the change will
not be reflected in the new _stubs.c or <project_name>.c file unless you
manually delete the original callback for that connection before you re-
generate code.

GMF Functionality in Detail 21

3

Regenerating Code for an Individual GIL File

If you re-run gmf on a single GIL file, it generates the following files:

• new _stubs.c - gmf creates this file by merging the old _stubs.c with any
new code it generates. Any source code you added to the old _stubs.c file is
preserved in the new one.

• _stubs.c.BAK - back-up of the original _stubs.c file

• _stubs.c.delta - a list of differences between the original and the new
_stubs.c file

Regenerating Code for a Project

If you re-run gmf on a project, it merges the _stubs.c for each GIL file in the
project. It also generates the following files:

• new <project_name>.c - gmf creates this file by merging the old
<project_name>.c file with any new code it generates. Any source code you
added to the old <project_name>.c is preserved in the new one.

• new <project_name>.h - gmf overwrites the existing <project_name>.h file

• <project_name>.c.BAK and <project_name>.h.BAK - backups of the
original <project_name>.c and <project_name>.h f iles

• <project_name>.c.delta - a list of differences between the original and
the new <project_name>.c f iles

Removing Obsolete Callbacks

When gmf merges the original _stubs.c and <project_name>.c into the
new files, it does not delete or replace any of the original callbacks. This results
in unused callbacks accumulating in the following cases:

• When you remove an object or a connection in Devguide
gmf does not delete callbacks associated with deleted connections or
connections for an object that has been deleted. You must remove these
callbacks manually.

• When you change the name of an object or connection in Devguide
gmf adds a new callback for any connection that has a new name, or that
connects objects that have new names. It retains the original callback along

22 Devguide: Motif Conversion Utilities Guide—August 1994

3

with any application code you inserted in it. Be sure to transfer that
application code to the new callback. You can then delete the original
callback.

Integrating Your Application Code with the Interface Code
To add your application code to the gmf -generated interface code, you insert it
in the callback templates in the _stubs.c file. Simply replace the printf()
statement in each callback with your own code. Of course, you can include
calls to functions that you keep in other source files. Just remember to modify
the Makefile so that the Make utility will compile these files.

There is essentially one thing your application code can do to the interface you
designed in gmf :

• change widget resources

This is discussed in the subsection below.

Changing Widget Resources

Getting the Right Widget Instance Name

As discussed in “_ui.c File” on page 15, there isn’t a one-to-one correspondence
between objects you design in Devguide and widgets in the widget tree. Many
Devguide objects consist of a hierarchy of several Motif widgets.

When you specify a connection for an object in Devguide, the generated
callback is only passed the id of one of the widgets that the source object
comprises. Normally this design will not pose any problems since the returned
id is for the widget you are most likely to want to manipulate.

For example, if you put a Text Field object with a label in your interface in
Devguide, gmf creates a RowColumn containing a textField widget and a label
widget. If you set up a CallFunction connection for the Text Field object, the
callback is only passed the textField widget (and not the label widget).
Normally, this is convenient since you are more likely to want to manipulate
the textField widget. If you want to manipulate the label, you must find out its
instance name.

GMF Functionality in Detail 23

3

It is relatively easy to figure out the instance name. For the widgets that the
gmf -generated main() instantiates, the instance names are the same as the
widget description pointers. gmf bases the widget description pointers on the
names of the corresponding Devguide objects. Table 3-2 and Table 3-3 show
Devguide objects and the widget hierarchy that gmf uses to create each of
them. The Widget variable column shows the patterns which gmf uses to
create each widget description pointer (assuming the GIL file is called fn). In
each widget hierarchy, the widget that appears in bold type is the one that is
passed to callbacks for the object. Note that if you do not specify a label for an
object in Devguide, gmf omits the label widget from the object’s hierarchy.

