
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Full&utm_campaign=Netline

DZone, Inc. | www.dzone.com

#193
C

o
re

 P
yt

h
o

n

By: Naomi Ceder and Mike Driscoll

Python is an interpreted dynamically typed Language. Python uses
indentation to create readable, even beautiful, code. Python comes with
so many libraries that you can handle many jobs with no further libraries.
Python fits in your head and tries not to surprise you, which means you
can write useful code almost immediately.

Python was created in 1990 by Guido van Rossum. While the snake is
used as totem for the language and community, the name actually derives
from Monty Python and references to Monty Python skits are common
in code examples and library names. There are several other popular
implementations of Python, including PyPy (JIT compiler), Jython (JVM
integration) and IronPython (.NET CLR integration).

Python 2.x vs. Python 3.x
Python comes in two basic flavors these days – Python 2.x (currently
2.7) and Python 3.x (currently 3.3). This is an important difference –
some code written for one won’t run on the other. However, most code is
interchangeable. Here are some of the key differences:

Python 2.x Python 3.x

print “hello” (print
is a keyword)

print(“hello”) (print is a function)

except Exception, e: # OR
except Exception as e

except Exception as e: # ONLY

Naming of Libraries
and APIs are frequently
inconsistent with PEP 8

Improved (but still imperfect) consistency with
PEP 8 guidelines

Strings and unicode Strings are all unicode and bytes type is for
unencoded 8 bit values

There is a utility called 2to3.py that you can use to convert Python 2.x
code to 3.x, while the ‘-3’ command line switch in 2.x enables additional
deprecation warnings for cases the automated converter cannot handle.
Third party tools like python-modernize and the ‘six’ support package
make it easy to target the large common subset of the two variants for
libraries and applications which support both 2.x and 3.x.

language features

Programming as Guido indented it...
Indentation rules in Python. There are no curly braces, no begin and end
keywords, no need for semicolons at the ends of lines - the only thing that
organizes code into blocks, functions, or classes is indentation. If some-
thing is indented, it forms a block with everything indented at the same
level until the end of the file or a line with less indentation.

While there are several options for indentation, the common standard is 4
spaces per level:

def function_block():
 # first block

second block within first block
stuff
for x in an_iterator:

this is the block for the for loop
print x

back out to this level ends the for loop
 # and the second block...
 more first block stuff
def another_function_block()

Comments and docstrings
To mark a comment from the current location to the end of the line, use a
pound sign, ‘#’.

this is a comment on a line by itself
x = 3 # this is a partial line comment after some code

For longer comments and more complete documentation, especially at the
beginning of a module or of a function or class, use a triple quoted string.
You can use 3 single or 3 double quotes. Triple quoted strings can cover
multiple lines and any unassigned string in a Python program is ignored.
Such strings are often used for documentation of modules, functions,
classes and methods. By convention, the “docstring” is the first state-
ment in its enclosing scope. Following this convention allows automated
production of documentation using the pydoc module.

In general, you use one line comments for commenting code from the
point of view of a developer trying to understand the code itself. Docstrings
are more properly used to document what the code does, more from the
point of view of someone who is going to be using the code.

Python is the sort of language that you can just dive into, so let’s dive in
with this example Python script:

CONTENTS INCLUDE:

❱ Python 2.x vs. 3.x

❱ Branching, Looping, and Exceptions

❱ The Zen of Python

❱ Popular Python Libraries

❱ Python Operators

❱ Instantiating Classes... and More!

Core Python

Brought to you by:
G

et
 M

o
re

 R
ef

ca
rd

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#! /usr/bin/env python
“”” An example Python script
 Note that triple quotes allow multiline strings
“””

single line comments are indicated with a “#”

import sys # loads the sys (system) library

def main_function(parameter):
 “”” This is the docstring for the function “””
 print “ here is where we do stuff with the parameter”
 print parameter

 return a_result # this could also be multiples

if __name__ == “__main__”:
 “”” this will only be true if the script is called

as the main program “””

refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com
http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Small&utm_campaign=Netline

Core Python

DZone, Inc. | www.dzone.com

 # command line parameters are numbered from 0
 # sys.argv[0] is the script name
 param = sys.argv[1] # first param after script name
 # the line below calls the main_function and
 # puts the result into function_result
 function_result = main_function(param)

Branching, looping, and exceptions

Branching
Python has a very straightforward set of if/else statements:

if something_is_true:
 do this
elif something_else_is_true:
 do that
else:
 do the other thing

The expressions that are part of if and elif statements can be comparisons
(==, <, >, <=, >=, etc) or they can be any python object. In general, zero and
empty sequences are False, and everything else is True. Python does not
have a switch statement.

