
WildFly 10

JBoss Community Documentation Page of 1 532

Developer Guide

Exported from at 2017-06-19 14:13:37 EDTJBoss Community Documentation Editor

Copyright 2017 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY10

WildFly 10

JBoss Community Documentation Page of 2 532

Table of Contents

1 WildFly Developer Guide ___ 15

1.1 Target Audience ___ 15

1.2 Prerequisites __ 15

2 Class loading in WildFly ___ 16

2.1 Deployment Module Names __ 16

2.2 Automatic Dependencies __ 16

2.3 Class Loading Precedence ___ 17

2.4 WAR Class Loading __ 17

2.5 EAR Class Loading ___ 17

2.5.1 Class Path Entries __ 20

2.6 Global Modules __ 20

2.7 JBoss Deployment Structure File __ 20

2.8 Accessing JDK classes __ 22

2.9 The "jboss.api" property and application use of modules shipped with WildFly _______________ 22

3 Implicit module dependencies for deployments __ 24

3.1 What's an implicit module dependency? ___ 24

3.2 How and when is an implicit module dependency added? _______________________________ 25

3.3 Which are the implicit module dependencies? __ 25

4 How do I migrate my application from JBoss AS 5 or AS 6 to WildFly? _________________________ 28

5 EJB invocations from a remote standalone client using JNDI _________________________________ 29

5.1 Deploying your EJBs on the server side: __ 29

5.2 Writing a remote client application for accessing and invoking the EJBs deployed on the server _ 31

5.3 Setting up EJB client context properties ___ 37

5.4 Summary ___ 41

6 EJB invocations from a remote server __ 42

6.1 Application packaging ___ 42

6.2 Beans ___ 43

6.3 Security __ 43

6.4 Configuring a user on the "Destination Server" __ 44

6.5 Start the "Destination Server" ___ 45

6.6 Deploying the application __ 45

6.7 Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server" _

45

6.8 Start the "Client Server" ___ 46

6.9 Create a security realm on the client server __ 46

6.10 Create a outbound-socket-binding on the "Client Server" ________________________________ 48

6.11 Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding" _

48

6.12 Packaging the client application on the "Client Server" __________________________________ 50

6.13 Contents on jboss-ejb-client.xml ___ 51

6.14 Deploy the client application __ 51

6.15 Client code invoking the bean ___ 52

WildFly 10

JBoss Community Documentation Page of 3 532

7 Remote EJB invocations via JNDI - Which approach to use? _________________________________ 53

8 JBoss EJB 3 reference guide ___ 54

8.1 Resource Adapter for Message Driven Beans __ 54

8.1.1 Specification of Resource Adapter using Metadata Annotations _____________________ 54

8.2 Run-as Principal ___ 55

8.2.1 Specification of Run-as Principal using Metadata Annotations ______________________ 55

8.3 Security Domain ___ 55

8.3.1 Specification of Security Domain using Metadata Annotations ______________________ 55

8.4 Transaction Timeout __ 55

8.4.1 Specification of Transaction Timeout with Metadata Annotations ____________________ 56

8.4.2 Specification of Transaction Timeout in the Deployment Descriptor __________________ 57

8.5 Timer service __ 57

8.5.1 Single event timer __ 58

8.5.2 Recurring timer ___ 58

8.5.3 Calendar timer ___ 59

9 JPA reference guide __ 60

9.1 Introduction ___ 61

9.2 Update your Persistence.xml for Hibernate 5.0 __ 61

9.3 Entity manager __ 61

9.4 Application-managed entity manager ___ 62

9.5 Container-managed entity manager __ 62

9.6 Persistence Context __ 62

9.7 Transaction-scoped Persistence Context __ 63

9.8 Extended Persistence Context __ 63

9.8.1 Extended Persistence Context Inheritance _____________________________________ 63

9.9 Entities ___ 65

9.10 Deployment ___ 66

9.11 Troubleshooting __ 66

9.12 Using the Hibernate 5.x JPA persistence provider _____________________________________ 68

9.13 Hibernate ORM 3.x integration is not included __ 68

9.14 Using the Infinispan second level cache ___ 68

9.15 Replacing the current Hibernate 5.x jars with a newer version ____________________________ 71

9.16 Using Hibernate Search ___ 71

9.17 Packaging the Hibernate JPA persistence provider with your application ___________________ 72

9.18 Using OpenJPA __ 73

9.19 Using EclipseLink __ 73

9.20 Using DataNucleus ___ 75

9.21 Native Hibernate use __ 75

9.22 Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory ___ 75

9.23 Hibernate properties __ 75

9.24 Persistence unit properties ___ 77

9.25 Determine the persistence provider module __ 79

9.26 Binding EntityManagerFactory/EntityManager to JNDI __________________________________ 80

9.27 Community ___ 81

9.27.1 People who have contributed to the WildFly JPA layer: ____________________________ 81

WildFly 10

JBoss Community Documentation Page of 4 532

10 OSGi developer guide ___ 82

11 JNDI reference guide ___ 83

11.1 Overview ___ 83

11.2 Local JNDI __ 83

11.2.1 Binding entries to JNDI __ 84

11.2.2 Retrieving entries from JNDI __ 86

11.3 Remote JNDI __ 88

11.3.1 remote: ___ 88

11.3.2 ejb: __ 89

12 Spring applications development and migration guide ______________________________________ 90

12.1 Dependencies and Modularity ___ 90

12.2 Persistence usage guide ___ 90

12.3 Native Spring/Hibernate applications ___ 90

12.4 JPA-based applications __ 90

12.4.1 Using server-deployed persistence units _______________________________________ 91

12.4.2 Using Spring-managed persistence units ______________________________________ 92

12.4.3 Managing dependencies ___ 93

13 All WildFly documentation __ 94

14 Application Client Reference __ 95

14.1 Getting Started __ 95

14.2 Connecting to more than one host ___ 95

14.3 Example ___ 96

15 CDI Reference ___ 97

15.1 Using CDI Beans from outside the deployment _______________________________________ 97

15.2 Suppressing implicit bean archives ___ 98

15.2.1 Per-deployment configuration ___ 98

15.2.2 ___ 98

15.2.3 Global configuration ___ 98

15.3 Development mode ___ 99

15.3.1 Per-deployment configuration ___ 99

15.3.2 ___ 99

15.3.3 Global configuration ___ 99

15.4 Non-portable mode __ 100

15.4.1 Per-deployment configuration __ 100

15.4.2 Global configuration __ 100

16 Class Loading in WildFly __ 101

16.1 Deployment Module Names ___ 101

16.2 Automatic Dependencies ___ 101

16.3 Class Loading Precedence __ 102

16.4 WAR Class Loading ___ 102

16.5 EAR Class Loading __ 102

16.5.1 Class Path Entries ___ 105

16.6 Global Modules ___ 105

16.7 JBoss Deployment Structure File ___ 105

16.8 Accessing JDK classes ___ 107

16.9 The "jboss.api" property and application use of modules shipped with WildFly ______________ 107

WildFly 10

JBoss Community Documentation Page of 5 532

17 Deployment Descriptors used In WildFly ___ 109

18 Development Guidelines and Recommended Practices ____________________________________ 113

19 EE Concurrency Utilities __ 114

19.1 Overview __ 114

19.2 Context Service ___ 115

19.3 Managed Thread Factory ___ 115

19.4 Managed Executor Service __ 117

19.5 Managed Scheduled Executor Service ___ 117

20 EJB 3 Reference Guide ___ 120

20.1 Resource Adapter for Message Driven Beans _______________________________________ 120

20.1.1 Specification of Resource Adapter using Metadata Annotations ____________________ 120

20.2 Run-as Principal __ 121

20.2.1 Specification of Run-as Principal using Metadata Annotations _____________________ 121

20.3 Security Domain __ 121

20.3.1 Specification of Security Domain using Metadata Annotations _____________________ 121

20.4 Transaction Timeout ___ 121

20.4.1 Specification of Transaction Timeout with Metadata Annotations ___________________ 122

20.4.2 Specification of Transaction Timeout in the Deployment Descriptor _________________ 123

20.5 Timer service ___ 123

20.5.1 Single event timer ___ 124

20.5.2 Recurring timer __ 124

20.5.3 Calendar timer __ 125

20.6 Container interceptors __ 125

20.6.1 Overview __ 125

20.6.2 Typical EJB invocation call path on the server __________________________________ 126

20.6.3 Feature request for WildFly __ 126

20.6.4 Configuring container interceptors ___ 126

20.6.5 Container interceptor positioning in the interceptor chain _________________________ 129

20.6.6 Semantic difference between container interceptor(s) and Java EE interceptor(s) API __ 129

20.6.7 Testcase ___ 129

20.7 EJB3 Clustered Database Timers ___ 129

20.7.1 Overview __ 130

20.7.2 Setup ___ 131

20.7.3 Using clustered timers in a deployment _______________________________________ 132

20.7.4 Technical details __ 132

20.8 EJB3 subsystem configuration guide __ 132

20.8.1 <session-bean> ___ 135

20.8.2 <mdb> __ 135

20.8.3 <entity-bean> ___ 136

20.8.4 __ 136

20.8.5 <pools> ___ 136

20.8.6 <caches> __ 136

20.8.7 <passivation-stores> ___ 136

20.8.8 <async> ___ 136

20.8.9 <timer-service> ___ 136

20.8.10<remote> __ 137

WildFly 10

JBoss Community Documentation Page of 6 532

<remote> ___ 137

20.8.11<thread-pools> ___ 137

20.8.12<iiop> ___ 137

20.8.13<in-vm-remote-interface-invocation> ___ 138

20.9 EJB IIOP Guide ___ 139

20.9.1 Enabling IIOP ___ 139

20.9.2 Enabling JTS ___ 139

20.9.3 Dynamic Stub's ___ 139

20.9.4 Configuring EJB IIOP settings via jboss-ejb3.xml _______________________________ 139

20.10jboss-ejb3.xml Reference ___ 139

20.10.1Example File ___ 139

20.11Message Driven Beans Controlled Delivery ___ 141

20.11.1Delivery Active __ 142

20.11.2Delivery Groups ___ 143

20.11.3Clustered Singleton Delivery ___ 147

20.11.4Using Multiple MDB Delivery Control Mechanisms ______________________________ 149

20.12Securing EJBs ___ 149

20.12.1Overview __ 149

20.12.2Security Domain __ 149

20.12.3Absence of security domain configuration but presence of other security metadata ____ 151

20.12.4Access to methods without explicit security metadata, on a secured bean ___________ 151

21 EJB invocations from a remote client using JNDI ___ 154

21.1 Deploying your EJBs on the server side: ___ 154

21.2 Writing a remote client application for accessing and invoking the EJBs deployed on the server 156

21.3 Setting up EJB client context properties __ 162

21.4 Summary __ 166

22 EJB invocations from a remote server instance __ 167

22.1 Application packaging __ 167

22.2 Beans __ 168

22.3 Security ___ 168

22.4 Configuring a user on the "Destination Server" _______________________________________ 169

22.5 Start the "Destination Server" __ 170

22.6 Deploying the application ___ 170

22.7 Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server" _

170

22.8 Start the "Client Server" __ 171

22.9 Create a security realm on the client server ___ 171

22.10Create a outbound-socket-binding on the "Client Server" ______________________________ 173

22.11Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding" _

173

22.12Packaging the client application on the "Client Server" ________________________________ 175