To demonstrate how you use Table 3-2 and Table 3-3, take the example of a
Exclusive Setting object. In Devguide, you name the setting setting1 . You
provide two choices: choice1 and choice2 . You provide a label for the
setting and save it in a GIL filed called fn . gmf creates the following widget
variables (and instance names) for the Setting object:

Fn_G_Label_setting1 (label widget)
Fn_setting1 (Exclusives widget)
Fn_setting1_choice1 (Rectbutton widget)
Fn_setting1_choice2 (Rectbutton widget)

Note that the first letter of each name is capitalized. If you were to set up a
Callfunction callback for the setting object for an interface named Fn, the
callback would be passed the id Fn_setting1 (the Exclusives widget).

Table 3-2 Devguide Panes & Windows and their gmf Widget Hierarchies

Devguide Object Widget Hierarchy Widget Variable

Control Area bulletinBoard Fn_<objectname>

Canvas scrolledWindow
DrawArea

Fn_G_Scrollwin_<objectname>
<objectname>

Text Pane scrolledWindow
textEdit

Fn_G_Scrollwin_<objectname>
<objectname>

Base Window applicationShell
form

Fn_<objectname>
Fn_G_Toplevel_<objectname>

Popup Window popupShell Fn_<objectname>

Menu menuShell Fn_<objectname>

24 Devguide: Motif Conversion Utilities Guide—August 1994

3

 *If you do not specify a label in Devguide, GMF does not create the label widget.
**Buttons and boxes in settings can have their own callbacks.

Table 3-3 Devguide Control Objects and their gmf Widget Hierarchies

Devguide Object Widget Hierarchy Widget Description Pointer

Scrolling List label*
ScrollingList

Fn_G_Label_<objectname>
Fn_<object_name>

Slider label*
Slider

Fn_G_Label_<objectname>
Fn_<object_name>

Gauge label*
Gauge

Fn_G_Label_<objectname>
Fn_<object_name>

Text Field label*
TextField

Fn_G_Label_<objectname>
Fn_<object_name>

Multiline Text
Field

label*
scrolledWindow
Text

Fn_G_Label_<objectname>
Fn_G_Scrollwin_<objectname>
Fn_<object_name>

Exclusive Settings label*
Exclusives
RectButton**

Fn_G_Label_<objectname>
Fn_<objectname>
Fn_<object_name>_<buttonname>

Nonexclusive
Settings

label*
Nonexclusives
ToggleButton**

Fn_G_Label_<objectname>
Fn_<objectname>
Fn_<object_name>_<buttonname>

Checkbox Settings label*
Exclusives
ToggleButton**

Fn_G_Label_<objectname>
Fn_<objectname>
Fn_<object_name>_<checkboxname>

Setting Stack RowColumn
Label
PulldownMenu**

Fn_G_Rowcol_<objectname>
Fn_G_Label_<objectname>
Fn_G_Pulldown_<objectname>

Button OblongButton Fn_<objectname>

Menu Button MainWindow
MenuBar
CascadeButton

Fn_G_Mainwin_<objectname>
Fn_G_Menubar_<objectname>
Fn_<objectname>

Message Label Fn_<objectname>

GMF Functionality in Detail 25

3

Compiling
After you’ve created an interface with Devguide, generated source code files
with gmf , and created your own custom source code files, make sure that you
are ready to compile. Make sure the environment variables GUIDEUTILHOME
and MOTIFHOME are set to point to the Devguide and Motif home directories
respectively. Edit the Makefile to include any of your own source code files
in the Parameters section. Enter the names of all your source code files in the
SOURCES.c line and the names of all your header files in the SOURCES.h line.

Once your Makefile is set to show all of the associated source code files, you
compile them by entering the command make. It runs according to the contents
of the Makefile : it first checks all files specified in the SOURCES.G parameter
to see if any have been changed since the last compile. It then uses gmf to
generate fresh source code files if you changed the GIL file. It finishes by
compiling and linking all specified source code files.

The compiled code is placed in the file named in the PROGRAM parameter of the
Makefile . To run it, simply enter the filename on the command line.

26 Devguide: Motif Conversion Utilities Guide—August 1994

3

27

Internationalization 4

This chapter describes how to internationalize your gmf applications.

Overview of Internationalization Concepts
Internationalization is the process of making software portable between
languages or locales. An internationalized application runs in any locale
without changes to the binary. Text strings and other locale-specific
information is kept separate from application code in files which can be easily
edited.

