[PUBLISHING]

Understanding Docker | PACKT Books

This article will cover the Docker basics that you should already have a pretty
good handle on. But if you don’t already have the required knowledge at this
point, this article will help give you the basics.

(For more resources related to this topic, see here.)

In this article, we’re going to review the following higher level topics with
subtopics in each section:

¢ Understanding Docker
o Docker versus typical VMs
o The Dockerfile and its function
o Docker networking/linking
¢ Docker installers/installation
o Types of installers and how they operate
o Controlling your Docker daemon
o The Kitematic GUI
¢ Docker commands

o Useful commands for Docker, Docker images, and Docker containers

In this section, we will be covering the structure of Docker and the flow of what
happens behind the scenes in this world. We will also take a look at Dockerfile
and all the magic it can do. Lastly, in this section, we will look at the Docker
networking/linking.

Difference between Docker and typical VMs

First, we must know what exactly Docker is and does. Docker is a container
management system that helps easily manage Linux Containers (LXC) in an
easier and universal fashion. This lets you create images in virtual environments
on your laptop and run commands or operations against them. The actions you do
to the containers that you run in these environments locally on your own machine
will be the same commands or operations you run against them when they are
running in your production environment. This helps in not having to do things

http://fivefilters.org
https://www.packtpub.com/books/content/understanding-docker
https://www.packtpub.com/books/content/understanding-docker#more

differently when you go from a development environment like that on your local
machine to a production environment on your server. Now, let’s take a look at the
differences between Docker containers and the typical virtual machine
environments.

In the following illustration, we can see the typical Docker setup on the right-hand
side versus the typical VM setup on the left-hand side:

Traditional YMs Dacker

Docker Engine

Hypervisor Host OS

Server Server

This illustration gives us a lot of insight into the biggest key benefit of Docker;
and that is its no need for a full operating system every time we need to bring up
a new container, which cuts down on the overall size of containers. Docker relies
on using the host OS’s Linux kernel (since almost all the versions of Linux use the
standard kernel models) for the OS it was built upon, such as Red Hat, CentOS,
Ubuntu, and so on. For this reason, you can have almost any Linux OS as your
host operating system (Ubuntu in the previous illustration) and be able to layer
other OSes on top of the host. For example, in the earlier illustration, we could
have Red Hat running for one app (the one on the left) and Debian running for the
other app (the one on the right), but there would never be a need to actually
install Red Hat or Debian on the host. Thus, another benefit of Docker is the size
of images when they are born. They are not built with the largest piece: the
kernel or the operating system. This makes them incredibly small, compact, and
easy to ship.

Dockerfile

Next, let’s take a look at the most important file pertaining to Docker: Dockerfile
. Dockerfile is the core file that contains instructions to be performed when an
image is built. For example, in an Ubuntu-based system, if you want to install the
Apache package, you would first do an apt-get update followed by an apt-get
install -y apache2. These would be the type of instructions you would find inside a
typical Dockerfile. Items such as commands, calls to other scripts, setting
environmental variables, adding files, and setting permissions can all be done via
Dockerfile. Dockerfile is also where you specify what image is to be used as your
base image for the build. Let’s take a look at a very basic Dockerfile and then go
over the individual pieces that make one up and what they all do:

FROM ubunt u: | at est
MAI NTAI NER Scott P. Gl |l agher

RUN apt-get update && apt-get install -y apache2

ADD 000- def aul t.conf /etc/apache2/sites-avail abl e/
RUN chown r oot : root
/ et c/ apache2/ sit es-avai | abl e/ 000- def aul t . conf

EXPCSE 80
CVD ["/ usr/sbin/apache2ctl", "-D', "FOREGROUND']

These are the typical items you would find in a basic Dockerfile. The first line
states the image we want to start off with when we build the container. In this
example, we will be using Ubuntu; the item after the colon can be called if you
want a specific version of it. In this case, I am just going to say use the latest
version of Ubuntu; but you will also specify trusty, precise, raring, and so on. The
second line is the line that is relevant to the maintainer of Dockerfile. In this case,
I just have my information in there; well, at least, my name is there. This is for
people to contact you if they have any questions or find any errors in your file.
Typically, most people just include their name and e-mail address. The next line is
a typical line you will see while pulling updates and packages in a Ubuntu
environment. You might think they should be separate and wonder why they
should be put on the same line separated by &&. Well, in the Dockerfile, it helps

