
Author or Company YOUR LOGO

Brought to you by OWASP

Cryptographic

Storage

Cheat Sheet

Cryptographic Storage Cheat Sheet

Brought to you by OWASP Cheat Sheets

This article provides a simple model to follow when implementing solutions for data at rest.

Architectural Decision

An architectural decision must be made to determine the appropriate method to protect data at

rest. There are such wide varieties of products, methods and mechanisms for cryptographic

storage. This cheat sheet will only focus on low-level guidelines for developers and architects

who are implementing cryptographic solutions. We will not address specific vendor solutions,

nor will we address the design of cryptographic algorithms.

Providing Cryptographic Functionality

Secure Cryptographic Storage Design

Rule - Only store sensitive data that you need

Many eCommerce businesses utilize third party payment providers to store credit card

information for recurring billing. This offloads the burden of keeping credit card numbers safe.

Rule - Use strong approved Authenticated Encryption

E.g. CCM or GCM are approved Authenticated Encryption modes based on AES algorithm.

Rule - Use strong approved cryptographic algorithms

Do not implement an existing cryptographic algorithm on your own, no matter how easy it

appears. Instead, use widely accepted algorithms and widely accepted implementations.

Only use approved public algorithms such as AES, RSA public key cryptography, and SHA-256

or better for hashing. Do not use weak algorithms, such as MD5 or SHA1. Note that the

classification of a "strong" cryptographic algorithm can change over time. See NIST approved

algorithms or ISO TR 14742 “Recommendations on Cryptographic Algorithms and their use” or

Algorithms, key size and parameters report – 2014 from European Union Agency for Network

and Information Security. E.g. AES 128, RSA 3072, SHA 256.

Ensure that the implementation has (at minimum) had some cryptography experts involved in its

creation. If possible, use an implementation that is FIPS 140-2 certified.

http://en.wikipedia.org/wiki/CCM_mode
http://en.wikipedia.org/wiki/GCM_mode
http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

See NIST approved algorithms Table 2 “Comparable strengths” for the strength (“security bits”)

of different algorithms and key lengths, and how they compare to each other.

 In general, where different algorithms are used, they should have comparable strengths

e.g. if an AES-128 key is to be encrypted, an AES-128 key or greater, or RSA-3072 or

greater could be used to encrypt it.

 In general, hash lengths are twice as long as the security bits offered by the

symmetric/asymmetric algorithm e.g. SHA-224 for 3TDEA (112 security bits) (due to

the Birthday Attack)

If a password is being used to protect keys then the password strengthshould be sufficient for the

strength of the keys it is protecting.

Rule - Use approved cryptographic modes

In general, you should not use AES, DES or other symmetric cipher primitives directly. NIST

approved modes should be used instead.

NOTE: Do not use ECB mode for encrypting lots of data (the other modes are better because

they chain the blocks of data together to improve the data security).

Rule - Use strong random numbers

Ensure that all random numbers, especially those used for cryptographic parameters (keys, IV’s,

MAC tags), random file names, random GUIDs, and random strings are generated in a

cryptographically strong fashion.

Ensure that random algorithms are seeded with sufficient entropy.

Tools like NIST RNG Test tool (as used in PCI PTS Derived Test Requirements) can be used to

comprehensively assess the quality of a Random Number Generator by reading e.g. 128MB of

data from the RNG source and then assessing its randomness properties with the tool.

Rule - Use Authenticated Encryption of data

Use (AE) modes under a uniform API. Recommended modes include CCM, and GCM as these,

and only these as of November 2014, are specified in NIST approved modes, ISO IEC 19772

(2009) "Information technology — Security techniques — Authenticated encryption", and IEEE

P1619 Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

 Authenticated Encryption gives confidentiality, integrity, and authenticity (CIA);

encryption alone just gives confidentiality. Encryption must always be combined with

message integrity and authenticity protection. Otherwise the ciphertext may be vulnerable

to manipulation causing changes to the underlying plaintext data, especially if it's being

passed over untrusted channels (e.g. in an URL or cookie).

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://en.wikipedia.org/wiki/Birthday_attack
http://en.wikipedia.org/wiki/Password_strength
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/CCM_mode
http://en.wikipedia.org/wiki/Galois/Counter_Mode
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/IEEE_P1619
http://en.wikipedia.org/wiki/IEEE_P1619
http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Authentication

 These modes require only one key. In general, the tag sizes and the IV sizes should be set

to maximum values.

If these recommended AE modes are not available

 combine encryption in cipher-block chaining (CBC) mode with post-encryption message

authentication code, such as HMAC or CMAC i.e. Encrypt-then-MAC.

o Note that Integrity and Authenticity are preferable to Integrity alone i.e. a MAC

such as HMAC-SHA256 or HMAC-SHA512 is a better choice than SHA-256 or

SHA-512.

 Use 2 independent keys for these 2 independent operations.