Loops
Python has two loops. The for loop iterates over a sequence, such as a list, a
file, or some other series:

for item in [‘spam’, ‘spam’, ‘spam’, ‘spam’]:
 print item

The code above will print “spam” four times. The while loop executes while a
condition is true:

counter = 5
while counter > 0:
 counter -= 1

With each iteration, the counter variable is reduced by one. This code
executes until the expression is False, which in this case is when “counter”
reaches zero.

Handling Exceptions
Python is different from languages like C or Java in how it thinks about er-
rors. Languages like Java are “look before you leap” (LBYL) languages. That
is, there is a tendency to check types and values to make sure that they are
legal before they are used. Python, on the other hand, thinks of things more in
a “easier to ask for forgiveness than permission”(EAFP) style. In other words,
Pythonic style would be more likely to go ahead and try the operation and
then handle any problems if they occur:

try:
 item = x[0]
except TypeError:
 #this will print only on a TypeError exception
 print “x isn’t a list!”
else:
 # executes if the code in the “try” does NOT
 # raise an exception
 print “You didn’t raise an exception!”
finally:
 #this will always print
 print “processing complete”

In this case, a list or sequence operation is attempted and if it fails because
it’s the wrong type, the except clause just deals with it. Otherwise the
exception will be raised normally. Then, whether an exception happens or
not the finally clause will be executed, usually to clean up after the opera-
tion in either case.

Keyword Usage

if <expression>: Conditional expression that only executes if True

else: Used primarily as a catchall. If <expression> is False,
then we fall into the else

elif: Use elif to test multiple conditions.

while <expression>: The while loop only loops while an expression
evaluates to True.

break Breaks out of a loop

continue Ends current iteration of loop and goes back to top
of loop

try: Begins a block to check for exceptions

except <exception>: Followed by Exception type being checked for,
begins block of code to handle exception

finally Code that will be executed whether exception
occurs or not

DaTA OBJECTS

Variables and Types
Python is a dynamically typed language, but it is also a fairly strongly typed
language. So a variable could end up referring to different types of objects,
but the object that it’s referring to at any given moment is strongly typed.
For example:

x = 1 # x points to an integer object

y = 2 # y also points to an integer object

z = x + y # z points to an integer object – 3

a = y # a points to the same int object as y

y = “2” # y now points to a different object, a string

z = x + y # throws a type mismatch (TypeError) exception since an
integer and a string are different types and can’t be added.

z = x + a # z now points to an int (3), since a is pointing to
an int

Duck typing - if it quacks like a ...
While Python objects themselves are strongly typed there is a large amount
of flexibility in how they are used. In many languages there is a pattern of
checking to be sure an object is of the correct type before attempting an
operation. This approach limits flexibility and code reuse – even slightly dif-
ferent objects (say, a tuple vs. a list) will require different explicit checking.

In Python, things are different. Because the exception handling is strong
we can just go ahead and try an operation. If the object we are operating
on has the methods or data members we need, the operation succeeds. If
not, the operation raises an exception. In other words, in the Python world
if something walks like a duck and quacks like a duck, we can treat it like a
duck. This is called “duck typing”.

Python Data Types
Python has several data types. The most commonly found ones are shown
in the following table:

Type Description

int An integer of the same size as a long in C on the
current platform.

long An integer of unlimited precision (In Python 3.x this
becomes an int).

float A floating point number , usually a double in C on the
current platform.

complex Complex numbers have a real and an imaginary
component, each is a float.

boolean True or False.

http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com

Core Python

DZone, Inc. | www.dzone.com

Python built-in object types
Python also has built-in object types that are closely related to the data
types mentioned above. Once you are familiar with these two sets of tables,
you will know how to code almost anything!

Type Description

list Mutable sequence, always in square brackets: [1,
2, 3]

tuple Immutable sequence, always in parentheses: (a, b, c)

dict Dictionary - key, value storage. Uses curly braces:
{key:value}

set Collection of unique elements unordered, no
duplicates

str String - sequence of characters, immutable

unicode Sequence of Unicode encoded characters

Python operators
The following table lists Python’s common operators:

Operator Action Example

+ Adds items together; for
strings and sequences
concatenates

1 + 1 -> 2
"one" + "one" -> "oneone"

- subtraction 1 - 1 -> 0

* multiplication, with strings,
repeats string

2 * 3 -> 6
"one" * 2 -> "oneone"

/ (//) division, division of integers
results in an integer with
truncation in Python 2.x,
a float in Python 3.x (// is
integer division in Python
3.x)

3/4 -> 0 (2.x)
3/4 -> 0.75 (3.x)
3//4 -> 0 (3.x)

** Exponent - raises a number
to the given exponent

Sequence indexes and slicing
There are several Python types that are all sequential collections of items
that you access by using numeric indexes, like lists, tuples, and strings.
Accessing a single item from one of these sequences is straightforward
– just use the index, or a negative index to count back from the end of the
sequences. E.g., my_list[-1] will return the last item in my_list, my_list[-2] will
return the second to last, and so on.