by only having to run one process to encompass the entire line. If you were to
split it into separate lines, it would have to run one process, finish the process,
then start the next process, and finish it. With this, it helps speed up the process
by pairing the processes together. They still run one after another, but with more
efficiency. The next two lines complement each other. The first adds your custom
configurations to the path you specified and changes the owner and group owner
to the root user. The EXPOSE line will expose the ports to anything external to
the container and to the host it is running on. (This will, by default, expose the
container externally beyond the host, unless the firewall is enabled and protecting
it.) The last line is the command that is run when the container is launched. This
particular command in a Dockerfile should only be used once. If it is used more
than once, the last CMD in the Dockerfile will be launched upon the container
that is running. This also helps emphasize the one process per container rule. The
idea is to spread out the processes so that each process runs in its own container,
thus the value of the containers will become more understandable. Essentially,
something that runs in the foreground, such as the earlier command to keep the
Apache running in the foreground. If we were to use CMD [“service apache2
start”], the container would start and then immediately stop. There is nothing to
keep the container running. You can also have other instructions, such as ENV to
specify the environmental variables that users can pass upon runtime. These are
typically used and are useful while using shell scripts to perform actions such as
specifying a database to be created in MySQL or setting permission databases.

Docker networking/linking

Another important aspect that needs to be understood is how Docker containers
are networked or linked together. The way they are networked or linked together
highlights another important and large benefit of Docker. When a container is
created, it creates a bridge network adapter for which it is assigns an address; it
is through these network adapters that the communication flows when you link
containers together. Docker doesn’t have the need to expose ports to link
containers. Let’s take a look at it with the help of the following illustration:

Bocker Typical VM

Ubuntu (Host OS) Ubuntu (Host OS)
Linux Docker Linux Hyper
Kernel Engine Kernel visor
T & s % r_ .. .

App A |lIl AppB App A App B

A <1 [N s

Bin/ Bin/ Libs J| |{ Libs
Gl | [Guest |l |f Guest
ol e | 0s | 0Ss

In the preceding illustration, we can see that the typical VM has to expose ports
for others to be able to communicate with each other. This can be dangerous if
you don’t set up your firewalls or, in this case with MySQL, your MySQL
permissions correctly. This can also cause unwanted traffic to the open ports. In
the case of Docker, you can link your containers together, so there is no need to
expose the ports. This adds security to your setup, as there is now a secure
connection between your containers.

We've looked at the differences between Docker and typical VMs, as well as the
Dockerfile structure and the components that make up the file. We also looked at
how Docker containers are linked together for security purposes as opposed to
typical VMs. Now, let’s review the installers for Docker and the structure behind
the installation once they are installed, manipulating them to ensure they are
operating correctly.

Installers are one of the first pieces you need to get up and running with Docker

on both your local machine as well as your server environments. Let’s first take a
look at what environments you can install Docker in:

¢ Apple OS X (Mac)

¢ Windows

e Linux (various Linux flavors)

Cloud (AWS, DigitalOcean, Microsoft Azure, and so on)

Types of installers

With the various types of installers listed earlier, there are different ways Docker
actually operates on the operating system. Docker natively runs on Linux; so if
you are using Linux, then it’s pretty straightforward how Docker runs right on
your system. However, if you are using Windows or Mac OS X, then it operates a
little differently, since it relies on using Linux. With these operating systems, they
need Linux in some sort of way, thus enters the virtual machine needed to run the
Linux part that Docker operates on, which is called boot2docker. The installers
for both Windows and Mac OS X are bundled with the boot2docker package
alongside the virtual machine software that, by default, is the Oracle VirtualBox.

Now, it is worthwhile to note that Docker recently moved away from offering
boot2docker. But, I feel, it is important to understand the boot2docker terms and
commands in case you run across anyone running the previous version of the
Docker installer. This will help you understand what is going on and move
forward to the new installer(s). Currently, they are offering up Docker Toolbox
that, like the name implies, includes a lot of items that the installer will install for
you. The installers for each OS contain different applications with regards to
Docker such as:

Docker Toolbox piece
Mac OS X

Windows

Docker Client

X

X

Docker Machine

X

X

Docker Compose
X

Docker Kitematic
X

X

VirtualBox

X

X

First, let’s take a look at the older style commands of boot2docker. Then, we will
take a look at the new commands or application that you can use to achieve these
outcomes.