22.13Contents on jboss-ejb-client.xml ___ 176

22.14Deploy the client application ___ 176

22.15Client code invoking the bean ___ 177

23 Example Applications - Migrated to WildFly ___ 178

23.1 Example Applications Migrated from Previous Releases _______________________________ 178

23.1.1 Seam 2 JPA example ___ 178

WildFly 10

JBoss Community Documentation Page of 7 532

23.1.2 Seam 2 DVD Store example ___ 178

23.1.3 Seam 2 Booking example ___ 178

23.1.4 Seam 2 Booking - step-by-step migration of binaries ____________________________ 178

23.1.5 jBPM-Console application ___ 178

23.1.6 Order application used for performance testing _________________________________ 179

23.1.7 Migrate example application ___ 179

23.2 Example Applications Based on EE6 __ 179

23.3 Porting the Order Application from EAP 5.1 to WildFly 8 _______________________________ 179

23.3.1 Overview of the application __ 179

23.3.2 Summary of changes ___ 179

23.4 Seam 2 Booking Application - Migration of Binaries from EAP5.1 to WildFly ________________ 185

23.4.1 Step 1: Build and deploy the EAP5.1 version of the Seam Booking application ________ 186

23.4.2 Step 2: Debug and resolve deployment errors and exceptions _____________________ 186

23.4.3 Step 3: Debug and resolve runtime errors and exceptions ________________________ 201

23.4.4 Step 4: Access the application __ 205

23.4.5 Summary of Changes __ 205

24 How do I migrate my application from AS7 to WildFly _____________________________________ 207

24.1 About this Document ___ 208

24.2 Overview of WildFly __ 209

24.3 Server Migration __ 209

24.3.1 JacORB Subsystem __ 209

24.3.2 JBoss Web Subsystem ___ 211

24.3.3 Messaging Subsystem __ 218

24.4 Application Migration ___ 222

24.4.1 EJBs __ 222

24.4.2 JMS __ 225

24.4.3 JPA (and Hibernate) __ 226

24.4.4 Web Applications __ 227

24.4.5 Web Services ___ 227

24.4.6 Application Clustering __ 229

24.4.7 Other Specifications and Frameworks __ 232

25 How do I migrate my application to WildFly from other application servers _____________________ 233

25.1 Choose from the list below: __ 233

25.2 How do I migrate my application from WebLogic to WildFly _____________________________ 233

25.2.1 Introduction __ 233

25.3 How do I migrate my application from WebSphere to WildFly ___________________________ 234

25.3.1 Introduction __ 234

26 Implicit module dependencies for deployments ___ 235

26.1 What's an implicit module dependency? __ 235

26.2 How and when is an implicit module dependency added? ______________________________ 236

26.3 Which are the implicit module dependencies? _______________________________________ 236

27 JAX-RS Reference Guide ___ 239

27.1 Subclassing javax.ws.rs.core.Application and using @ApplicationPath ____________________ 239

27.2 Subclassing javax.ws.rs.core.Application and using web.xml ____________________________ 240

27.3 Using web.xml __ 240

28 JNDI Reference ___ 241

WildFly 10

JBoss Community Documentation Page of 8 532

28.1 Overview __ 241

28.2 Local JNDI ___ 241

28.2.1 Binding entries to JNDI ___ 242

28.2.2 Retrieving entries from JNDI ___ 244

28.3 Remote JNDI ___ 246

28.3.1 remote: __ 246

28.3.2 ejb: ___ 247

28.4 Local JNDI ___ 247

28.4.1 Binding entries to JNDI ___ 248

28.4.2 Retrieving entries from JNDI ___ 250

28.5 Remote JNDI Reference __ 252

28.5.1 Remote JNDI ___ 252

28.5.2 Remote JNDI Access ___ 253

29 JPA Reference Guide __ 256

29.1 Introduction __ 257

29.2 Update your Persistence.xml for Hibernate 5.0 _______________________________________ 257

29.3 Entity manager ___ 257

29.4 Application-managed entity manager __ 258

29.5 Container-managed entity manager ___ 258

29.6 Persistence Context ___ 258

29.7 Transaction-scoped Persistence Context ___ 259

29.8 Extended Persistence Context ___ 259

29.8.1 Extended Persistence Context Inheritance ____________________________________ 259

29.9 Entities __ 261

29.10Deployment ___ 262

29.11Troubleshooting __ 262

29.12Using the Hibernate 5.x JPA persistence provider ____________________________________ 264

29.13Hibernate ORM 3.x integration is not included _______________________________________ 264

29.14Using the Infinispan second level cache ___ 264

29.15Replacing the current Hibernate 5.x jars with a newer version __________________________ 267

29.16Using Hibernate Search __ 267

29.17Packaging the Hibernate JPA persistence provider with your application __________________ 268

29.18Using OpenJPA __ 269

29.19Using EclipseLink ___ 269

29.20Using DataNucleus __ 271

29.21Native Hibernate use __ 271

29.22Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory __ 271

29.23Hibernate properties ___ 271

29.24Persistence unit properties __ 273

29.25Determine the persistence provider module ___ 275

29.26Binding EntityManagerFactory/EntityManager to JNDI ________________________________ 276

29.27Community __ 277

29.27.1People who have contributed to the WildFly JPA layer: __________________________ 277

30 OSGi ___ 278

31 Remote EJB invocations via JNDI - EJB client API or remote-naming project ___________________ 279

WildFly 10

JBoss Community Documentation Page of 9 532

31.1 Purpose ___ 279

31.2 History __ 279

31.3 Overview __ 279

31.3.1 Client code relying on jndi.properties in classpath _______________________________ 279

31.3.2 How does remoting naming work __ 281

31.3.3 JNDI operations allowed using remote-naming project ___________________________ 282

31.3.4 Pre-requisites of remotely accessible JNDI objects ______________________________ 283

31.3.5 JNDI lookup strings for remote clients backed by the remote-naming project __________ 283

31.3.6 How does remote-naming project implementation transfer the JNDI objects to the clients ___

284

31.4 Summary __ 284

31.5 Remote EJB invocations backed by the remote-naming project __________________________ 284

31.6 Why use the EJB client API approach then? ___ 287

31.6.1 Is the lookup optimization applicable for all bean types? __________________________ 289

31.6.2 Restrictions for EJB's ___ 290

32 Scoped EJB client contexts __ 291

32.1 Overview __ 291

32.2 Potential shortcomings of a single EJB client context __________________________________ 291

32.3 Scoped EJB client contexts __ 292

32.4 Lifecycle management of scoped EJB client contexts _________________________________ 294

32.4.1 How to close EJB client contexts? ___ 295

32.4.2 How to close scoped EJB client contexts? _____________________________________ 295

32.4.3 Can't the scoped EJB client context be automatically closed by the EJB client API when the

JNDI context is no longer in scope (i.e. on GC)? _______________________________________ 299

33 Spring applications development and migration guide _____________________________________ 300

33.1 Dependencies and Modularity __ 300

33.2 Persistence usage guide __ 300

33.3 Native Spring/Hibernate applications __ 300

33.4 JPA-based applications ___ 300

33.4.1 Using server-deployed persistence units ______________________________________ 301

33.4.2 Using Spring-managed persistence units _____________________________________ 302

33.4.3 Managing dependencies __ 303

34 Sharing sessions between wars in an ear ___ 304

35 Webservices reference guide __ 305

35.1 JAX-WS User Guide ___ 305

35.1.1 Web Service Endpoints ___ 305

35.1.2 Web Service Clients __ 309

35.1.3 Common API ___ 315

35.1.4 JAX-WS Annotations ___ 318

35.1.5 JSR-181 Annotations ___ 320

35.2 JAX-WS Tools __ 321

35.2.1 Server side ___ 321

35.2.2 Client Side ___ 326

35.2.3 wsconsume __ 329

35.2.4 wsprovide __ 336

35.3 Advanced User Guide __ 341

WildFly 10

JBoss Community Documentation Page of 10 532

35.3.1 Logging ___ 342

35.3.2 WS-* support ___ 343

35.3.3 Address rewrite ___ 344

35.3.4 Configuration through deployment descriptor __________________________________ 344

35.3.5 Schema validation of SOAP messages _______________________________________ 348

35.3.6 JAXB Introductions ___ 349

35.3.7 WSDL system properties expansion ___ 349

35.3.8 Predefined client and endpoint configurations __________________________________ 349

35.3.9 Authentication __ 358

35.3.10Apache CXF integration __ 362

35.3.11WS-Addressing ___ 376

35.3.12WS-Security ___ 379

35.3.13WS-Trust and STS __ 404

35.3.14WS-Reliable Messaging __ 500

35.3.15SOAP over JMS __ 506

35.3.16HTTP Proxy __ 517

35.3.17WS-Discovery __ 520

35.3.18WS-Policy ___ 520

35.3.19Published WSDL customization __ 525

35.4 JBoss Modules and WS applications __ 529

35.4.1 Setting module dependencies __ 530

WildFly 10

JBoss Community Documentation Page of 11 532

WildFly Developer Guide

Target Audience

Prerequisites

Class loading in WildFly

Deployment Module Names

Automatic Dependencies

Class Loading Precedence

WAR Class Loading

EAR Class Loading

Class Path Entries

Global Modules

JBoss Deployment Structure File

Accessing JDK classes

The "jboss.api" property and application use of modules shipped with WildFly

Implicit module dependencies for deployments

What's an implicit module dependency?

How and when is an implicit module dependency added?

Which are the implicit module dependencies?

How do I migrate my application from JBoss AS 5 or AS 6 to WildFly?

EJB invocations from a remote standalone client using JNDI

Deploying your EJBs on the server side:

Writing a remote client application for accessing and invoking the EJBs deployed on the server

Setting up EJB client context properties

Using a different file for setting up EJB client context

Setting up the client classpath with the jars that are required to run the client application

Summary

EJB invocations from a remote server

Application packaging

Beans

Security

Configuring a user on the "Destination Server"

Start the "Destination Server"

Deploying the application

Configuring the "Client Server" to point to the EJB remoting connector on the "Destination

Server"

Start the "Client Server"

Create a security realm on the client server

Create a outbound-socket-binding on the "Client Server"

Create a "remote-outbound-connection" which uses this newly created

"outbound-socket-binding"

Packaging the client application on the "Client Server"

Contents on jboss-ejb-client.xml

Deploy the client application

Client code invoking the bean

Remote EJB invocations via JNDI - Which approach to use?

WildFly 10

JBoss Community Documentation Page of 12 532

JBoss EJB 3 reference guide

Resource Adapter for Message Driven Beans

Specification of Resource Adapter using Metadata Annotations

Run-as Principal

Specification of Run-as Principal using Metadata Annotations

Security Domain

Specification of Security Domain using Metadata Annotations

Transaction Timeout

Specification of Transaction Timeout with Metadata Annotations

Specification of Transaction Timeout in the Deployment Descriptor

Example of trans-timeout

Timer service

Single event timer

Recurring timer

Calendar timer

Programmatic calendar timer

Annotated calendar timer

WildFly 10

JBoss Community Documentation Page of 13 532

JPA reference guide

Introduction

Update your Persistence.xml for Hibernate 5.0

Entity manager

Application-managed entity manager

Container-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Hibernate 5.x JPA persistence provider

Hibernate ORM 3.x integration is not included

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Using OpenJPA

Using EclipseLink

Using DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and

SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

OSGi developer guide

WildFly 10

JBoss Community Documentation Page of 14 532

JNDI reference guide

Overview

Local JNDI

Binding entries to JNDI

Using a deployment descriptor

Programatically

Java EE Applications

WildFly Modules and Extensions

Naming Subsystem Configuration

Retrieving entries from JNDI

Resource Injection

Standard Java SE JNDI API

Remote JNDI

remote:

ejb:

Spring applications development and migration guide

Dependencies and Modularity

Persistence usage guide

Native Spring/Hibernate applications

JPA-based applications

Using server-deployed persistence units

Using Spring-managed persistence units

Placement of the persistence unit definitions

Managing dependencies

All WildFly documentation

WildFly 10

JBoss Community Documentation Page of 15 532

1 WildFly Developer Guide

1.1 Target Audience

Java Developers

1.2 Prerequisites

WildFly 10

JBoss Community Documentation Page of 16 532

2 Class loading in WildFly
Since JBoss AS 7, Class loading is considerably different to previous versions of JBoss AS. Class loading is

based on the project. Instead of the more familiar hierarchical class loading environment,JBoss Modules

WildFly's class loading is based on modules that have to define explicit dependencies on other modules.

Deployments in WildFly are also modules, and do not have access to classes that are defined in jars in the

application server unless an explicit dependency on those classes is defined.

2.1 Deployment Module Names

Module names for top level deployments follow the format while subdeployment.myarchive.war

deployments are named like . deployment.myear.ear.mywar.war

This means that it is possible for a deployment to import classes from another deployment using the other

deployments module name, the details of how to add an explicit module dependency are explained below.

2.2 Automatic Dependencies

Even though in WildFly modules are isolated by default, as part of the deployment process some

dependencies on modules defined by the application server are set up for you automatically. For instance, if

you are deploying a Java EE application a dependency on the Java EE API's will be added to your module

automatically. Similarly if your module contains a beans.xml file a dependency on will be addedWeld

automatically, along with any supporting modules that weld needs to operate.

For a complete list of the automatic dependencies that are added, please see Implicit module dependencies

.for deployments

Automatic dependencies can be excluded through the use of .jboss-deployment-structure.xml

https://docs.jboss.org/author/display/MODULES
http://seamframework.org/Weld

WildFly 10

JBoss Community Documentation Page of 17 532

1.

2.

3.

4.

2.3 Class Loading Precedence

A common source of errors in Java applications is including API classes in a deployment that are also

provided by the container. This can result in multiple versions of the class being created and the deployment

failing to deploy properly. To prevent this in WildFly, module dependencies are added in a specific order that

should prevent this situation from occurring.