Notation Returns Examples - if x =
[0,1,2,3]

Expression will return

x[0] First element of a sequence 0

x[1] Second element of a sequence 1

x[-1] Last element of a sequence 3

x[1:] Second element through last
element

[1,2,3]

x[:-1] First element up to (but NOT
including last element

[0,1,2]

x[:] All elements - returns a copy of list [0,1,2,3]

x[0::2] Start at first element, then every 2nd
element

[0,2]

FUNCTIONS

Function definitions
Functions are defined with the def keyword and parenthesis after the
function name:

def a_function():
 “”” document function here”””
 print “something”

Parameters
Parameters can be passed in several ways:

Default parameters:

def foo(a=2, b=3):
 print a
foo()

By position:

foo(1, 2)

By name:

foo(b=4)

As a list:

def bar(*args):
 print args
bar(1, 2, 3)

As a dictionary:

def foo(a, b=2, c= 3):
 print a, b, c
d = {a:5, b:6, c:7}
foo(**d)

See also keyword arguments (i.e. **kwargs), which allows you to take an
arbitrary number of keyword arguments. You can read more about it here:
http://docs.python.org/2/tutorial/controlflow.html#keyword-arguments.

Returning values
You can return any Python object from a function – ints, floats, lists,
dictionaries, anything.

return dict(“color”: “blue”)

Thanks to tuple packing and unpacking you can also return more than one
item a time. Items separated by commas are automatically ‘packed’ into a
tuple and can be ‘unpacked’ on the receiving end:

a, b, c = (1, 2, 3)

Classes

Defining classes
You define a class with the class keyword:

class MyClass(object):
 def __init__(self, par):
 # initialize some stuff
 self.foo = “bar”
 def a_method(self):
 # do something
 def another_method(self, parameter):
 # do something with parameter

Note: In Python 3.x, you can create classes without inheriting from “object”
because that’s the default. Also don’t write getters/setters up front, use
the @ property instead which lets you add them transparently later.

Instantiating classes
Classes are instantiated using the class name:

http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com
http://docs.python.org/2/tutorial/controlflow.html#keyword-arguments

Core Python

DZone, Inc. | www.dzone.com

my_class_object = my_class()

When a class object is instantiated, the classe’s __init__(self) method is
called on the instance, usually doing any set up that is needed: initializing
variables and the like.

If the class __init__() method accepts a parameter, it can be passed in:

my_class_object = my_class(param)

Inheritance and mixins
Python supports multiple inheritance. This does provide you with more
ways to shoot yourself in the foot, but a common pattern for multiple
inheritance is to use “mixin” classes.

Abstract Base Classes, Metaclasses
Abstract base classes are defined in PEP 3119. You can create abstract
base classes via the abc module, which was added in Python 2.6.

A metaclass is a class for creating classes. You can see examples of this in
Python built-ins, such as int, str or type. All of these are metaclasses. You
can create a class using a specific metaclass via __metaclass__. If that is
not specified, then type will be used.

Comprehensions
Python comes with a concept known as comprehensions. There are 3
types: list comprehensions, dict comprehensions and set comprehensions.

Following is an example of a list comprehension:

This will create a list from 0-5. It is the equivalent of the following for loop:

A dict comprehension is similar. It looks like this:

A set comprehension will create a Python set, which means you will end
up with an unordered collection with no duplicates. The syntax for a set
comprehension is as follows:

Style Tips

What does 'Pythonic' mean?
‘Pythonic’ is the term that Pythonistas use when they are talking about
code that uses the language well and the way that it’s creators intended.
Pythonic is a very good thing. Using Java-esque camel cased variable
names is not Pythonic, but using it for class names is. Writing for loops
in the style of C/C++ is considered un-Pythonic. On the other hand, using
Python data structures intelligently and following the Python style guide
makes your code Pythonic.

The Zen of Python
PEP(Python Enhancement Proposal)-20 is the Zen of Python. Written by
long time Python developer Tim Peters, the Zen is acknowledged as the
core philosophy of Python. In fact, it is always accessible in any Python
environment by using import this:

PEP-8 - the Python style guide
Python has its own style guide known as PEP8 that outlines various
guidelines that are good to follow. In fact, you must follow them if you plan
to contribute to Python Core. PEP 8 specifies such things as indentation
amount, maximum line length, docstrings, whitespace, naming
conventions, etc.