Controlling the Docker VM (boot2docker)

Now, there are ways to run boot2docker on different VM software. But to start
off, VirtualBox is the best and easiest way to operate boot2docker:

$ boot 2docker

Usage: boot 2docker [] {hel p|init]|up|ssh|save| down| poweroff|res
et|restart|config|status|info|ip|shellinit]|delete|downl oad|upg
rade| version} []

Now, after we have installed Docker on Linux, OS X, or Windows, how do we go
about controlling this virtual machine in the events when we need to start it up,
restart it, or even shut it down? This is where the boot2docker command-line
parameters come into play.

As you can see in the earlier illustration, there are a lot of options you can use for
your boot2docker instance. The options you will use mostly are up, down,
poweroff, restart, status, ip, upgrade, and version. Some of these commands you
will use mostly to troubleshoot items when you are trying to see why the Docker

commands might hang, or when you run into any other issues with your
boot2docker virtual machine. You can see what each command does by executing
the following command:

$ boot 2docker hel p

The most useful command that I have found while troubleshooting is the
boot2docker status command:

$ boot 2docker status
Another useful boot2docker command is:
$ boot 2docker version

This command will help see what version of boot2docker you are currently
running. This is helpful in knowing when to use the boot2docker upgrade
command. The last command we will look at with respect to boot2docker is the
boot2docker ip command. This command is very useful when you need to know
what IP address is to be used to access the machines you have been running on a
particular host:

$ boot 2docker ip
192. 168. 59. 103

As you can see, the earlier command gives us the IP address of the boot2docker
client running on my OS X machine inside VirtualBox. By using this IP, I can now
access the containers I might have been running using the IP address alongside
any of the open ports I have exposed.

Docker Machine - the new boot2docker

So, with boot2docker on its way out, there needs to be a new way to do what
boot2docker does. This being said, enter Docker Machine. With Docker Machine,
you can do the same things you did with boot2docker, but now in Machine. The
following table shows the commands you used in boot2docker and what they are
now in Machine:

Command

boot2docker

Docker Machine
command
boot2docker
docker-machine

help

boot2docker help
docker-machine help
status

boot2docker status
docker-machine status
version

boot2docker version
docker-machine sionus i
ip

boot2docker ip

docker-machine ip
Kitematic

Now that we have covered all the basics of controlling your boot2docker VM, let’s
take a look at another way you can run Docker containers on your local machine.
Let’s take a look at Kitematic. Kitematic is a recent addition to the Docker
portfolio. Up until now, everything we have done has been command line-based.
With Kitematic, you can manage your Docker containers through a GUI. Kitematic
can be used either on Windows or OS X, just not on Linux; besides who needs a
GUI on Linux anyways! Kitematic, just like boot2docker, operates on a VM
defaulting to VirtualBox. Pictures are worth a thousand words, so let’s take a look
at some screenshots of Kitematic:

braan
- weariel-mgin

T A ey 8 A

el et tan W o O

FemeTay

L

fvkinz

TRt g Lackhi itibchn

rethinkohs

HislrdedlfHF 5 i par SRR

TR A 1 e

Ry 0 I R e TR

]

[Elnsm i 18, o i G

Al Fevgenenesaiad Wy Pepes

S i . ot B
EOT PRI T

Javiligd

5 AATE

i o v ik, bt iy
vasealwral s asa
i e S

b

ke
TR

L R Y
B e T R
gay hlanea® LR

£l CRETE

pOEAgIES

F e B e e e

The previous screenshot depicts what you will see when you launch Kitematic for

the first time.

After you start running the containers, they will show up on the left-hand side
column. You can manipulate and get information about them through the GUI.
You can search for prebuilt images on the Docker Hub and click on the CREATE
button once you have found the one you want to use or test.

10

[L] 2 it hallo-workd-nging : suesss

CONTAINER LDGS

Ewl ot fousd.
d not open ereor Log File: apen
Tlog® failed {3: Ko wuch Fi

14 [retice] 3 bEkRg Ehe Sepoll®

Voitd! Your ngin containe is
ruiedng!

1 shart worker

In the preceding screenshot, we have created and are running the
hello-world-nginx image inside Kitematic. We can now use the STOP, RESTART,
and EXEC commands against the container as well as view the settings of the
running container.