In order of highest priority to lowest priority

System Dependencies - These are dependencies that are added to the module automatically by the

container, including the Java EE api's.

User Dependencies - These are dependencies that are added through

 or through the manifest entry.jboss-deployment-structure.xml Dependencies:

Local Resource - Class files packaged up inside the deployment itself, e.g. class files from

 or of a war.WEB-INF/classes WEB-INF/lib

Inter deployment dependencies - These are dependencies on other deployments in an ear

deployment. This can include classes in an ear's lib directory, or classes defined in other ejb jars.

2.4 WAR Class Loading

The war is considered to be a single module, so classes defined in are treated the same asWEB-INF/lib

classes in . All classes packaged in the war will be loaded with the same class loader.WEB-INF/classes

2.5 EAR Class Loading

Ear deployments are multi-module deployments. This means that not all classes inside an ear will

necessarily have access to all other classes in the ear, unless explicit dependencies have been defined. By

default the directory is a single module, and every WAR or EJB jar deployment is also a separateEAR/lib

module. Sub deployments (wars and ejb-jars) always have a dependency on the parent module, which gives

them access to classes in , however they do not always have an automatic dependency on eachEAR/lib

other. This behaviour is controlled via the setting in the ee subsystemear-subdeployments-isolated

configuration:

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

</subsystem>

By default this is set to false, which allows the sub-deployments to see classes belonging to other

sub-deployments within the .ear.

For example, consider the following .ear deployment:

WildFly 10

JBoss Community Documentation Page of 18 532

myapp.ear

 |

 |--- web.war

 |

 |--- ejb1.jar

 |

 |--- ejb2.jar

If the ear-subdeployments-isolated is set to false, then the classes in web.war can access classes belonging

to ejb1.jar and ejb2.jar. Similarly, classes from ejb1.jar can access classes from ejb2.jar (and vice-versa).

The ear-subdeployments-isolated element value has no effect on the isolated classloader of the

.war file(s). i.e. irrespective of whether this flag is set to true or false, the .war within a .ear will have

a isolated classloader and other sub-deployments within that .ear will not be able to access classes

from that .war. This is as per spec.

If the ear-subdeployments-isolated is set to true then no automatic module dependencies between the

sub-deployments are set up. User must manually setup the dependency with entries, or byClass-Path

setting up explicit module dependencies.

Portability

The Java EE specification says that portable applications should not rely on sub deployments

having access to other sub deployments unless an explicit Class-Path entry is set in the

MANIFEST.MF. So portable applications should always use Class-Path entry to explicitly state their

dependencies.

It is also possible to override the ear-subdeployments-isolated element value at a per deployment

level. See the section on jboss-deployment-structure.xml below.

Dependencies: Manifest Entries

Deployments (or more correctly modules within a deployment) may set up dependencies on other modules

by adding a manifest entry. This entry consists of a comma separated list of moduleDependencies:

names that the deployment requires. The available modules can be seen under the directory in themodules

application server distribution. For example to add a dependency on javassist and apache velocity you can

add a manifest entry as follows:

Dependencies: org.javassist export,org.apache.velocity export services,org.antlr

Each dependency entry may also specify some of the following parameters by adding them after the module

name:

WildFly 10

JBoss Community Documentation Page of 19 532

 This means that the dependencies will be exported, so any module that depends on thisexport

module will also get access to the dependency.

 By default items in META-INF of a dependency are not accessible, this makes items from services

 accessible so in the modules can be loaded.META-INF/services services

 If this is specified the deployment will not fail if the module is not available.optional

 This will make the contents of the directory available (unlike , whichmeta-inf META-INF services

just makes available). In general this will not cause any deploymentMETA-INF/services

descriptors in META-INF to be processed, with the exception of . If a file isbeans.xml beans.xml

present this module will be scanned by Weld and any resulting beans will be available to the

application.

 If a jandex index has be created for the module these annotations will be merged intoannotations

the deployments annotation index. The index can be generated using the ,Jandex Jandex ant task

and must be named . Note that it is not necessary to break open the jarMETA-INF/jandex.idx

being indexed to add this to the modules class path, a better approach is to create a jar containing

just this index, and adding it as an additional resource root in the file.module.xml

Adding a dependency to all modules in an EAR

Using the parameter it is possible to add a dependency to all sub deployments in an ear. Ifexport

a module is exported from a entry in the top level of the ear (or by a jar in the Dependencies:

 directory) it will be available to all sub deployments as well.ear/lib

To generate a MANIFEST.MF entry when using maven put the following in your pom.xml:

pom.xml

<build>

 ...

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.slf4j</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

If your deployment is a jar you must use the rather than the maven-jar-plugin

.maven-war-plugin

http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://github.com/jbossas/jandex
https://github.com/jbossas/jandex/blob/master/src/main/java/org/jboss/jandex/JandexAntTask.java

WildFly 10

JBoss Community Documentation Page of 20 532

2.5.1 Class Path Entries

It is also possible to add module dependencies on other modules inside the deployment using the

 manifest entry. This can be used within an ear to set up dependencies between subClass-Path

deployments, and also to allow modules access to additional jars deployed in an ear that are not sub

deployments and are not in the directory. If a jar in the directory references a jar via EAR/lib EAR/lib

 then this additional jar is merged into the parent ear's module, and is accessible to all subClass-Path:

deployments in the ear.

2.6 Global Modules

It is also possible to set up global modules, that are accessible to all deployments. This is done by modifying

the configuration file (standalone/domain.xml).

For example, to add javassist to all deployments you can use the following XML:

standalone.xml/domain.xml

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <global-modules>

 <module name="org.javassist" slot="main" />

 </global-modules>

</subsystem>

Note that the field is optional and defaults to .slot main

2.7 JBoss Deployment Structure File

 is a JBoss specific deployment descriptor that can be used tojboss-deployment-structure.xml

control class loading in a fine grained manner. It should be placed in the top level deployment, in META-INF

(or for web deployments). It can do the following:WEB-INF

Prevent automatic dependencies from being added

Add additional dependencies

Define additional modules

Change an EAR deployments isolated class loading behaviour

Add additional resource roots to a module

An example of a complete file for an ear deployment is as follows:jboss-deployment-structure.xml

jboss-deployment-structure.xml

<jboss-deployment-structure>

 <!-- Make sub deployments isolated by default, so they cannot see each others classes without

a Class-Path entry -->

WildFly 10

JBoss Community Documentation Page of 21 532

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <!-- This corresponds to the top level deployment. For a war this is the war's module, for an

ear -->

 <!-- This is the top level ear module, which contains all the classes in the EAR's lib folder

-->

 <deployment>

 <!-- exclude-subsystem prevents a subsystems deployment unit processors running on a

deployment -->

 <!-- which gives basically the same effect as removing the subsystem, but it only affects

single deployment -->

 <exclude-subsystems>

 <subsystem name="resteasy" />

 </exclude-subsystems>

 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies

-->

 <exclusions>

 <module name="org.javassist" />

 </exclusions>

 <!-- This allows you to define additional dependencies, it is the same as using the

Dependencies: manifest attribute -->

 <dependencies>

 <module name="deployment.javassist.proxy" />

 <module name="deployment.myjavassist" />

 <!-- Import META-INF/services for ServiceLoader impls as well -->

 <module name="myservicemodule" services="import"/>

 </dependencies>

 <!-- These add additional classes to the module. In this case it is the same as including

the jar in the EAR's lib directory -->

 <resources>

 <resource-root path="my-library.jar" />

 </resources>

 </deployment>

 <sub-deployment name="myapp.war">

 <!-- This corresponds to the module for a web deployment -->

 <!-- it can use all the same tags as the <deployment> entry above -->

 <dependencies>

 <!-- Adds a dependency on a ejb jar. This could also be done with a Class-Path entry -->

 <module name="deployment.myear.ear.myejbjar.jar" />

 </dependencies>

 <!-- Set's local resources to have the lowest priority -->

 <!-- If the same class is both in the sub deployment and in another sub deployment that -->

 <!-- is visible to the war, then the Class from the other deployment will be loaded, -->

 <!-- rather than the class actually packaged in the war. -->

 <!-- This can be used to resolve ClassCastExceptions if the same class is in multiple sub

deployments-->

 <local-last value="true" />

 </sub-deployment>

 <!-- Now we are going to define two additional modules -->

 <!-- This one is a different version of javassist that we have packaged -->

 <module name="deployment.myjavassist" >

 <resources>

 <resource-root path="javassist.jar" >

 <!-- We want to use the servers version of javassist.util.proxy.* so we filter it out-->

 <filter>

 <exclude path="javassist/util/proxy" />

 </filter>

 </resource-root>

 </resources>

WildFly 10

JBoss Community Documentation Page of 22 532

 </module>

 <!-- This is a module that re-exports the containers version of javassist.util.proxy -->

 <!-- This means that there is only one version of the Proxy classes defined -->

 <module name="deployment.javassist.proxy" >

 <dependencies>

 <module name="org.javassist" >

 <imports>

 <include path="javassist/util/proxy" />

 <exclude path="/**" />

 </imports>

 </module>

 </dependencies>

 </module>

</jboss-deployment-structure>

The xsd for jboss-deployment-structure.xml is available at

https://github.com/wildfly/wildfly/blob/master/build/src/main/resources/docs/schema/jboss-deployment-structure-1_2.xsd

2.8 Accessing JDK classes

Not all JDK classes are exposed to a deployment by default. If your deployment uses JDK classes that are

not exposed you can get access to them using jboss-deployment-structure.xml with system dependencies:

Using jboss-deployment-structure.xml to access JDK classes

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.1">

 <deployment>

 <dependencies>

 <system export="true">

 <paths>

 <path name="com/sun/corba/se/spi/legacy/connection"/>

 </paths>

 </system>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

2.9 The "jboss.api" property and application use of

modules shipped with WildFly

The WildFly distribution includes a large number of modules, a great many of which are included for use by

WildFly internals, with no testing of the appropriateness of their direct use by applications or any

commitment to continue to ship those modules in future releases if they are no longer needed by the

internals. So how can a user know whether it is advisable for their application to specify an explicit

dependency on a module WildFly ships? The "jboss.api" property specified in the module's module.xml file

can tell you:

https://github.com/wildfly/wildfly-core/blob/e737eff554ee433ca54835154fd67725fd52f63e/server/src/main/resources/schema/jboss-deployment-structure-1_2.xsd

WildFly 10

JBoss Community Documentation Page of 23 532

Example declaration of the jboss.api property

<module xmlns="urn:jboss:module:1.3" name="com.google.guava">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

If a module does not have a property element like the above, then it's equivalent to one with a value of

"public".

Following are the meanings of the various values you may see for the jboss.api property:

Value Meaning

public May be explicitly depended upon by end user applications. Will continue to be available in

future releases within the same major series and should not have incompatible API changes

in future releases within the same minor series, and ideally not within the same major series.

private Intended for internal use only. Only tested according to internal usage. May not be safe for

end user applications to use directly.

Could change significantly or be removed in a future release without notice.

unsupported If you see this value in a module.xml in a WildFly release, please file a bug report, as it is

not applicable in WildFly. In EAP it has a meaning equivalent to "private" but that does not

mean the module is "private" in WildFly; it could very easily be "public".

preview May be explicitly depended upon by end user applications, but there are no guarantees of

continued availability in future releases or that there will not be incompatible API changes.

This is not a common classification in WildFly. It is not used in WildFly 10.

deprecated May be explicitly depended upon by end user applications. Stable and reliable but an

alternative should be sought. Will be removed in a future major release.

Note that these definitions are only applicable to WildFly. In EAP and other Red Hat products based on

WildFly the same classifiers are used, with generally similar meaning, but the precise meaning is per the

definitions on the Red Hat customer support portal.

If an application declares a direct dependency on a module marked "private", "unsupported" or "deprecated",

during deployment a WARN message will be logged. The logging will be in log categories

"org.jboss.as.dependency.private", "org.jboss.as.dependency.unsupported" and

"org.jboss.as.dependency.deprecated" respectively. These categories are not used for other purposes, so

once you feel sufficiently warned the logging can be safely suppressed by turning the log level for the

relevant category to ERROR or higher.

Other than the WARN messages noted above, declaring a direct dependency on a non-public module has

no impact on how WildFly processes the deployment.

WildFly 10

JBoss Community Documentation Page of 24 532

3 Implicit module dependencies for deployments
As explained in the article, WildFly 8 is based on module classloading. A classClass Loading in WildFly

within a module B isn't visible to a class within a module A, unless module B adds a dependency on module

A. Module dependencies can be explicitly (as explained in that classloading article) or can be "implicit". This

article will explain what implicit module dependencies mean and how, when and which modules are added

as implicit dependencies.