Localization is the process of adapting software for specific locales. It consists of
translating the application’s text strings and changing other locale-specific
information for a locale. Internationalization is usually performed by the
software writer; Localization is usually performed by experts familiar with the
specific language or region,

gmf supports the dgettext method of internationalization; with the - r flag,
gmf generates bindtextdomain for application initialization and dgettext
for all strings.

Levels of Internationalization

There are currently four levels of internationalization. The requirements of
each level are described in the sections below.

28 Devguide: Motif Conversion Utilities Guide—August 1994

4

Level 1—Text and Codesets

Level 1-compliant software is “8-bit clean” and therefore can use the ISO
8859-1 (also called ISO Latin-1) codeset. The ASCII character set uses only 7
bits out of an 8-bit byte. The ISO Latin-1 codeset requires all 8 bits for each
character.

Level 2—Formats and Collation

Many different formats are used throughout the world to represent date,
time, currency, numbers, and units. Also, some alphabets have more letters
than others and the sorting order may vary from one language to another.
Level 2-compliant programs leave the format design and sorting order to
the localizer in a particular country.

Level 3—Messages and Text Presentation

Text visible to the user on-screen must be easily translatable. This includes
help text, error messages, property sheets, buttons, text on icons, and so
forth. To assist localizers, text strings can be culled into a separate file,
where they are translated. Because the text strings are sorted individually,
level 3-compliant software does not contain compound messages—those
created with separate printf statements, for example—because the
separate parts of the message will not be kept together.

Level 4—Asian Language Support

Asian languages contain many characters (1500 to 15000). These cannot all
be represented in eight bits and can be laborious to generate using keyboard
characters. The EUC (Extended Unix Codeset) is a multi-byte character
standard that can be used to represent Asian character sets. EUC does not
support 8-bit codesets such as ISO Latin-1.

Internationalization 29

4

GMF Support for Internationalization

The current version of gmf supports Level 3 internationalization. gmf makes it
easy to internationalize your application by writing out locale-specific
resources to a resource file. In some cases, you may need to reposition widgets
to accommodate different label lengths. The localizer only needs to edit this file
to localize your application.

Generating Code for an Internationalized Application

Using GMF Command Line Options

To generate code for an internationalized application, use the -r option when
you run gmf on the GIL or project file for the application:

• -r , which writes all resources into a resource file

When you run gmf on an individual file, the generated resource file is named
<GIL_filename>.resource . When you run gmf on a project file, the
generated resource file is named <project_filename>.resource .

For example, to generate code for a GIL file called myapp.G , you type:

This command generates a resource file called myapp.resource .

Generated Resource Files

The resource files gmf generates consist of resource specifications for each
widget in the application. The specification for simple widgets has the
following form:

% gmf -r myapp

*<WidgetName>.<ResourceName>: <Value>

30 Devguide: Motif Conversion Utilities Guide—August 1994

4

The specification for composite widgets, such as TextEdit and ScrolledWindow,
has the following form:

To find the name for a widget, see “Getting the Right Widget Instance Name”
on page 22.

Level-3 Resources
The sections below list the Level-3 Internationalization-specific resources.

Common Resources

The following are the Level-3 Internationalization-specific resources common
to all widgets:

• XmNx
• XmNy
• XmNlabel
• XmNtitle
• There are other resources that are specific to widgets; see the .resources

file generated when you run gmf with the -r flag.

Using XFILESEARCHPATH
The XFILESEARCHPATH environment variable in conjunction with the LANG
environment variable helps applications automatically set up locale-specific
resource files. The default value of this variable collapses to :
/usr/lib/X11/$LANG/app-defaults/<Class> , where Class is the class
of an application. In case of gmf -generated applications, the class-name is the
name of the application with the first letter capitalized. Thus one would install
the suitably localized resource file so that XFILESEARCHPATHpoints to it.
Refer to the Xt Intrinsics documentation for more information on specifying
resources and installing resource files.