In the following screenshot, we can go to settings and view what ports are
exposed from the container to the outside:

11

@ @@) seoiesmo. » hello-workd-nging |

o
ORON®)
WS ol e

ETOP PESTART BOEC o
8 Pt wird-rgirix
e s et
General Parts Violurmes Advanced
Configure Ports
80 195 168 90 $00-a2TER

i OCCHER CL

In the following screenshot, you can see that you can use your login credentials to
log in to the Docker Hub and view the repositories you have created and pushed
there:

12

B Ea s wcmipgalieg..
Corarr A Heloweradaiks by Plbpod

Ky FepDERDRaS
[SLrs LR e Ll
@ il
M et

Wl Sl RS

o CREETE

i B AR L e aE L
sl Aachge-rrrfadgi-autamated
o, SeripAian. M e,
wy.] CRERTE @ Het CHEArY

& i CREAT

We have covered the types of installers and what they can be run on. We have
also seen how to control the Docker VM that gets created for you and how to use
Kitematic. Let’s look at some Docker commands that you should be familiar with
already. We will start with some common commands and then take a peek at the
commands that are used for the Docker images. We will then take a dive into the
commands that are used for the containers.

The first command we will be taking a look at will be one of the most useful
commands not only in Docker but in any command-line utility you use—the help
command. It is run simply by executing the command as follows:

$ docker help

The earlier command will give you a full list of all the Docker commands at your
disposal and a brief description of what each command does. For further help
with a particular command, you can run the following:

13

$ docker COWAND - - hel p

You will then receive additional information on using the command, such as the
switches, arguments, and descriptions of the arguments. Similar to the
boot2docker version command we ran earlier, there is also a version command for
the Docker daemon:

$ docker version

Now, this command will give us a little bit more information than the boot2docker
command output, as follows:

Client version: 1.7.0

Client APl version: 1.19

Go version (client): gol.4.2
Gt commit (client): Obaf609
OS/ Arch (client): darw n/and64
Server version: 1.7.0

Server APl version: 1.19

Go version (server): gol.4.2
Gt commit (server): Obaf609
CS/ Arch (server): |inux/and64

This is helpful when you want to see the version of the Docker daemon you may
be running to see if you need/want to upgrade.

The Docker images

Next, let’s take a dive into the Docker images. You will learn how to view the
images you currently have that you can run, search for images on the Docker
Hub, and pull them down to your environment, so you can run them. Let’s first
take a look at the docker images command. Upon running the command, we will
get an output similar to the following output:

REPCSI TORY TAG | MAGE | D
CREATED VI RTUAL SI ZE
ubunt u 14.10 ab57dbaf eeea
11 days ago 194.5 MB
ubunt u trusty 6d4946999d4f

14

11 days ago 188.3 MB
ubunt u | at est 6d4946999d4f
11 days ago 188.3 MB

Your output will differ based on whether you have any images at all in your
Docker environment or upon what images you do have. There are a few important
pieces you need to understand from the output you see. Let’s go over the columns
and what is contained in each. The first column you see is the REPOSITORY
column; this column contains the name of the repository as it exists in the Docker
Hub. If you were to have a repository that was from someone’s user account, it
may show up as follows:

REPCSI TORY TAG I MAGE I D
CREATED VI RTUAL SI ZE

scot t pgal | agher/ nysql | at est 57df 9c7989a1
9 weeks ago 321.7 MB

The next column, the TAG column, will show you different versions of a
repository. As you can see in the preceding example with the Ubuntu repository,
there are tag names for the different versions. So, if you want to specify a
particular version of a repository in your Dockerfile (as we saw earlier), you are
able to. This is useful, so you're not always reliant on having to use the latest
version of an operating system and can use the one your application supports the
best. It can also help you do backward compatibility testing for your application.

The next column is labeled IMAGE ID and it is based on a unique 64 hexadecimal
digit string of characters. The image ID simplifies this down to the first 12 digits
for easier viewing. Imagine if you had to view all 64 bits on one line! You will
learn when to use this unique image ID for later tasks.

The last two columns are pretty straightforward; the first being the creation date
for the repository, followed by the virtual size of the image. The size is very
important as you want to keep or use images that are very small in size if you plan
to be moving them around a lot. The smaller the image, the faster is the load time;
and who doesn't like it faster?