USing the shell

Python's default shell
Python is one of several languages that has an interactive shell which is
a read-eval-print-loop (REPL). The shell can be enormously helpful for
experimenting with new libraries or unfamiliar features and for accessing
documentation.

BATTERIES INCLUDED: USING LIBRARIES

Importing and using modules and libraries
Using external modules and libraries is as simple as using the import key-
word at the top of your code.

Import Explanation

from lib import x
from lib import x as y

Imports single element x from lib, no dot prefix
needed
x()
y()

import lib Imports all of lib, dot prefix needed

lib.x()

from lib import * Imports all of lib, no dot prefix needed "NOT FOR"
PRODUCTION CODE - POSSIBLE VARIABLE NAME
CLASHES!

new_list = [x for x in range(5)]

new_list = []
for x in range(5):
 new_list.append(x)

new_dict = {key: str(key) for key in range(5)}

new_set = {x for x in ‘mississippi’}

 The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break
the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation
to guess.
There should be one -and preferably only
 one -obvious way to do it.
Although that way may not be obvious at first
unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad 	 	

 idea.
If the implementation is easy to explain, it may be
a good idea.
Namespaces are one honking great idea -- let’s do
	 more of those!

http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com
http://www.python.org/dev/peps/pep-0008/

Core Python

DZone, Inc. | www.dzone.com

Of the three styles of import the second (import lib) has the advantage
that it is always clear what library an imported element comes from and
the chances for namespace collision and pollution are low. If you are only
using one or two components of a library the first style (from lib import
x) makes typing the element name a bit easier. The last style (from lib
import *) is NOT for production code – namespace collisions are very
likely and you can break module reloading. There is one major exception to
this rule that you will see in many examples and that concerns the include
Tkinter GUI toolkit. Most Tkinter tutorials import it as follow: from Tkinter
import *. The reason is that Tkinter has been designed so that it is unlikely
to cause namespace collisions.

Creating modules and libraries

Any Python script file can be treated like a module and imported. However
be aware that when a module is imported, its code is executed – that’s the
reason for the if __name__ == “__main__”: structure in the example above.
In other words, to be safely used as a module, a script should be organized
into functions (or classes), with the if statement at the very end.
Here is an example module:

The Python standard library - selected library groups
Python comes with a standard library of modules that can do much of what
you need to get done. The standard library is quite extensive – it would take
weeks to become familiar with everything in it.

Whenever you feel the need to go looking for an additional external library,
you should first look carefully in the standard library – more often than not,
a perfectly good implementation of what you need is already there.

Library Group Contains Libraries for

File and Directory
Access

File paths, tempfiles, file comparisons (see the os and
tempfile modules)

Numeric and Math Math, decimal, fractions, random numbers/sequences,
iterators (see math, decimal, and collections)

Data Types Math, decimal, fractions, random numbers/sequences,
iterators (see math, decimal, and collections)

Data Persistence Object serialization (pickle), sqlite, database access

File Formats Csv files, config files - see ConfigParser

Generic OS
Services

Operating system functions, time, command line
arguments, logging (see os, logging, time, argparse)

Interprocess Communication with other processes, low-level
sockets (see subprocess and the socket module)

Interned Data
Handling

Handling Internet data, including json, email and
mailboxes, mime encoding (see json, email, smtplib
and mimetools)

Structured Markup Parsing HTML and XML (see xml.minidom and
ElementTree)

Internet Protocols HTTP, FTP, CGI, URL parsing, SMTP, POP, IMAP,
Telnet, simple servers (see httplib, urllib, smtplib,
imaplib)

Development Documentation, test, Python 2 to Python 3 conversion
(see doctest and 2to3)

Debugging Debugging, profiling (see pdb and profile)

Runtime System parameters and settings, builtins, warnings,
contexts (see the dir command and the inspect
module)

GUI Tkinter GUI libraries, turtle graphics

Getting other libraries
If you find yourself needing additional functionality, you should go take a
look in the Python Package Index (PyPI). There you will find thousands of
packages that cover a vast array of topics.

To install the packages, you can use pip or easy_install, both of which
you’ll need to download from PyPI. For full instructions on bootstrapping
with these tools, see http://www.pip-installer.org/en/latest/installing.html
Sometimes those utilities won’t work and you’ll have to use the package’s
included setup.py to do the installation, which normally goes something like
this:

python setup.py install

You will see a lot of information output to your screen when you execute
the above. In some cases, the module has C headers and will require a C/
C++ compiler installed on your machine to complete installation correctly.