*<WidgetName>.<SubWidgetClass>.<ResourceName>: <Value>

31

Using GUIL to Create a UIL File 5

This chapter describes how to create a User Interface Language (UIL) file by
running GUIL on a Devguide-created GIL file. See the demo directory to see
how to integrate a UIL file into a working prototype. More examples can also
be found in MOTIFHOME/share/src .

 Generating a UIL File
guil is the executable program that takes the Devguide GIL (.G) or project
(.P) file and generates UIL files. The format of the guil command is as
follows::

where GIL_filename is the name of the GIL or project file for which you
want to generate code.

Note – You must include the .G or .P suffix when running guil ; the man page
for guil states that you do not need to include the suffix.

% guil [option flags] <GIL_filename>

32 Devguide: Motif Conversion Utilities Guide—August 1994

5

GUIL Command-Line Options

guil provides the following command-line options:

-f

Forces overwrite of existing files; if you have previously run guil in this
directory, the existing files will not be overwritten unless you include the -f
flag.

-h

Displays a message describing guil usage and options.

-p project

Generates code for a project. When you use -p , GIL_filenmame must be a
project name.

-s

Instructs guil to operate silently; no messages will appear.

33

Files Shipped with Devguide Motif
Utilities A

The SUNWgmfu package includes a set of files useful to Devguide Motif
Utilities users. These files are installed on your workstation or server if you
have followed the instructions in the Software Developer Kit Installation Guide.
You will find the files in separate subdirectories in the home directories of the
Devguide Motif Utilities.

The Bin Subdirectory

The bin subdirectory contains the executable files for gmf and guil .

The Include Subdirectory

The include subdirectory contains header files used by gmf . The files used by
gmf are:

• libgmf.h : prototypes of the libgmf functions that execute widget creation.

• Group.h : definition of GroupWidget that implements groups in Devguide.

The Lib Subdirectory

The lib subdirectory contains the libgmf.a runtime library. It includes the
Group widget that gmf uses to support Devguide group features.

34 Devguide: Motif Conversion Utilities Guide—August 1994

A

The Man Subdirectory

The man subdirectory contains man pages for gmf . To see them when you use
the man command, you can copy them into the directory containing other man
pages, or you can set the MANPATH variable to look in this directory when
you use the man command. For more information, consult the Man Page
Specification.

The Src Subdirectory

The src subdirectory contains source code for the libraries included in the lib
subdirectory. This source code is supplied “as is” and is not supported by Sun
Microsystems.

The demo Subdirectory

The demo subdirectory contains a sample program that shows you how to
integrate a UIL file into a working application; see the README file for
instructions.

35

Unsupported Devguide Features B

This appendix lists Devguide features that the gmf code generator does not
support.

Bold Labels
The OPEN LOOK specification calls for the labels of all control objects to be
bold. When you prototype an interface in Devguide, the label font will appear
bold. However, the default font weight for labels in gmf -generated interfaces
is normal. When you run your gmf program, the labels will not be bold.

Help
gmf does not support Help as implemented in Devguide.

Connections Between Base Windows
gmf will generate an error message if your interface has connections between
separate Base Windows.

36 Devguide: Motif Conversion Utilities Guide—August 1994

B

Miscellaneous Unsupported GUI Elements
The following are user interface elements that are available in Devguide but
are currently not supported by gmf :

• Icons for Base Windows

• Term Panes

• Numeric TextFields

• Drag and Drop from a Canvas or a Scrolling List

• Slider end values
Although you can include slider end-values in your interface prototype in
Devguide, they will not appear in your compiled application.

gmf simply ignores most of these unsupported elements when it reads the GIL
file. However, if you attempt to use gmf to generate code for an interface that
includes term panes or numeric TextFields, gmf will convert them to text panes
and text fields, respectively.