3.1 What's an implicit module dependency?

Consider an application deployment which contains EJBs. EJBs typically need access to classes from the

javax.ejb.* package and other Java EE API packages. The jars containing these packages are already

shipped in WildFly and are available as "modules". The module which contains the javax.ejb.* classes has a

specific name and so does the module which contains all the Java EE API classes. For an application to be

able to use these classes, it has to add a dependency on the relevant modules. Forcing the application

developers to add module dependencies like these (i.e. dependencies which can be "inferred") isn't a

productive approach. Hence, whenever an application is being deployed, the deployers within the server,

which are processing this deployment "implicitly" add these module dependencies to the deployment so that

these classes are visible to the deployment at runtime. This way the application developer doesn't have to

worry about adding them explicitly. How and when these implicit dependencies are added is explained in the

next section.

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly

WildFly 10

JBoss Community Documentation Page of 25 532

3.2 How and when is an implicit module dependency

added?

When a deployment is being processed by the server, it goes through a chain of "deployment processors".

Each of these processors will have a way to check if the deployment meets a certain criteria and if it does,

the deployment processor adds a implicit module dependency to that deployment. Let's take an example -

Consider (again) an EJB3 deployment which has the following class:

MySuperDuperBean.java

@Stateless

public class MySuperDuperBean {

...

}

As can be seen, we have a simple @Stateless EJB. When the deployment containing this class is being

processed, the EJB deployment processor will see that the deployment contains a class with the @Stateless

annotation and thus identifies this as a EJB deployment. This is just one of the several ways, various

 The EJB deploymentdeployment processors can identify a deployment of some specific type.

processor will then add an implicit dependency on the Java EE API module, so that all the Java EE API

classes are visible to the deployment.

Some subsystems will always add a API classes, even if the trigger condition is not met. These are

listed separately below.

In the next section, we'll list down the implicit module dependencies that are added to a deployment, by

various deployers within WildFly.

3.3 Which are the implicit module dependencies?

Subsystem

responsible

for adding

the implicit

dependency

Dependencies that are always

added

Dependencies that are added if a trigger

condition is met

Core Server
javax.api

sun.jdk

org.jboss.vfs

WildFly 10

JBoss Community Documentation Page of 26 532

Batch

Subsystem javax.batch.api

EE

Subsystem javaee.api

EJB3

subsystem

javaee.api

JAX-RS

(Resteasy)

subsystem

javax.xml.bind.api org.jboss.resteasy.resteasy-atom-provider

org.jboss.resteasy.resteasy-cdi

org.jboss.resteasy.resteasy-jaxrs

org.jboss.resteasy.resteasy-jaxb-provider

org.jboss.resteasy.resteasy-jackson-provider

org.jboss.resteasy.resteasy-jsapi

org.jboss.resteasy.resteasy-multipart-provider

org.jboss.resteasy.async-http-servlet-30

JCA

subsystem javax.resource.api javax.jms.api

javax.validation.api

org.jboss.logging

org.jboss.ironjacamar.api

org.jboss.ironjacamar.impl

org.hibernate.validator

JPA

(Hibernate)

subsystem

javax.persistence.api javaee.api

org.jboss.as.jpa

org.hibernate

WildFly 10

JBoss Community Documentation Page of 27 532

Logging

Subsystem org.jboss.logging

org.apache.commons.logging

org.apache.log4j

org.slf4j

org.jboss.logging.jul-to-slf4j-stub

SAR

Subsystem

org.jboss.logging

org.jboss.modules

Security

Subsystem org.picketbox

Web

Subsystem

javaee.api

com.sun.jsf-impl

org.hibernate.validator

org.jboss.as.web

org.jboss.logging

Web

Services

Subsystem

org.jboss.ws.api

org.jboss.ws.spi

Weld (CDI)

Subsystem

javax.persistence.api

javaee.api

org.javassist

org.jboss.interceptor

org.jboss.as.weld

org.jboss.logging

org.jboss.weld.core

org.jboss.weld.api

org.jboss.weld.spi

WildFly 10

JBoss Community Documentation Page of 28 532

4 How do I migrate my application from JBoss AS

5 or AS 6 to WildFly?
Couldn't find a page to include called: How do I migrate my application from AS5 or AS6 to WildFly

WildFly 10

JBoss Community Documentation Page of 29 532

5 EJB invocations from a remote standalone client

using JNDI
This chapter explains how to invoke EJBs from a remote client by using the JNDI API to first lookup the bean

proxy and then invoke on that proxy.

After you have read this article, do remember to take a look at Remote EJB invocations via JNDI -

EJB client API or remote-naming project

Before getting into the details, we would like the users to know that we have introduced a new EJB client

API, which is a WildFly-specific API and allows invocation on remote EJBs. This client API isn't based on

JNDI. So remote clients need not rely on JNDI API to invoke on EJBs. A separate document covering the

EJB remote client API will be made available. For now, you can refer to the javadocs of the EJB client

project at . In this document, we'll just concentrate on the traditional JNDIhttp://docs.jboss.org/ejbclient/

based invocation on EJBs. So let's get started:

5.1 Deploying your EJBs on the server side:

Users who already have EJBs deployed on the server side can just skip to the next section.

As a first step, you'll have to deploy your application containing the EJBs on the Wildfly server. If you want

those EJBs to be remotely invocable, then you'll have to expose at least one remote view for that bean. In

this example, let's consider a simple Calculator stateless bean which exposes a RemoteCalculator remote

business interface. We'll also have a simple stateful CounterBean which exposes a RemoteCounter remote

business interface. Here's the code:

package org.jboss.as.quickstarts.ejb.remote.stateless;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCalculator {

 int add(int a, int b);

 int subtract(int a, int b);

}

https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
http://docs.jboss.org/ejbclient/

WildFly 10

JBoss Community Documentation Page of 30 532

package org.jboss.as.quickstarts.ejb.remote.stateless;

import javax.ejb.Remote;

import javax.ejb.Stateless;

/**

 * @author Jaikiran Pai

 */

@Stateless

@Remote(RemoteCalculator.class)

public class CalculatorBean implements RemoteCalculator {

 @Override

 public int add(int a, int b) {

 return a + b;

 }

 @Override

 public int subtract(int a, int b) {

 return a - b;

 }

}

package org.jboss.as.quickstarts.ejb.remote.stateful;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCounter {

 void increment();

 void decrement();

 int getCount();

}

WildFly 10

JBoss Community Documentation Page of 31 532

package org.jboss.as.quickstarts.ejb.remote.stateful;

import javax.ejb.Remote;

import javax.ejb.Stateful;

/**

 * @author Jaikiran Pai

 */

@Stateful

@Remote(RemoteCounter.class)

public class CounterBean implements RemoteCounter {

 private int count = 0;

 @Override

 public void increment() {

 this.count++;

 }

 @Override

 public void decrement() {

 this.count--;

 }

 @Override

 public int getCount() {

 return this.count;

 }

}

Let's package this in a jar (how you package it in a jar is out of scope of this chapter) named

"jboss-as-ejb-remote-app.jar" and deploy it to the server. Make sure that your deployment has been

processed successfully and there aren't any errors.

5.2 Writing a remote client application for accessing

and invoking the EJBs deployed on the server

The next step is to write an application which will invoke the EJBs that you deployed on the server. In

WildFly, you can either choose to use the WildFly specific EJB client API to do the invocation or use JNDI to

lookup a proxy for your bean and invoke on that returned proxy. In this chapter we will concentrate on the

JNDI lookup and invocation and will leave the EJB client API for a separate chapter.

So let's take a look at what the client code looks like for looking up the JNDI proxy and invoking on it. Here's

the entire client code which invokes on a stateless bean:

package org.jboss.as.quickstarts.ejb.remote.client;

import javax.naming.Context;

import javax.naming.InitialContext;

WildFly 10

JBoss Community Documentation Page of 32 532

import javax.naming.NamingException;

import java.security.Security;

import java.util.Hashtable;

import org.jboss.as.quickstarts.ejb.remote.stateful.CounterBean;

import org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter;

import org.jboss.as.quickstarts.ejb.remote.stateless.CalculatorBean;

import org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator;

import org.jboss.sasl.JBossSaslProvider;

/**

 * A sample program which acts a remote client for a EJB deployed on Wildfly 10 server.

 * This program shows how to lookup stateful and stateless beans via JNDI and then invoke on

them

 *

 * @author Jaikiran Pai

 */

public class RemoteEJBClient {

 public static void main(String[] args) throws Exception {

 // Invoke a stateless bean

 invokeStatelessBean();

 // Invoke a stateful bean

 invokeStatefulBean();

 }

 /**

 * Looks up a stateless bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatelessBean() throws NamingException {

 // Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

 System.out.println("Remote calculator returned sum = " + sum);

 if (sum != a + b) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect sum "

+ sum + " ,expected sum was " + (a + b));

 }

 // try one more invocation, this time for subtraction

 int num1 = 3434;

 int num2 = 2332;

 System.out.println("Subtracting " + num2 + " from " + num1 + " via the remote stateless

calculator deployed on the server");

 int difference = statelessRemoteCalculator.subtract(num1, num2);

 System.out.println("Remote calculator returned difference = " + difference);

 if (difference != num1 - num2) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect

difference " + difference + " ,expected difference was " + (num1 - num2));

 }

WildFly 10

JBoss Community Documentation Page of 33 532

 }

 /**

 * Looks up a stateful bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatefulBean() throws NamingException {

 // Let's lookup the remote stateful counter

 final RemoteCounter statefulRemoteCounter = lookupRemoteStatefulCounter();

 System.out.println("Obtained a remote stateful counter for invocation");

 // invoke on the remote counter bean

 final int NUM_TIMES = 20;

 System.out.println("Counter will now be incremented " + NUM_TIMES + " times");

 for (int i = 0; i < NUM_TIMES; i++) {

 System.out.println("Incrementing counter");

 statefulRemoteCounter.increment();

 System.out.println("Count after increment is " + statefulRemoteCounter.getCount());

 }

 // now decrementing

 System.out.println("Counter will now be decremented " + NUM_TIMES + " times");

 for (int i = NUM_TIMES; i > 0; i--) {

 System.out.println("Decrementing counter");

 statefulRemoteCounter.decrement();

 System.out.println("Count after decrement is " + statefulRemoteCounter.getCount());

 }

 }

 /**

 * Looks up and returns the proxy to remote stateless calculator bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCalculator lookupRemoteStatelessCalculator() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

WildFly 10

JBoss Community Documentation Page of 34 532

class

 final String beanName = CalculatorBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCalculator.class.getName();

 // let's do the lookup

 return (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName);

 }

 /**

 * Looks up and returns the proxy to remote stateful counter bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCounter lookupRemoteStatefulCounter() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

 final String beanName = CounterBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCounter.class.getName();

 // let's do the lookup (notice the ?stateful string as the last part of the jndi name

for stateful bean lookup)

 return (RemoteCounter) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName + "?stateful");

 }

}

The entire server side and client side code is hosted at the github repo here ejb-remote

https://github.com/wildfly/quickstart/tree/master/ejb-remote

WildFly 10

JBoss Community Documentation Page of 35 532

The code has some comments which will help you understand each of those lines. But we'll explain here in

more detail what the code does. As a first step in the client code, we'll do a lookup of the EJB using a JNDI

name. In AS7, for remote access to EJBs, you use the ejb: namespace with the following syntax:

For stateless beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>

For stateful beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>?stateful

The ejb: namespace identifies it as a EJB lookup and is a constant (i.e. doesn't change) for doing EJB

lookups. The rest of the parts in the jndi name are as follows:

 : This is the name of the .ear (without the .ear suffix) that you have deployed on the server andapp-name

contains your EJBs.

Java EE 6 allows you to override the application name, to a name of your choice by setting it in the

application.xml. If the deployment uses uses such an override then the app-name used in the JNDI

name should match that name.

EJBs can also be deployed in a .war or a plain .jar (like we did in step 1). In such cases where the

deployment isn't an .ear file, then the app-name must be an empty string, while doing the lookup.

 : This is the name of the .jar (without the .jar suffix) that you have deployed on the server andmodule-name

the contains your EJBs. If the EJBs are deployed in a .war then the module name is the .war name (without

the .war suffix).

Java EE 6 allows you to override the module name, by setting it in the ejb-jar.xml/web.xml of your

deployment. If the deployment uses such an override then the module-name used in the JNDI name

should match that name.