15

Searching for the Docker images

Okay, so let’s look at how we can search for the images that are in the Docker
Hub using the Docker commands. The command we will be looking at is docker
search. With the docker search command, you can search based on the different
criteria you are looking for. For example, we can search for all the images with
the term ubuntu in them and see what all is available. Here is what we would get
back in our results; it would go as follows:

$ docker search ubuntu

We would get back our results:

NAVE DESCRI PTI ON
STARS OFFI CI AL AUTOVATED

ubuntu Ubuntu is a Debian-based Linux
operating s... 1835 [K]

ubunt u- upst art Upstart is an event-based
repl acement for ... 26 [X]

t ut unf ubuntu Ubuntu i mage with SSH
access. For the root... 25

[K]

t oruswar e/ speedus- ubuntu Al ways updated official Ubuntu docker
i mg. .. 25 [OK]

ubunt u- deboot st r ap deboot strap --vari ant =m nbase
--conponents. .. 10 [X]

rast asheep/ ubunt u- sshd Dockerized SSH service, built on
top of of... 4 [OK]

maxexcl oo/ ubunt u Docker base image built on
Ubuntu with Sup... 2
[XK]

nuagebec/ ubuntu Si npl e al ways updated Ubuntu
docker inmmges... 2 [X]

ni mm s/ ubunt u This is a docker images
different LTS vers... 1
[K]

16

al sani unf ubunt u Ubuntu Core inmage for Docker

1 [K]

Based on these results, we can now decipher some information. We can see the
name of the repository, a reduced description, how many people have starred and
think it is a good repository, whether it’s an official repository; which means it’s
been approved by the Docker team, as well as if it’s an automated build. An
automated build is typically a Docker image that is built automatically when a Git
repository it is linked to is updated. The code gets updated, the web hook is
called, and a new Docker image is built in the Docker Hub. If we find an image we
want to use, we can simply pull it using its repository name with the docker pull
command, as follows:

$ docker pull tutunfubuntu

The image will be downloaded and show up in our list when we perform the
docker images command we ran earlier.

We now know how to search for Docker images and pull them down to our
machine. What if we want to get rid of them? That’s where the docker rmi
command comes into play. With the docker rmi command, you can remove
unwanted images from your machine(s). So, let’s take look at the images we
currently have on our machine with the docker images command. We will get the
following:

REPCSI TORY TAG | MAGE I D
CREATED VI RTUAL SI ZE
ubuntu 14. 10 ab57dbaf eeea
11 days ago 194.5 MB
ubunt u trusty 6d4946999d4f
11 days ago 188.3 MB
ubuntu | at est 6d4946999d4f
11 days ago 188.3 MB

We can see that we have duplicate images here taking up space. We can see this
by looking at the image ID and seeing the exact image ID for both ubuntu:trusty
and ubuntu:latest. We now know that ubuntu:trusty is the latest Ubuntu image, so
there is no need to keep them both around. Let’s free up some space by removing

17

ubuntu:trusty and just keeping ubuntu:latest. We do this by using the docker rmi
command, as follows:

$ docker rmi ubuntu:trusty

If you issue the docker images command now, you will see that ubuntu:trusty no
longer shows up in your images list and has been removed. Now, you can remove
machines based on their image ID as well. But be careful while you do so; in this
scenario, not only will you remove ubuntu:trusty, but you will also remove
ubuntu:latest as they have the same image ID.

Manipulating the Docker images

We have gone over the images and know how to obtain and manipulate them in
some ways. Next, we are going to take a look at what it takes to fire them up and
manipulate them. This is the part where the images become containers! Let’s first
go over the basics of the docker run command and how to run containers. We will
cover some basic docker run items in this article. So, let’s just look at how to get
images up, running, and turned into containers. The most basic way to run a
container is as follows:

$ docker run -i -t : /bin/bash

Upon closer inspection of the earlier command, we start off with the docker run
command, followed by two switches: -i and -t. The -i gives us an interactive shell
into the running container, the -t will allocate a pseudo-tty that, while using
interactive processes, must be used together with the -i switch. You can also use
switches together; for example, -it is commonly used for these two switches. This
will help you test the container to see how it operates before running it as a
daemon. Once you are comfortable with your container, you can test how it
operates in the daemon mode:

$ docker run -d :

If the container is set up correctly and has an entry point setup, you should be
able to see the running container by issuing the docker ps command. You will see
something similar to the following:

$ docker ps

18

CONTAI NER | D I MAGE COVIVAND

CREATED STATUS PORTS

NANVES
cclf ef cfa098 ubunt u: 14. 10 "/ bi n/ bash" 3
seconds ago Up 3 seconds

bori ng_ntcart hy

Based on the earlier command, we get a lot of other important information
indicating that the container is running. We can see the container ID, the image
name that is running, the command that is running to keep the image alive, when
the container started, its current status, if any ports were exposed they would be
listed here, as well as the name given to the container. Now, these names are
random, unless it is specified otherwise by the -name= switch. You can also the
expose the ports on your containers by using the -p switch as follows:

$ docker run -d -p :
$ docker run -d -p 8080:80 ubuntu: 14.10

This will run the ubuntu 14.10 container in the demonized mode, exposing port
8080 on the Docker host to port 80 on the running container:

CONTAI NER | D I MAGE COVVAND
CREATED STATUS PORTS

NAMES
55cf dch6beb6 ubunt u: 14. 10 "/ bi n/ bash" 2
seconds ago Up 2 seconds 0. 0. 0. 0: 8080->80/tcp
babbage

Now, there will come a time when containers don’t want to behave. For this, you
can see the issues you have by using the docker logs command. The command is
very straightforward. You specify the container you want to see the logs off. For
this command, you need to use the container ID or the name of the container from
the docker ps output:

$ docker 1| ogs 55cfdcbh6beb6

Or:

19

$ docker | ogs babbage

You can also get this ID when you first initiate the docker run command:

$ docker run -d ubuntu:14.10 /bin/bash
da92261485db98c7463f f f adb43e3f 684eadf 47949f 287f 92408f dOf 3e4f 2b
ad

Now, let’s take a look at how we can stop these containers. For various reasons,
we would want to do this. There are a few commands we could use; they are
docker kill, docker stop, docker pause, and docker unpause. Let’s cover them
briefly as they are fairly straightforward. First, let’s look at the difference
between docker kill and docker stop. The docker kill command will do just
that—kill the container immediately. For a graceful shutdown of the container,
you would want to use the docker stop command. Mostly, when you are testing,
you will be using docker kill. When you're in your production environments, you
will want to use docker stop to ensure you don’t corrupt any data you might have
in the Docker volumes. The commands are used exactly like the docker logs
command, where you can use the container ID, the random name given to the
container, or the one you might specify with the -name= switch.

Now, let’s take a dive into how we can execute some commands, view information
on our running containers, and manipulate them in a small sense. The first thing
we want to take a look at, which will make things a little easier with the upcoming
commands, is the docker rename command. With the docker rename command,
we can change the name that has been randomly generated for the container.
When we performed the docker run command, a random name was assigned to
our container; most times, these names are fine. But if you are looking for an easy
way to manage the containers, a name can be sometimes easier to remember. For
this, you can use the docker rename command as follows:

$ docker renane

Now that we have an easily recognizable and rememberable name, let’s take a
peek inside our containers with the docker stats and docker top commands,
taking them in order:

$ docker stats

20

CONTAI NER CPU % MEM USAGE/ LIM T
VEM % NET 1/0

webl 0. 00% 1.016 MB/2.099
G 0.05% 0 B/O B

The other command docker top provides a list of all running processes inside the
container. Again, we can use the name of the container to pull the information:

$ docker top

We will receive an output similar to the following one based on what processes
are running inside the container:

u D PI D PPI D C
STI ME TTY TI ME
CcVD
r oot 8057 1380 0
13: 02 pts/0 00: 00: 00
/ bi n/ bash

We can see who is running the process (in this case, the root user), the command
being run (in this case, /bin/bash), as well as the other information that might be
useful.

Lastly, let’s cover how we can remove the containers. The same way we looked at
removing images earlier with the docker rmi command, we can use the docker rm
command to remove unwanted containers. This is useful if you want to reuse a
name you provided to a container:

$ docker rm

In this article, we have gone over the basics of what Docker is and how it is
compared to typical virtual machines. We looked at the Dockerfile structure and
the networking and linking of containers. We went over the installers, how they
operate on different operating systems, and how to control them through the
command line. We briefly looked at the latest Docker addition Kitematic for those
interested in a GUI version for Windows or OS X. Then, we took a small but deep
dive into the basic Docker commands to get you started.

21