 Do not use CBC MAC for variable length data

 The CAVP program is a good default place to go for validation of cryptographic

algorithms when one does not have AES or one of the authenticated encryption modes

that provide confidentiality and authenticity (i.e., data origin authentication) such as

CCM, EAX, CMAC, etc. For Java, if you are using SunJCE that will be the case. The

cipher modes supported in JDK 1.5 and later are CBC, CFB, CFBx, CTR, CTS, ECB,

OFB, OFBx, PCBC. None of these cipher modes are authenticated encryption modes.

(That's why it is added explicitly.) If you are using an alternate JCE provider such as

Bouncy Castle, RSA JSafe, IAIK, etc., then these authenticated encryption modes should

be used.

Note: Disk encryption is a special case of data at rest e.g. Encrypted File System on a Hard Disk

Drive. XTS-AES mode is optimized for Disk encryption and is one of the NIST approved

modes; it provides confidentiality and some protection against data manipulation (but not as

strong as the AE NIST approved modes). It is also specified in IEEE P1619 Standard for

Cryptographic Protection of Data on Block-Oriented Storage Devices

Rule - Store the hashed and salted value of passwords

For more information on password storage, please see the Password Storage Cheat Sheet.

Rule - Ensure that the cryptographic protection remains secure even if access

controls fail

This rule supports the principle of defense in depth. Access controls (usernames, passwords,

privileges, etc.) are one layer of protection. Storage encryption should add an additional layer of

protection that will continue protecting the data even if an attacker subverts the database access

control layer.

Rule - Ensure that any secret key is protected from unauthorized access

Rule - Define a key lifecycle

The key lifecycle details the various states that a key will move through during its life. The

lifecycle will specify when a key should no longer be used for encryption, when a key should no

http://en.wikipedia.org/wiki/Authenticated_encryption
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/CMAC
http://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages
http://csrc.nist.gov/groups/STM/cavp/index.html
http://en.wikipedia.org/wiki/Disk_encryption_theory
http://en.wikipedia.org/wiki/Data_at_Rest
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/Authenticated_encryption
http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
http://en.wikipedia.org/wiki/IEEE_P1619
http://en.wikipedia.org/wiki/IEEE_P1619
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

longer be used for decryption (these are not necessarily coincident), whether data must be

rekeyed when a new key is introduced, and when a key should be removed from use all together.

Rule - Store unencrypted keys away from the encrypted data

If the keys are stored with the data then any compromise of the data will easily compromise the

keys as well. Unencrypted keys should never reside on the same machine or cluster as the data.

Rule - Use independent keys when multiple keys are required

Ensure that key material is independent. That is, do not choose a second key which is easily

related to the first (or any preceeding) keys.

Rule - Protect keys in a key vault

Keys should remain in a protected key vault at all times. In particular, ensure that there is a gap

between the threat vectors that have direct access to the data and the threat vectors that have

direct access to the keys. This implies that keys should not be stored on the application or web

server (assuming that application attackers are part of the relevant threat model).

Rule - Document concrete procedures for managing keys through the lifecycle

These procedures must be written down and the key custodians must be adequately trained.

Rule - Build support for changing keys periodically

Key rotation is a must as all good keys do come to an end either through expiration or

revocation. So a developer will have to deal with rotating keys at some point -- better to have a

system in place now rather than scrambling later. (From Bil Cory as a starting point).

Rule - Document concrete procedures to handle a key compromise

Rule - Rekey data at least every one to three years

Rekeying refers to the process of decrypting data and then re-encrypting it with a new key.

Periodically rekeying data helps protect it from undetected compromises of older keys. The

appropriate rekeying period depends on the security of the keys. Data protected by keys secured

in dedicated hardware security modules might only need rekeying every three years. Data

protected by keys that are split and stored on two application servers might need rekeying every

year.

Rule - Follow applicable regulations on use of cryptography

Rule - Under PCI DSS requirement 3, you must protect cardholder data

The Payment Card Industry (PCI) Data Security Standard (DSS) was developed to encourage

and enhance cardholder data security and facilitate the broad adoption of consistent data security

measures globally. The standard was introduced in 2005 and replaced individual compliance

standards from Visa, Mastercard, Amex, JCB and Diners. The current version of the standard is

2.0 and was initialized on January 1, 2011.

PCI DSS requirement 3 covers secure storage of credit card data. This requirement covers

several aspects of secure storage including the data you must never store but we are covering

Cryptographic Storage which is covered in requirements 3.4, 3.5 and 3.6 as you can see below:

3.4 Render PAN (Primary Account Number), at minimum, unreadable anywhere it is

stored

Compliance with requirement 3.4 can be met by implementing any of the four types of secure

storage described in the standard which includes encrypting and hashing data. These two

approaches will often be the most popular choices from the list of options. The standard doesn't

refer to any specific algorithms but it mandates the use of Strong Cryptography. The glossary

document from the PCI council defines Strong Cryptography as:

Cryptography based on industry-tested and accepted algorithms, along with strong key lengths

and proper key-management practices. Cryptography is a method to protect data and includes

both encryption (which is reversible) and hashing (which is not reversible, or “one way”). SHA-

1 is an example of an industry-tested and accepted hashing algorithm. Examples of industry-

tested and accepted standards and algorithms for encryption include AES (128 bits and higher),

TDES (minimum double-length keys), RSA (1024 bits and higher), ECC (160 bits and higher),

and ElGamal (1024 bits and higher).