Module name part cannot be an empty string in the JNDI name

 : This is a WildFly-specific name which can be optionally assigned to the deployments thatdistinct-name

are deployed on the server. More about the purpose and usage of this will be explained in a separate

chapter. If a deployment doesn't use distinct-name then, use an empty string in the JNDI name, for

distinct-name

 : This is the name of the bean for which you are doing the lookup. The bean name is typicallybean-name

the unqualified classname of the bean implementation class, but can be overriden through either ejb-jar.xml

or via annotations. The bean name part cannot be an empty string in the JNDI name.

 : This is the fully qualified class name of the interfacefully-qualified-classname-of-the-remote-interface

for which you are doing the lookup. The interface should be one of the remote interfaces exposed by the

bean on the server. The fully qualified class name part cannot be an empty string in the JNDI name.

WildFly 10

JBoss Community Documentation Page of 36 532

For stateful beans, the JNDI name expects an additional "?stateful" to be appended after the fully qualified

interface name part. This is because for stateful beans, a new session gets created on JNDI lookup and the

EJB client API implementation doesn't contact the server during the JNDI lookup to know what kind of a

bean the JNDI name represents (we'll come to this in a while). So the JNDI name itself is expected to

indicate that the client is looking up a stateful bean, so that an appropriate session can be created.

Now that we know the syntax, let's see our code and check what JNDI name it uses. Since our stateless

EJB named CalculatorBean is deployed in a jboss-as-ejb-remote-app.jar (without any ear) and since we are

looking up the org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator remote interface, our JNDI

name will be:

ejb:/jboss-as-ejb-remote-app//CalculatorBean!org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator

That's what the lookupRemoteStatelessCalculator() method in the above client code uses.

For the stateful EJB named CounterBean which is deployed in hte same jboss-as-ejb-remote-app.jar and

which exposes the org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter, the JNDI name will be:

ejb:/jboss-as-ejb-remote-app//CounterBean!org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter?stateful

That's what the lookupRemoteStatefulCounter() method in the above client code uses.

Now that we know of the JNDI name, let's take a look at the following piece of code in the

lookupRemoteStatelessCalculator():

final Hashtable jndiProperties = new Hashtable();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

Here we are creating a JNDI InitialContext object by passing it some JNDI properties. The

Context.URL_PKG_PREFIXES is set to org.jboss.ejb.client.naming. This is necessary because we should

let the JNDI API know what handles the ejb: namespace that we use in our JNDI names for lookup. The

"org.jboss.ejb.client.naming" has a URLContextFactory implementation which will be used by the JNDI APIs

to parse and return an object for ejb: namespace lookups. You can either pass these properties to the

constructor of the InitialContext class or have a jndi.properites file in the classpath of the client application,

which (atleast) contains the following property:

java.naming.factory.url.pkgs=org.jboss.ejb.client.naming

So at this point, we have setup the InitialContext and also have the JNDI name ready to do the lookup. You

can now do the lookup and the appropriate proxy which will be castable to the remote interface that you

used as the fully qualified class name in the JNDI name, will be returned. Some of you might be wondering,

how the JNDI implementation knew which server address to look, for your deployed EJBs. The answer is in

AS7, the proxies returned via JNDI name lookup for ejb: namespace do not connect to the server unless an

invocation on those proxies is done.

WildFly 10

JBoss Community Documentation Page of 37 532

Now let's get to the point where we invoke on this returned proxy:

// Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

We can see here that the proxy returned after the lookup is used to invoke the add(...) method of the bean.

It's at this point that the JNDI implementation (which is backed by the EJB client API) needs to know the

server details. So let's now get to the important part of setting up the EJB client context properties.

5.3 Setting up EJB client context properties

A EJB client context is a context which contains contextual information for carrying out remote invocations

on EJBs. This is a WildFly-specific API. The EJB client context can be associated with multiple EJB

receivers. Each EJB receiver is capable of handling invocations on different EJBs. For example, an EJB

receiver "Foo" might be able to handle invocation on a bean identified by

app-A/module-A/distinctinctName-A/Bar!RemoteBar, whereas a EJB receiver named "Blah" might be able to

handle invocation on a bean identified by app-B/module-B/distinctName-B/BeanB!RemoteBean. Each such

EJB receiver knows about what set of EJBs it can handle and each of the EJB receiver knows which server

target to use for handling the invocations on the bean. For example, if you have a AS7 server at 10.20.30.40

IP address which has its remoting port opened at 4447 and if that's the server on which you deployed that

CalculatorBean, then you can setup a EJB receiver which knows its target address is 10.20.30.40:4447.

Such an EJB receiver will be capable enough to communicate to the server via the JBoss specific EJB

remote client protocol (details of which will be explained in-depth in a separate chapter).

Now that we know what a EJB client context is and what a EJB receiver is, let's see how we can setup a

client context with 1 EJB receiver which can connect to 10.20.30.40 IP address at port 4447. That EJB client

context will then be used (internally) by the JNDI implementation to handle invocations on the bean proxy.

The client will have to place a jboss-ejb-client.properties file in the classpath of the application. The

jboss-ejb-client.properties can contain the following properties:

WildFly 10

JBoss Community Documentation Page of 38 532

endpoint.name=client-endpoint

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

This file includes a reference to a default password. Be sure to change this as soon as possible.

The above properties file is just an example. The actual file that was used for this sample program is

available here for reference jboss-ejb-client.properties

We'll see what each of it means.

First the endpoint.name property. We mentioned earlier that the EJB receivers will communicate

with the server for EJB invocations. Internally, they use JBoss Remoting project to carry out the

communication. The endpoint.name property represents the name that will be used to create the

client side of the enpdoint. The endpoint.name property is optional and if not specified in the

jboss-ejb-client.properties file, it will default to "config-based-ejb-client-endpoint" name.

Next is the remote.connectionprovider.create.options.<....> properties:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

The "remote.connectionprovider.create.options." property prefix can be used to pass the options

that will be used while create the connection provider which will handle the "remote:" protocol. In

this example we use the "remote.connectionprovider.create.options." property prefix to pass the

"org.xnio.Options.SSL_ENABLED" property value as false. That property will then be used during

the connection provider creation. Similarly other properties can be passed too, just append it to the

"remote.connectionprovider.create.options." prefix

Next we'll see:

remote.connections=default

https://github.com/wildfly/quickstart/blob/master/ejb-remote/client/src/main/resources/jboss-ejb-client.properties

WildFly 10

JBoss Community Documentation Page of 39 532

This is where you define the connections that you want to setup for communication with the remote

server. The "remote.connections" property uses a comma separated value of connection "names".

The connection names are just logical and are used grouping together the connection configuration

properties later on in the properties file. The example above sets up a single remote connection

named "default". There can be more than one connections that are configured. For example:

remote.connections=one, two

Here we are listing 2 connections named "one" and "two". Ultimately, each of the connections will

map to a EJB receiver. So if you have 2 connections, that will setup 2 EJB receivers that will be

added to the EJB client context. Each of these connections will be configured with the connection

specific properties as follows:

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we are using the "remote.connection.<connection-name>." prefix for specifying the

connection specific property. The connection name here is "default" and we are setting the "host"

property of that connection to point to 10.20.30.40. Similarly we set the "port" for that connection to

4447.

By default WildFly uses 8080 as the remoting port. The EJB client API uses the http port, with the

http-upgrade functionality, for communicating with the server for remote invocations, so that's the port we

use in our client programs (unless the server is configured for some other http port)

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

The given user/password must be set by using the command bin/add-user.sh (or.bat).

The user and password must be set because the security-realm is enabled for the subsystem

remoting (see standalone*.xml or domain.xml) by default.

If you do not need the security for remoting you might remove the attribute security-realm in the

configuration.

security-realm is enabled by default.

WildFly 10

JBoss Community Documentation Page of 40 532

We then use the "remote.connection.<connection-name>.connect.options." property prefix to setup

options that will be used during the connection creation.

Here's an example of setting up multiple connections with different properties for each of those:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=one, two

remote.connection.one.host=localhost

remote.connection.one.port=6999

remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.two.host=localhost

remote.connection.two.port=7999

remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we setup 2 connections "one" and "two" which both point to "localhost" as the

"host" but different ports. Each of these connections will internally be used to create the EJB

receivers in the EJB client context.

So that's how the jboss-ejb-client.properties file can be setup and placed in the classpath.

Using a different file for setting up EJB client context
The EJB client code will by default look for jboss-ejb-client.properties in the classpath. However,

you can specify a different file of your choice by setting the "jboss.ejb.client.properties.file.path"

system property which points to a properties file on your filesystem, containing the client context

configurations. An example for that would be

"-Djboss.ejb.client.properties.file.path=/home/me/my-client/custom-jboss-ejb-client.properties"

Setting up the client classpath with the jars that are required to

run the client application
A jboss-client jar is shipped in the distribution. It's available at

WILDFLY_HOME/bin/client/jboss-client.jar. Place this jar in the classpath of your client application.

If you are using Maven to build the client application, then please follow the instructions in the

WILDFLY_HOME/bin/client/README.txt to add this jar as a Maven dependency.

WildFly 10

JBoss Community Documentation Page of 41 532

5.4 Summary

In the above examples, we saw what it takes to invoke a EJB from a remote client. To summarize:

On the server side you need to deploy EJBs which expose the remote views.

On the client side you need a client program which:

Has a jboss-ejb-client.properties in its classpath to setup the server connection information

Either has a jndi.properties to specify the java.naming.factory.url.pkgs property or passes that

as a property to the InitialContext constructor

Setup the client classpath to include the jboss-client jar that's required for remote invocation of

the EJBs. The location of the jar is mentioned above. You'll also need to have your

application's bean interface jars and other jars that are required by your application, in the

client classpath

WildFly 10

JBoss Community Documentation Page of 42 532

6 EJB invocations from a remote server
The purpose of this chapter is to demonstrate how to lookup and invoke on EJBs deployed on an

WildFly server instance WildFly server instance. This is different from invoking the EJBs from another from

a remote standalone client

Let's call the server, from which the invocation happens to the EJB, as "Client Server" and the server on

which the bean is deployed as the "Destination Server".

Note that this chapter deals with the case where the bean is deployed on the "Destination Server"

but on the "Client Server".not

6.1 Application packaging

In this example, we'll consider a EJB which is packaged in a myejb.jar which is within a myapp.ear. Here's

how it would look like:

myapp.ear

|

|---- myejb.jar

| |

| |---- <org.myapp.ejb.*> // EJB classes

Note that packaging itself isn't really important in the context of this article. You can deploy the

EJBs in any standard way (.ear, .war or .jar).

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 43 532

6.2 Beans

In our example, we'll consider a simple stateless session bean which is as follows:

package org.myapp.ejb;

public interface Greeter {

 String greet(String user);

}

package org.myapp.ejb;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless

@Remote (Greeter.class)

public class GreeterBean implements Greeter {

 @Override

 public String greet(String user) {

 return "Hello " + user + ", have a pleasant day!";

 }

}

6.3 Security

WildFly 8 is secure by default. What this means is that no communication can happen with an

WildFly instance from a remote client (irrespective of whether it is a standalone client or another server

instance) without passing the appropriate credentials. Remember that in this example, our "client server" will

be communicating with the "destination server". So in order to allow this communication to happen

successfully, we'll have to configure user credentials which we will be using during this communication. So

let's start with the necessary configurations for this.

WildFly 10

JBoss Community Documentation Page of 44 532

6.4 Configuring a user on the "Destination Server"

As a first step we'll configure a user on the destination server who will be allowed to access the destination

server. We create the user using the script that's available in the JBOSS_HOME/bin folder. Inadd-user

this example, we'll be configuring a named and with a password in the Application User ejb test

. Running the script is an interactive process and you will seeApplicationRealm add-user

questions/output as follows:

add-user

jpai@jpai-laptop:bin$./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) :

Username : ejb

Password :

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)\[\]:

About to add user 'ejb' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-users.properties'

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/domain/configuration/application-users.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-roles.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/domain/configuration/application-roles.properties'

As you can see in the output above we have now configured a user on the destination server who'll be

allowed to access this server. We'll use this user credentials later on in the client server for communicating

with this server. The important bits to remember are the user we have created in this example is and theejb

password is test.

Note that you can use any username and password combination you want to.

You do require the server to be started to add a user using the add-user script.not

WildFly 10

JBoss Community Documentation Page of 45 532

6.5 Start the "Destination Server"

As a next step towards running this example, we'll start the "Destination Server". In this example, we'll use

the standalone server and use the configuration. The startup command will look like:standalone-full.xml

./standalone.sh -server-config=standalone-full.xml

Ensure that the server has started without any errors.