POPULAR PYTHON LIBRARIES

numpy and scipy
Numpy and scipy are extensive mathematical libraries written to make op-
erating on large data collections easier. As Python’s presence in scientific
communities has grown, so has the popularity of numpy and scipy. Cur-
rently there are conferences devoted to them and to scientific computing.
For graphing, you might want to try matplotlib.

IPython - the shell and more
The default Python shell has some annoying limitations – it’s inconvenient
to access the host operating system, there is no good way to save and
recover sessions, and it’s not easy to export the commands of a session
to an ordinary script file. This is particularly irksome for scientists and
researchers who may want to spend extensive time exploring their data
using an interactive shell.

To address these issues IPython answers these and other problems.

To get IPython, go to http://ipython.org/ and download the version best
suited to your operating system.

Web libraries
One of the main uses for Python these days is for web programming. There
are several popular web frameworks as described below, as well as other
libraries for dealing with web content.

Django
Arguably the most popular web framework, django has taken the Python
world by storm in the past few years. It has its own ORM, which makes it
very easy to interact with databases.

Pyramid
A Python framework originally based on Pylons, but is now a rebranding
of repoze.bfg. Pyramid supports single file applications, decorator-base
config, URL generation, etc.

Flask
Flask is also a micro web framework for Python, but it is based on
Werkzeug and Jinja2.

Requests
Requests is an HTTP library that provides a more Pythonic API to HTTP
Requests. In other words, it makes it easier to download files and work with
HTTP requests than the standard library.

def my_module(foo, bar):
 print foo
 print bar
if __name__ == “__main__”:
 my_module(1, 2)

http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com
http://www.pip-installer.org/en/latest/installing.html
http://ipython.org/

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

Core Python

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
"DZone is a developer's dream.", says PC Magazine.

Beautifulsoup
A great HTML parser that allows the developer to nagivate, search and
modify a parse tree as well as dissecting and extracting data from a
web page.

Other Libraries
Python has many other libraries ranging over all kinds of topics. Here is a
sampling:

Twisted – Networking

Natural Language Tool Kit (NLTK) - Language Processing

Pygame - Games in Python

SQLAlchemy - Database Toolkit

RESOURCES

Python Documentation

 Python 3 - http://docs.python.org/3/

Python 2 - http://docs.python.org/2.7/

Tutorials

 Official - http://docs.python.org/2/tutorial/

 Learn Python - http://www.learnpython.org/

 Learn Python the Hard Way - http://learnpythonthehardway.org/book/

 Python Anywhere - https://www.pythonanywhere.com/

Books

 Python 3 Object Oriented Programming by Dusty Phillips

 Python Cookbook (2nd Edition) (Python 2.x) by Alex Martelli, Anna
 Ravenscroft, David Ascher

 Python Cookbook (3rd Edition) (Python 3.x) by David Beazley, Brian K.
 Jones

 Python Standard Library by Example by Doug Hellmann

 Python in Practice by Mark Summerfield

 Dive Into Python by Mark Pilgrim

The Quick Python Guide introduces Python’s
syntax, control flow, and basic data structures, then
walks through creating, testing, and deploying full
applications and larger code libraries. Includes survey
of GUI programming, testing, database access, and
web frameworks.

A B O U T the A uthor R ecommended B ook

Ruby on Rails
Regex
Clean Code
HTML5 IndexedDB

Naomi Ceder has been
involved in teaching
and promoting Python
for over a decade. She
has taught Python
to everyone from 6th
graders to adults and is
a member of the Python

Software Foundation and started both the
poster session and the education summit
at PyCon. She is also the author of The
Quick Python Book, 2nd ed. from Manning
Publishers.

Mike Driscoll has been
programming in Python
since 2006. He enjoys
writing about Python
on his blog at www.
blog.pythonlibrary.org/,
occasionally writes for
the Python Software

Foundation. Mike has also been a
technical reviewer for Packt Publishing’s
Python books, such as Python 3 Object
Oriented Programming, and Python 2.6
Graphics Cookbook and more.

BUY NOW!

http://www.refcardz.com
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_Header&utm_campaign=Netline
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://docs.python.org/3/
http://docs.python.org/2.7/
http://docs.python.org/2/tutorial/
http://www.learnpython.org/
http://learnpythonthehardway.org/book/
https://www.pythonanywhere.com/
http://www.manning.com/ceder
refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=Python_FreePDF&utm_campaign=Netline