If you have implemented the second rule in this cheat sheet you will have implemented a strong

cryptographic algorithm which is compliant with or stronger than the requirements of PCI DSS

requirement 3.4. You need to ensure that you identify all locations that card data could be stored

including logs and apply the appropriate level of protection. This could range from encrypting

the data to replacing the card number in logs.

This requirement can also be met by implementing disk encryption rather than file or column

level encryption. The requirements for Strong Cryptography are the same for disk encryption

and backup media. The card data should never be stored in the clear and by following the

guidance in this cheat sheet you will be able to securely store your data in a manner which is

compliant with PCI DSS requirement 3.4

3.5 Protect any keys used to secure cardholder data against disclosure and misuse

As the requirement name above indicates, we are required to securely store the encryption keys

themselves. This will mean implementing strong access control, auditing and logging for your

keys. The keys must be stored in a location which is both secure and "away" from the encrypted

data. This means key data shouldn't be stored on web servers, database servers etc

Access to the keys must be restricted to the smallest amount of users possible. This group of

users will ideally be users who are highly trusted and trained to perform Key Custodian duties.

There will obviously be a requirement for system/service accounts to access the key data to

perform encryption/decryption of data.

The keys themselves shouldn't be stored in the clear but encrypted with a KEK (Key Encrypting

Key). The KEK must not be stored in the same location as the encryption keys it is encrypting.

3.6 Fully document and implement all key-management processes and procedures for

cryptographic keys used for encryption of cardholder data

Requirement 3.6 mandates that key management processes within a PCI compliant company

cover 8 specific key lifecycle steps:

3.6.1 Generation of strong cryptographic keys

As we have previously described in this cheat sheet we need to use algorithms which offer high

levels of data security. We must also generate strong keys so that the security of the data isn't

undermined by weak cryptographic keys. A strong key is generated by using a key length which

is sufficient for your data security requirements and compliant with the PCI DSS. The key size

alone isn't a measure of the strength of a key. The data used to generate the key must be

sufficiently random ("sufficient" often being determined by your data security requirements) and

the entropy of the key data itself must be high.

3.6.2 Secure cryptographic key distribution

The method used to distribute keys must be secure to prevent the theft of keys in transit. The use

of a protocol such as Diffie Hellman can help secure the distribution of keys, the use of secure

transport such as SSLv3, TLS and SSHv2 can also secure the keys in transit.

3.6.3 Secure cryptographic key storage

The secure storage of encryption keys including KEK's has been touched on in our description of

requirement 3.5 (see above).

3.6.4 Periodic cryptographic key changes

The PCI DSS standard mandates that keys used for encryption must be rotated at least annually.

The key rotation process must remove an old key from the encryption/decryption process and

replace it with a new key. All new data entering the system must encrypted with the new key.

While it is recommended that existing data be rekeyed with the new key, as per the Rekey data at

least every one to three years rule above, it is not clear that the PCI DSS requires this.

3.6.5 Retirement or replacement of keys as deemed necessary when the integrity of the key

has been weakened or keys are suspected of being compromised

The key management processes must cater for archived, retired or compromised keys. The

process of securely storing and replacing these keys will more than likely be covered by your

processes for requirements 3.6.2, 3.6.3 and 3.6.4

3.6.6 Split knowledge and establishment of dual control of cryptographic keys

The requirement for split knowledge and/or dual control for key management prevents an

individual user performing key management tasks such as key rotation or deletion. The system

should require two individual users to perform an action (i.e. entering a value from their own

OTP) which creates to separate values which are concatenated to create the final key data.

3.6.7 Prevention of unauthorized substitution of cryptographic keys

The system put in place to comply with requirement 3.6.6 can go a long way to preventing

unauthorised substitution of key data. In addition to the dual control process you should

implement strong access control, auditing and logging for key data so that unauthorised access

attempts are prevented and logged.

3.6.8 Requirement for cryptographic key custodians to sign a form stating that they

understand and accept their key-custodian responsibilities

To perform the strong key management functions we have seen in requirement 3.6 we must have

highly trusted and trained key custodians who understand how to perform key management

duties. The key custodians must also sign a form stating they understand the responsibilities that

come with this role.

Authors and Primary Editors

Kevin Kenan - kevin[at]k2dd.com

David Rook - david.a.rook[at]gmail.com

Kevin Wall - kevin.w.wall[at]gmail.com

Jim Manico - jim[at]owasp.org

Fred Donovan - fred.donovan(at)owasp.org

This document exists under the (CC BY-SA 3.0) http://creativecommons.org/licenses/by-sa/3.0/