It's very important to note that if you are starting both the server instances on the same machine,

then each of those server instances have a unique system property.must jboss.node.name

You can do that by passing an appropriate value for system property to the-Djboss.node.name

startup script:

./standalone.sh -server-config=standalone-full.xml -Djboss.node.name=<add appropriate

value here>

6.6 Deploying the application

The application (in our case) will be deployed to "Destination Server". The process of deployingmyapp.ear

the application is out of scope of this chapter. You can either use the Command Line Interface or the Admin

console or any IDE or manually copy it to JBOSS_HOME/standalone/deployments folder (for standalone

server). Just ensure that the application has been deployed successfully.

So far, we have built a EJB application and deployed it on the "Destination Server". Now let's move to the

"Client Server" which acts as the client for the deployed EJBs on the "Destination Server".

6.7 Configuring the "Client Server" to point to the EJB

remoting connector on the "Destination Server"

As a first step on the "Client Server", we need to let the server know about the "Destination Server"'s EJB

remoting connector, over which it can communicate during the EJB invocations. To do that, we'll have to add

a " " to the remoting subsystem on the "Client Server". The "remote-outbound-connection

" configuration indicates that a outbound connection will be created to a remoteremote-outbound-connection

server instance from that server. The " " will be backed by a "remote-outbound-connection

" which will point to a remote host and a remote port (of the "Destination Server").outbound-socket-binding

So let's see how we create these configurations.

WildFly 10

JBoss Community Documentation Page of 46 532

6.8 Start the "Client Server"

In this example, we'll start the "Client Server" on the same machine as the "Destination Server". We have

copied the entire server installation to a different folder and while starting the "Client Server" we'll use a

port-offset (of 100 in this example) to avoid port conflicts:

./standalone.sh -server-config=standalone-full.xml -Djboss.socket.binding.port-offset=100

6.9 Create a security realm on the client server

Remember that we need to communicate with a secure destination server. In order to do that the client

server has to pass the user credentials to the destination server. Earlier we created a user on the destination

server who'll be allowed to communicate with that server. Now on the "client server" we'll create a

security-realm which will be used to pass the user information.

In this example we'll use a security realm which stores a Base64 encoded password and then passes on

that credentials when asked for. Earlier we created a user named and password . So our first taskejb test

here would be to create the base64 encoded version of the password . You can use any utility whichtest

generates you a base64 version for a string. I used which generates the base64 encodedthis online site

string. So for the password, the base64 encoded version is test dGVzdA==

While generating the base64 encoded string make sure that you don't have any trailing or leading

spaces for the original password. That can lead to incorrect encoded versions being generated.

With new versions the add-user script will show the base64 password if you type 'y' if you've been

ask

Is this new user going to be used for one AS process to connect to another AS process

e.g. slave domain controller?

Now that we have generated that base64 encoded password, let's use in the in the security realm that we

are going to configure on the "client server". I'll first shutdown the client server and edit the

standalone-full.xml file to add the following in the section<management>

Now let's create a " " for the base64 encoded password.security-realm

/core-service=management/security-realm=ejb-security-realm:add()

/core-service=management/security-realm=ejb-security-realm/server-identity=secret:add(value=dGVzdA==)

http://www.base64encode.org/

WildFly 10

JBoss Community Documentation Page of 47 532

Notice that the CLI show the message , so you have to restart"process-state" => "reload-required"

the server before you can use this change.

upon successful invocation of this command, the following configuration will be created in the management

section:

standalone-full.xml

<management>

 <security-realms>

 ...

 <security-realm name="ejb-security-realm">

 <server-identities>

 <secret value="dGVzdA=="/>

 </server-identities>

 </security-realm>

 </security-realms>

...

As you can see I have created a security realm named "ejb-security-realm" (you can name it anything) with

the base64 encoded password. So that completes the security realm configuration for the client server. Now

let's move on to the next step.

WildFly 10

JBoss Community Documentation Page of 48 532

6.10 Create a outbound-socket-binding on the "Client

Server"

Let's first create a which points the "Destination Server"'s host and port. We'll useoutbound-socket-binding

the CLI to create this configuration:

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-ejb:add(host=localhost,

port=8080)

The above command will create a outbound-socket-binding named " " (we can name it anything)remote-ejb

which points to "localhost" as the host and port 8080 as the destination port. Note that the host information

should match the host/IP of the "Destination Server" (in this example we are running on the same machine

so we use "localhost") and the port information should match the http-remoting connector port used by the

EJB subsystem (by default it's 8080). When this command is run successfully, we'll see that the

standalone-full.xml (the file which we used to start the server) was updated with the following

outbound-socket-binding in the socket-binding-group:

<socket-binding-group name="standard-sockets" default-interface="public"

port-offset="${jboss.socket.binding.port-offset:0}">

 ...

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="8080"/>

 </outbound-socket-binding>

 </socket-binding-group>

6.11 Create a "remote-outbound-connection" which

uses this newly created "outbound-socket-binding"

Now let's create a " " which will use the newly created outbound-socket-bindingremote-outbound-connection

(pointing to the EJB remoting connector of the "Destination Server"). We'll continue to use the CLI to create

this configuration:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb,

protocol=http-remoting, security-realm=ejb-security-realm, username=ejb)

The above command creates a remote-outbound-connection, named " " (we can nameremote-ejb-connection

it anything), in the remoting subsystem and uses the previously created " "remote-ejb

outbound-socket-binding (notice the outbound-socket-binding-ref in that command) with the http-remoting

protocol. Furthermore, we also set the security-realm attribute to point to the security-realm that we created

in the previous step. Also notice that we have set the username attribute to use the user name who is

allowed to communicate with the destination server.

WildFly 10

JBoss Community Documentation Page of 49 532

What this step does is, it creates a outbound connection, on the client server, to the remote destination

server and sets up the username to the user who allowed to communicate with that destination server and

also sets up the security-realm to a pre-configured security-realm capable of passing along the user

credentials (in this case the password). This way when a connection has to be established from the client

server to the destination server, the connection creation logic will have the necessary security credentials to

pass along and setup a successful secured connection.

Now let's run the following two operations to set some default connection creation options for the outbound

connection:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

Ultimately, upon successful invocation of this command, the following configuration will be created in the

remoting subsystem:

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

....

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection"

outbound-socket-binding-ref="remote-ejb" protocol="http-remoting"

security-realm="ejb-security-realm" username="ejb">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

From a server configuration point of view, that's all we need on the "Client Server". Our next step is to deploy

an application on the "Client Server" which will invoke on the bean deployed on the "Destination Server".

WildFly 10

JBoss Community Documentation Page of 50 532

6.12 Packaging the client application on the "Client

Server"

Like on the "Destination Server", we'll use .ear packaging for the client application too. But like previously

mentioned, that's not mandatory. You can even use a .war or .jar deployments. Here's how our client

application packaging will look like:

client-app.ear

|

|--- META-INF

| |

| |--- jboss-ejb-client.xml

|

|--- web.war

| |

| |--- WEB-INF/classes

| | |

| | |---- <org.myapp.FooServlet> // classes in the web app

In the client application we'll use a servlet which invokes on the bean deployed on the "Destination Server".

We can even invoke the bean on the "Destination Server" from a EJB on the "Client Server". The code

remains the same (JNDI lookup, followed by invocation on the proxy). The important part to notice in this

client application is the file which is packaged in the META-INF folder of a top leveljboss-ejb-client.xml

deployment (in this case our client-app.ear). This contains the EJB client configurationsjboss-ejb-client.xml

which will be used during the EJB invocations for finding the appropriate destinations (also known as, EJB

receivers). The contents of the jboss-ejb-client.xml are explained next.

If your application is deployed as a top level .war deployment, then the jboss-ejb-client.xml is

expected to be placed in .war/WEB-INF/ folder (i.e. the same location where you place any

web.xml file).

WildFly 10

JBoss Community Documentation Page of 51 532

6.13 Contents on jboss-ejb-client.xml

The jboss-ejb-client.xml will look like:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers>

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

You'll notice that we have configured the EJB client context (for this application) to use a

remoting-ejb-receiver which points to our earlier created " " named "remote-outbound-connection

". This links the EJB client context to use the " " which ultimatelyremote-ejb-connection remote-ejb-connection

points to the EJB remoting connector on the "Destination Server".

6.14 Deploy the client application

Let's deploy the client application on the "Client Server". The process of deploying the application is out of

scope, of this chapter. You can use either the CLI or the admin console or a IDE or deploy manually to

JBOSS_HOME/standalone/deployments folder. Just ensure that the application is deployed successfully.

WildFly 10

JBoss Community Documentation Page of 52 532

6.15 Client code invoking the bean

We mentioned that we'll be using a servlet to invoke on the bean, but the code to invoke the bean isn't

servlet specific and can be used in other components (like EJB) too. So let's see how it looks like:

import javax.naming.Context;

import java.util.Hashtable;

import javax.naming.InitialContext;

...

public void invokeOnBean() {

 try {

 final Hashtable props = new Hashtable();

 // setup the ejb: namespace URL factory

 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 // create the InitialContext

 final Context context = new javax.naming.InitialContext(props);

 // Lookup the Greeter bean using the ejb: namespace syntax which is explained here

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

 final Greeter bean = (Greeter) context.lookup("ejb:" + "myapp" + "/" + "myejb" + "/"

+ "" + "/" + "GreeterBean" + "!" + org.myapp.ejb.Greeter.class.getName());

 // invoke on the bean

 final String greeting = bean.greet("Tom");

 System.out.println("Received greeting: " + greeting);

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

}

That's it! The above code will invoke on the bean deployed on the "Destination Server" and return the result.

WildFly 10

JBoss Community Documentation Page of 53 532

7 Remote EJB invocations via JNDI - Which

approach to use?
Couldn't find a page to include called: Remote EJB invocations via JNDI - EJB client API or remote-naming

project?

WildFly 10

JBoss Community Documentation Page of 54 532

8 JBoss EJB 3 reference guide

This chapter details the extensions that are available when developing Enterprise Java Beans on WildFlytm

8.

Currently there is no support for configuring the extensions using an implementation specific descriptor file.

8.1 Resource Adapter for Message Driven Beans

Each Message Driven Bean must be connected to a resource adapter.

8.1.1 Specification of Resource Adapter using Metadata

Annotations

The annotation is used to specify the resource adapter with which the MDB shouldResourceAdapter

connect.

The of the annotation is the name of the deployment unit containing the resource adapter. Forvalue

example .jms-ra.rar

For example:

@MessageDriven(messageListenerInterface = PostmanPat.class)

@ResourceAdapter("ejb3-rar.rar")

WildFly 10

JBoss Community Documentation Page of 55 532

8.2 as Principal

Whenever a run-as role is specified for a given method invocation the default anonymous principal is used

as the caller principal. This principal can be overridden by specifying a run-as principal.

8.2.1 Specification of Run-as Principal using Metadata

Annotations

The annotation is used to specify the run-as principal to use for a given methodRunAsPrincipal

invocation.

The of the annotation specifies the name of the principal to use. The actual type of the principal isvalue

undefined and should not be relied upon.

Using this annotation without specifying a run-as role is considered an error.

For example:

@RunAs("admin")

@RunAsPrincipal("MyBean")

8.3 Security Domain

Each Enterprise Java Bean can be associated with a security domain. Only when an EJB is associatedtm

with a security domain will authentication and authorization be enforced.

8.3.1 Specification of Security Domain using Metadata

Annotations

The annotation is used to specify the security domain to associate with the EJB.SecurityDomain

The of the annotation is the name of the security domain to be used.value

For example:

@SecurityDomain("other")

8.4 Transaction Timeout

For any newly started transaction a transaction timeout can be specified in seconds.

WildFly 10

JBoss Community Documentation Page of 56 532

When a transaction timeout of is used, then the actual transaction timeout will default to the domain0

configured default.

TODO: add link to tx subsystem

Although this is only applicable when using transaction attribute or theREQUIRED REQUIRES_NEW

application server will not detect invalid setups.

New Transactions

Take care that even when transaction attribute is specified, the timeout will only beREQUIRED

applicable if a transaction is started.new

8.4.1 Specification of Transaction Timeout with Metadata

Annotations

The annotation is used to specify the transaction timeout for a given method.TransactionTimeout

The of the annotation is the timeout used in the given granularity. It must be a positive integervalue unit

or 0. Whenever 0 is specified the default domain configured timeout is used.

The specifies the granularity of the . The actual value used is converted to seconds. Specifyingunit value

a granularity lower than is considered an error, even when the computed value will result in anSECONDS

even amount of seconds.

For example:@TransactionTimeout(value = 10, unit = TimeUnit.SECONDS)

WildFly 10

JBoss Community Documentation Page of 57 532

8.4.2 Specification of Transaction Timeout in the Deployment

Descriptor

The element is used to define the transaction timeout for business, home, component, andtrans-timeout

message-listener interface methods; no-interface view methods; web service endpoint methods; and timeout

callback methods.