37

Index

Symbols
.c, 7
.c file, 19
.h, 7
.make, 7
_stubs.c, 3, 7, 9, 21

callback templates, 18
callbacks, 18
merging, 13

_stubs.c.BAK, 9, 21
_stubs.c.delta, 9, 21
_ui.c, 3, 7

description, 15
_ui.h, 3, 7

description, 17, 18

A
about this book

font conventions, xiii to xiv
prerequisite reading, xii

Action Menu items, 12
Adjust, 11
AnyEvent, 11
As, 22

B
bin subdirectory, 33

C
C declarations, 20
callbacks, 18

arguments, 18
removing, 21
setting up in Devguide, 20
templates, 18

callData (callback argument), 18
CallFunction, 12

templates, 18
clientData (callback argument), 18
command line options, 13
compiling source code, 8
connections

Action menu items, 12
changing actions for, 20
changing names of, 21
removing, 21
setting up in Devguide, 20

D
Destroy, 11
Devguide

38 Devguide: Motif Conversion Utilities Guide—August 1994

background on, 1
features not supported by GMF, 35
files included with, 33
interacting with, 3
meaning of name, 1

Disable, 12
Done, 11
DoubleClick, 11
drag and drop, 36
drop sites, 36
DroppedUpon, 11

E
Enable, 12
Enter, 11
ExecuteCode, 12
Exit, 11

F
files, 14, 19
functions

common to more than one .G file, 20

G
generated files, 3, 7, 14

_stubs.c, 18
_stubs.c.BAK, 21
_stubs.c.delta, 21
_ui.c, 15
Makefile, 19
overview, 15
project_name.c, 19
project_name.C.BAK, 21
project_name.c.BAK

project_name.c.BAK, 21
project_name.c.delta, 21
project_name.h, 20
project_name.h.BAK, 21
project_name.make, 20
ui.h, 17

GetLabel, 12

GetValueNumber, 12
GMF

generated files, 14
generated files overview, 15
getting started, 5
how to use it, 12
interacting with, 3

gmf (command)
options, 13
using options

-? (help), 13
-k (kandr), 13
-n (nomerge), 13
-r (resources), 13

gmf command
using options

-s (silent), 14
gmf command

using options
-m (-main) , 13
-p , 13

GUIDEHOME, 25
GUIL

how to use it, 31
guil (command)

using options
-? (help), 32
-f (force), 32

guil command
using options

-s (silent), 32
guil command

using options
-p , 32

H
Help, 35
help, 35
Hide, 12
home directories, 25
how to use GMF, 12
how to use GUIL, 31

Index 39

I
icons, 36
If, 21
include subdirectory, 33
included files, 33
instance name, 23
integrating interface and application

code, 22
internationalization, 35

L
labels

fonts, 35
lib subdirectory, 33
libgmf.h, 33
libraries, 33
LoadTextfile, 12

M
main() function, 19
Makefile, 7, 19

parameters, 19
man pages, 34
man subdirectory, 34
MANPATH, 34
manual

GMF Reference, xii
Unsupported Devguide features, xii

MOTIFHOME, 25

N
numeric text fields, 36

O
OpenWindows Developer’s Guide

meaning of name, 1
options (command line)

? (help), 13, 32
m (main), 13

-n (no merge), 13
-p (project), 13, 32
-s (silent), 14, 32

P
printf(), 18, 22
PROGRAM parameter, 19
project files, 19
project_name.c, 19
project_name.C.BAK, 21
project_name.c.delta, 21
project_name.h, 20
project_name.h.BAK, 21
project_name.make, 20

R
resources

setting programmatically, 22

S
SetLabel, 12
SetValueNumber, 12
Show, 12
SOURCES.c parameter, 19
SOURCES.G parameter, 19
SOURCES.h parameter, 19
src subdirectory, 34
suffixes

.BAK, 21

.c, 3

.delta, 21

.G, 3

.h, 3
make, 7

T
term panes, 36
text fields, 22

numeric, 36

40 Devguide: Motif Conversion Utilities Guide—August 1994

U
user interface (UI) code, 1

regenerating, 21
user’s manual

GMF reference, xii
Unsupported Devguide features, xii

W
When, 22
widget hierarchy, 16
widgets

GMF names for, 23
setting resources, 22

X
XtNdestroyCallback, 11
XtNpopdownCallback, 11
XtNpopupCallback, 12
XtNresizeCallback, 12
XtNselect, 11
XtNsliderMover, 11
XtNunselect, 12
XtNverification, 11