The element resides in the namespace and is part of the standard trans-timeout urn:trans-timeout

 element as defined in the jboss namespace.container-transaction

For the rules when a is applicable please refer to EJB 3.1 FR 13.3.7.2.1.container-transaction

Example of trans-timeout

jboss-ejb3.xml

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:tx="urn:trans-timeout"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

urn:trans-timeout http://www.jboss.org/j2ee/schema/trans-timeout-1_0.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>BeanWithTimeoutValue</ejb-name>

 <method-name>*</method-name>

 <method-intf>Local</method-intf>

 </method>

 <tx:trans-timeout>

 <tx:timeout>10</tx:timeout>

 <tx:unit>Seconds</tx:unit>

 </tx:trans-timeout>

 </container-transaction>

 </assembly-descriptor>

</jboss:ejb-jar>

8.5 Timer service

The service is responsible to call the registered timeout methods of the different session beans.

WildFly 10

JBoss Community Documentation Page of 58 532

A persistent timer will be identified by the name of the EAR, the name of the sub-deployment JAR

and the Bean's name.

If one of those names are changed (e.g. EAR name contain a version) the timer entry became

orphaned and the timer event will not longer be fired.

8.5.1 Single event timer

The timer is will be started once at the specified time.

In case of a server restart the timeout method of a persistent timer will only be called directly if the specified

time is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will be not longer available if JBoss is restarted or

the application is redeployed.

8.5.2 Recurring timer

The timer will be started at the specified first occurrence and after that point at each time if the interval is

elapsed.

If the timer will be started during the last execution is not finished the execution will be suppressed with a

warning to avoid concurrent execution.

In case of server downtime for a persistent timer, the timeout method will be called only once if one, or more

than one, interval is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will not longer be active after the server is restarted

or the application is redeployed.

WildFly 10

JBoss Community Documentation Page of 59 532

8.5.3 Calendar timer

The timer will be started if the schedule expression match. It will be automatically deactivated and removed if

there will be no next expiration possible, i.e. If you set a specific year.

For example:

@Schedule(... dayOfMonth="1", month="1", year="2012")

// start once at 01-01-2012 00:00:00

Programmatic calendar timer
If the timer is persistent it will be fetched at server start and the missed timeouts are called concurrent.

If a persistent timer contains an end date it will be executed once nevertheless how many times the

execution was missed. Also a retry will be suppressed if the timeout method throw an Exception.

In case of such expired timer access to the given Timer object might throw a NoMoreTimeoutExcption or

NoSuchObjectException.

If the timer is non persistent it will not longer be active after the server is restarted or the application is

redeployed.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

Annotated calendar timer
If the timer is non persistent it will not activated for missed events during the server is down. In case of

server start the timer is scheduled based on the @Schedule annotation.

If the timer is persistent (default if not deactivated by annotation) all missed events are fetched at server start

and the annotated timeout method is called concurrent.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

WildFly 10

JBoss Community Documentation Page of 60 532

9 JPA reference guide

Introduction

Update your Persistence.xml for Hibernate 5.0

Entity manager

Application-managed entity manager

Container-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Hibernate 5.x JPA persistence provider

Hibernate ORM 3.x integration is not included

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Using OpenJPA

Using EclipseLink

Using DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

WildFly 10

JBoss Community Documentation Page of 61 532

9.1 Introduction

The WildFly JPA subsystem implements the JPA 2.1 container-managed requirements. Deploys the

persistence unit definitions, the persistence unit/context annotations and persistence unit/context references

in the deployment descriptor. JPA Applications use the Hibernate (version 5) persistence provider, which is

included with WildFly. The JPA subsystem uses the standard SPI

(javax.persistence.spi.PersistenceProvider) to access the Hibernate persistence provider and some

additional extensions as well.

During application deployment, JPA use is detected (e.g. persistence.xml or @PersistenceContext/Unit

annotations) and injects Hibernate dependencies into the application deployment. This makes it easy to

deploy JPA applications.

In the remainder of this documentation, ”entity manager” refers to an instance of the

 class. and .javax.persistence.EntityManager Javadoc for the JPA interfaces JPA 2.1 specification

The index of the Hibernate documentation is at .http://hibernate.org/orm/documentation/5.0/

9.2 Update your Persistence.xml for Hibernate 5.0

The persistence provider class name in Hibernate 4.3.0 (and greater) is

.org.hibernate.jpa.HibernatePersistenceProvider

Instead of specifying:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

Switch to:

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

Or remove the persistence provider class name from your persistence.xml (so the default provider will be

used).

9.3 Entity manager

The entity manager is similar to the Hibernate Session class; applications use it to create/read/update/delete

data (and related operations). Applications can use application-managed or container-managed entity

managers. Keep in mind that the entity manager is not expected to be thread safe (don't inject it into a

servlet class variable which is visible to multiple threads).

http://download.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://jcp.org/en/jsr/detail?id=338
http://hibernate.org/orm/documentation/5.0/

WildFly 10

JBoss Community Documentation Page of 62 532

9.4 Application-managed entity manager

Application-managed entity managers provide direct access to the underlying persistence provider

(org.hibernate.ejb.HibernatePersistence). The scope of the application-managed entity manager is from

when the application creates it and lasts until the app closes it. Use the annotation to@PersistenceUnit

inject a persistence unit into a . The EntityManagerFactory canjavax.persistence.EntityManagerFactory

return an application-managed entity manager.

9.5 Container-managed entity manager

Container-managed entity managers auto-magically manage the underlying persistence provider for the

application. Container-managed entity managers may use transaction-scoped persistence contexts or

extended persistence contexts. The container-managed entity manager will create instances of the

underlying persistence provider as needed. Every time that a new underlying persistence provider (

) instance is created, a new persistence context is also created (asorg.hibernate.ejb.HibernatePersistence

an implementation detail of the underlying persistence provider).

9.6 Persistence Context

The JPA persistence context contains the entities managed by the persistence provider. The persistence

context acts like a first level (transactional) cache for interacting with the datasource. Loaded entities are

placed into the persistence context before being returned to the application. Entities changes are also placed

into the persistence context (to be saved in the database when the transaction commits).

WildFly 10

JBoss Community Documentation Page of 63 532

9.7 Transaction-scoped Persistence Context

The transaction-scoped persistence context coordinates with the (active) JTA transaction. When the

transaction commits, the persistence context is flushed to the datasource (entity objects are detached but

may still be referenced by application code). All entity changes that are expected to be saved to the

datasource, must be made during a transaction. Entities read outside of a transaction will be detached when

the entity manager invocation completes. Example transaction-scoped persistence context is below.

@Stateful // will use container managed transactions

public class CustomerManager {

 @PersistenceContext(unitName = "customerPU") // default type is

PersistenceContextType.TRANSACTION

 EntityManager em;

 public customer createCustomer(String name, String address) {

 Customer customer = new Customer(name, address);

 em.persist(customer); // persist new Customer when JTA transaction completes (when method

ends).

 // internally:

 // 1. Look for existing "customerPU" persistence context in active

JTA transaction and use if found.

 // 2. Else create new "customerPU" persistence context (e.g.

instance of org.hibernate.ejb.HibernatePersistence)

 // and put in current active JTA transaction.

 return customer; // return Customer entity (will be detached from the persistence

context when caller gets control)

 } // Transaction.commit will be called, Customer entity will be persisted to the database and

"customerPU" persistence context closed

9.8 Extended Persistence Context

The (ee container managed) extended persistence context can span multiple transactions and allows data

modifications to be queued up (like a shopping cart), without an active JTA transaction (to be applied during

the next JTA TX). The Container-managed extended persistence context can only be injected into a stateful

session bean.

@PersistenceContext(type = PersistenceContextType.EXTENDED, unitName = "inventoryPU")

EntityManager em;

WildFly 10

JBoss Community Documentation Page of 64 532

9.8.1 Extended Persistence Context Inheritance

JPA 2.0 specification section 7.6.2.1

If a stateful session bean instantiates a stateful session bean (executing in the same EJB

container instance) which also has such an extended persistence context, the extended

persistence context of the first stateful session bean is inherited by the second stateful

session bean and bound to it, and this rule recursively applies—independently of whether

transactions are active or not at the point of the creation of the stateful session beans.

By default, the current stateful session bean being created, will () inherit the extended persistencedeeply

context from any stateful session bean executing in the current Java thread. The inheritance ofdeep

extended persistence context includes walking multiple levels up the stateful bean call stack (inheriting from

parent beans). The inheritance of extended persistence context includes sibling beans. For example,deep

parentA references child beans beanBwithXPC & beanCwithXPC. Even though parentA doesn't have an

extended persistence context, beanBwithXPC & beanCwithXPC will share the same extended persistence

context.

Some other EE application servers, use inheritance, where stateful session bean only inherit fromshallow

the parent stateful session bean (if there is a parent bean). Sibling beans do not share the same extended

persistence context unless their (common) parent bean also has the same extended persistence context.

Applications can include a (top-level) deployment descriptor that specifies either the (default) jboss-all.xml

 extended persistence context inheritance or .DEEP SHALLOW

The WF/docs/schema/jboss-jpa_1_0.xsd describes the deployment descriptor that may bejboss-jpa

included in the . Below is an example of using extended persistence contextjboss-all.xml SHALLOW

inheritance:

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="SHALLOW"/>

 </jboss-jpa>

</jboss>

Below is an example of using extended persistence inheritance:DEEP

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="DEEP"/>

 </jboss-jpa>

</jboss>

WildFly 10

JBoss Community Documentation Page of 65 532

The AS console/cli can change the extended persistence context setting (DEEP or SHALLOW). Thedefault

following cli commands will read the current JPA settings and enable SHALLOW extended persistence

context inheritance for applications that do not include the deployment descriptor:jboss-jpa

./jboss-cli.sh

cd subsystem=jpa

:read-resource

:write-attribute(name=default-extended-persistence-inheritance,value="SHALLOW")

9.9 Entities

JPA allows use of your (pojo) plain old Java class to represent a database table row.

@PersistenceContext EntityManager em;

Integer bomPk = getIndexKeyValue();

BillOfMaterials bom = em.find(BillOfMaterials.class, bomPk); // read existing table row into

BillOfMaterials class

BillOfMaterials createdBom = new BillOfMaterials("..."); // create new entity

em.persist(createdBom); // createdBom is now managed and will be saved to database when the

current JTA transaction completes

The entity lifecycle is managed by the underlying persistence provider.

New (transient): an entity is new if it has just been instantiated using the new operator, and it is not

associated with a persistence context. It has no persistent representation in the database and no

identifier value has been assigned.

Managed (persistent): a managed entity instance is an instance with a persistent identity that is

currently associated with a persistence context.

Detached: the entity instance is an instance with a persistent identity that is no longer associated with

a persistence context, usually because the persistence context was closed or the instance was

evicted from the context.

Removed: a removed entity instance is an instance with a persistent identity, associated with a

persistence context, but scheduled for removal from the database.

WildFly 10

JBoss Community Documentation Page of 66 532

9.10 Deployment

The persistence.xml contains the persistence unit configuration (e.g. datasource name) and as described in

the JPA 2.0 spec (section 8.2), the jar file or directory whose META-INF directory contains the

persistence.xml file is termed the root of the persistence unit. In Java EE environments, the root of a

persistence unit must be one of the following (quoted directly from the JPA 2.0 specification):

"

an EJB-JAR file

the WEB-INF/classes directory of a WAR file

a jar file in the WEB-INF/lib directory of a WAR file

a jar file in the EAR library directory

an application client jar file

The persistence.xml can specify either a JTA datasource or a non-JTA datasource. The JTA datasource is

expected to be used within the EE environment (even when reading data without an active transaction). If a

datasource is not specified, the default-datasource will instead be used (must be configured).

NOTE: Java Persistence 1.0 supported use of a jar file in the root of the EAR as the root of a persistence

unit. This use is no longer supported. Portable applications should use the EAR library directory for this case

instead.

"

Question: Can you have a EAR/META-INF/persistence.xml?

Answer: No, the above may deploy but it could include other archives also in the EAR, so you may have

deployment issues for other reasons. Better to put the persistence.xml in an EAR/lib/somePuJar.jar.

9.11 Troubleshooting

The logging can be enabled to get the following information:org.jboss.as.jpa

INFO - when persistence.xml has been parsed, starting of persistence unit service (per deployed

persistence.xml), stopping of persistence unit service

DEBUG - informs about entity managers being injected, creating/reusing transaction scoped entity

manager for active transaction

TRACE - shows how long each entity manager operation took in milliseconds, application searches

for a persistence unit, parsing of persistence.xml

To enable TRACE, open the as/standalone/configuration/standalone.xml (or

as/domain/configuration/domain.xml) file. Search for <subsystem

 and add the category. You need to changexmlns="urn:jboss:domain:logging:1.0"> org.jboss.as.jpa

the console-handler level from to . INFO TRACE

WildFly 10

JBoss Community Documentation Page of 67 532

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.jboss.as.jpa">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

To see what is going on at the JDBC level, enable TRACE and add spy="true" to thejboss.jdbc.spy

datasource.

<datasource jndi-name="java:jboss/datasources/..." pool-name="..." enabled="true" spy="true">

<logger category="jboss.jdbc.spy">

 <level name="TRACE"/>

</logger>

To troubleshoot issues with the Hibernate second level cache, try enabling trace for org.hibernate.SQL +

org.hibernate.cache.infinispan + org.infinispan:

WildFly 10

JBoss Community Documentation Page of 68 532

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.hibernate.SQL">

 <level name="TRACE" />

 </logger>

 <logger category="org.hibernate">

 <level name="TRACE" />

 </logger>

 <logger category="org.infinispan">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

9.12 Using the Hibernate 5.x JPA persistence provider

Hibernate 5.x is packaged with WildFly and is the default persistence provider.

9.13 Hibernate ORM 3.x integration is not included

The Hibernate 3.x integration is removed from WildFly, please use a newer version of Hibernate.

9.14 Using the Infinispan second level cache

To enable the second level cache with Hibernate 5.x, just set the

 property to true, as is done in the following example (also sethibernate.cache.use_second_level_cache

the accordingly). By default the application server uses Infinispan as the cache providershared-cache-mode

for , so you don't need specify anything on top of that. The Infinispan version that isJPA applications

included in WildFly is expected to work with the Hibernate version that is included with WildFly. Example

persistence.xml settings:

http://docs.oracle.com/javaee/6/api/javax/persistence/SharedCacheMode.html

WildFly 10

JBoss Community Documentation Page of 69 532

<?xml version="1.0" encoding="UTF-8"?><persistence

xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="2lc_example_pu">

 <description>example of enabling the second level cache.</description>

 <jta-data-source>java:jboss/datasources/mydatasource</jta-data-source>

 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

 <properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 </properties>

</persistence-unit>

</persistence>

Here is an example of enabling the second level cache for a Hibernate native API hibernate.cfg.xml file:

<property name="hibernate.cache.region.factory_class"

value="org.jboss.as.jpa.hibernate5.infinispan.InfinispanRegionFactory"/>

<property name="hibernate.cache.infinispan.cachemanager"

value="java:jboss/infinispan/container/hibernate"/>

<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

The Hibernate native API application will also need a MANIFEST.MF:

Dependencies: org.infinispan,org.hibernate

 contains advanced configurationInfinispan Hibernate/JPA second level cache provider documentation

information but you should bear in mind that when Hibernate runs within WildFly 8, some of those

configuration options, such as region factory, are not needed. Moreover, the application server providers you

with option of selecting a different cache container for Infinispan via hibernate.cache.infinispan.container

persistence property. To reiterate, this property is not mandatory and a default container is already deployed

for by the application server to host the second level cache.

Here is an example of what the Hibernate cache settings may currently be in your standalone.xml:

<cache-container name="hibernate" default-cache="local-query" module="org.hibernate.infinispan">

 <local-cache name="entity">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="timestamps"/>

</cache-container>

http://infinispan.org/docs/8.0.x/user_guide/user_guide.html#_using_infinispan_as_jpa_hibernate_second_level_cache_provider

WildFly 10

JBoss Community Documentation Page of 70 532

Below is an example of customizing the "entity", "immutable-entity", "local-query", "pending-puts",

"timestamps" cache configuration may look like:

<cache-container name="hibernate" module="org.hibernate.infinispan"

default-cache="immutable-entity">

 <local-cache name="entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="immutable-entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction max-entries="-1"/>

 <expiration max-idle="300000"/>

 </local-cache>

 <local-cache name="pending-puts">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 <expiration max-idle="60000"/>

 </local-cache>

 <local-cache name="timestamps">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </local-cache>

</cache-container>

Persistence.xml to use the above custom settings:

<properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 <property name="hibernate.cache.use_query_cache" value="true"/>

 <property name="hibernate.cache.infinispan.immutable-entity.cfg" value="immutable-entity"/>

 <property name="hibernate.cache.infinispan.timestamps.cfg" value="timestamps"/>

 <property name="hibernate.cache.infinispan.pending-puts.cfg" value="pending-puts"/>

</properties>

WildFly 10

JBoss Community Documentation Page of 71 532

1.

2.

3.

4.

5.

9.15 Replacing the current Hibernate 5.x jars with a

newer version

Just update the current wildfly/modules/system/layers/base/org/hibernate/main folder to contain the newer

version (after stopping your WildFly server instance).

Delete *.index files in wildfly/modules/system/layers/base/org/hibernate/main and

wildfly/modules/system/layers/base/org/hibernate/envers/main folders.

Backup the current contents of wildfly/modules/system/layers/base/org/hibernate in case you make a

mistake.

Remove the older jars and copy new Hibernate jars into

wildfly/modules/system/layers/base/org/hibernate/main +

wildfly/modules/system/layers/base/org/hibernate/envers/main.

Update the wildfly/modules/system/layers/base/org/hibernate/main/module.xml +

wildfly/modules/system/layers/base/org/hibernate/envers/main/module.xml to name the jars that you

copied in.

Also update the hibernate-infinispan jars in

wildfly/modules/system/layers/base/org/hibernate/infinispan.

9.16 Using Hibernate Search

WildFly 10 includes Hibernate Search. If you want to use the bundled version of Hibernate Search - which

requires to use the default Hibernate ORM 5 persistence provider - this will be automatically enabled.

Having this enabled means that, provided your application includes any entity which is annotated with

, the module will be madeorg.hibernate.search.annotations.Indexed org.hibernate.search.orm:main

available to your deployment; this will also include the required version of Apache Lucene.

If you do not want this module to be exposed to your deployment, set the persistence property

 to either to not automatically inject any Hibernate Searchwildfly.jpa.hibernate.search.module none

module, or to any other module identifier to inject a different module.

For example you could set wildfly.jpa.hibernate.search.module=org.hibernate.search.orm:5.4.0.Alpha1

to use the experimental version 5.4.0.Alpha1 instead of the provided module; in this case you'll have to

download and add the custom modules to the application server as other versions are not included.

When setting you might also opt to include Hibernate Searchwildfly.jpa.hibernate.search.module=none

and its dependencies within your application but we highly recommend the modules approach.

WildFly 10

JBoss Community Documentation Page of 72 532

9.17 Packaging the Hibernate JPA persistence provider

with your application

WildFly 8 allows the packaging of Hibernate 4.x (or greater) persistence provider jars with the application.

The JPA deployer will detect the presence of a persistence provider in the application and

 needs to be set to .<?xml version="1.0" encoding="UTF-8"?>jboss.as.jpa.providerModule application

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myOwnORMVersion_pu">

<description>Hibernate 4 Persistence Unit.</description>

<jta-data-source>java:jboss/datasources/PlannerDS</jta-data-source>

<properties>

 <property name="jboss.as.jpa.providerModule" value="application" />

</properties>

</persistence-unit>

</persistence>

WildFly 10

JBoss Community Documentation Page of 73 532

9.18 Using OpenJPA

You need to copy the OpenJPA jars (e.g. openjpa-all.jar serp.jar) into the WildFly

modules/system/layers/base/org/apache/openjpa/main folder and update

modules/system/layers/base/org/apache/openjpa/main/module.xml to include the same jar file names that

you copied in.

<module xmlns="urn:jboss:module:1.1" name="org.apache.openjpa">

 <resources>

 <resource-root path="jipijapa-openjpa-1.0.1.Final.jar"/>

 <resource-root path="openjpa-all.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 <resource-root path="serp.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.apache.commons.lang"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 <module name="org.jboss.jandex"/>

 </dependencies>

</module>

9.19 Using EclipseLink

You need to copy the EclipseLink jar (e.g. eclipselink-2.6.0.jar or eclipselink.jar as in the example below) into

the WildFly modules/system/layers/base/org/eclipse/persistence/main folder and update

modules/system/layers/base/org/eclipse/persistence/main/module.xml to include the EclipseLink jar (take

care to use the jar name that you copied in). If you happen to leave the EclipseLink version number in the

jar name, the module.xml should reflect that.

WildFly 10

JBoss Community Documentation Page of 74 532

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">

 <resources>

 <resource-root path="jipijapa-eclipselink-10.0.0.Final.jar"/>

 <resource-root path="eclipselink.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 </resources>

 <dependencies>

 <module name="asm.asm"/>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="javax.ws.rs.api"/>

 <module name="org.antlr"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.dom4j"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

As a workaround for issue , set (WildFly) system property "eclipselink.archive.factory" to valueid=414974

"org.jipijapa.eclipselink.JBossArchiveFactoryImpl" via jboss-cli.sh command (WildFly server needs to be

running when this command is issued):

jboss-cli.sh --connect

'/system-property=eclipselink.archive.factory:add(value=org.jipijapa.eclipselink.JBossArchiveFactoryImpl)'

. The following shows what the standalone.xml (or your WildFly configuration you are using) file might look

like after updating the system properties:

<system-properties>

 ...

 <property name="eclipselink.archive.factory"

value="org.jipijapa.eclipselink.JBossArchiveFactoryImpl"/>

</system-properties>

You should then be able to deploy applications with persistence.xml that include;

<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

https://bugs.eclipse.org/bugs/show_bug.cgi?id=414974

WildFly 10

JBoss Community Documentation Page of 75 532

Also refer to page .how to use EclipseLink with WildFly guide here

9.20 Using DataNucleus

Read the .how to use DataNucleus with WildFly guide here

9.21 Native Hibernate use

Applications that use the Hibernate API directly, are referred to here as native Hibernate applications. Native

Hibernate applications, can choose to use the Hibernate jars included with WildFly or they can package their

own copy of the Hibernate jars. Applications that utilize JPA will automatically have the Hibernate classes

injected onto the application deployment classpath. Meaning that JPA applications, should expect to use the

Hibernate jars included in WildFly.

Example MANIFEST.MF entry to add dependency for Hibernate native applications:

Manifest-Version: 1.0

...

Dependencies: org.hibernate

If you use the Hibernate native api in your application and also use the JPA api to access the same entities

(from the same Hibernate session/EntityManager), you could get surprising results (e.g.

HibernateSession.saveOrUpdate(entity) is different than EntityManager.merge(entity). Each entity should be

managed by either Hibernate native API or JPA code.

9.22 Injection of Hibernate Session and

SessionFactoryInjection of Hibernate Session and

SessionFactory

You can inject a org.hibernate.Session and org.hibernate.SessionFactory directly, just as you can do with

EntityManagers and EntityManagerFactorys.

import org.hibernate.Session;

import org.hibernate.SessionFactory;

@Stateful public class MyStatefulBean ... {

 @PersistenceContext(unitName="crm") Session session1;

 @PersistenceContext(unitName="crm2", type=EXTENDED) Session extendedpc;

 @PersistenceUnit(unitName="crm") SessionFactory factory;

}

https://community.jboss.org/wiki/HowToUseEclipseLinkWithAS7
http://www.datanucleus.org/products/accessplatform_5_0/jpa/javaee.html

WildFly 10

JBoss Community Documentation Page of 76 532

9.23 Hibernate properties

WildFly automatically sets the following Hibernate (5.x) properties (if not already set in persistence unit

definition):

Property Purpose

 hibernate.id.new_generator_mappings =true New applications should let this

default to true, older applications

with existing data might need to

set to false (see note below). It

really depends on whether your

application uses the

@GeneratedValue(AUTO) which

will generates new key values for

newly created entities. The

application can override this

value (in the persistence.xml).

= instance ofhibernate.transaction.jta.platform

org.hibernate.service.jta.platform.spi.JtaPlatform interface

The transaction manager, user

transaction and transaction

synchronization registry is

passed into Hibernate via this

class.

 = instance ofhibernate.ejb.resource_scanner

org.hibernate.ejb.packaging.Scanner interface

Instance of entity scanning class

is passed in that knows how to

use the AS annotation indexer

(for faster deployment).

hibernate.transaction.manager_lookup_class This property is removed if found

in the persistence.xml (could

conflict with JtaPlatform)

 = qualified persistence unit namehibernate.session_factory_name Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

 = falsehibernate.session_factory_name_is_jndi only set if the application didn't

specify a value for

hibernate.session_factory_name.

WildFly 10

JBoss Community Documentation Page of 77 532

 qualified persistence unithibernate.ejb.entitymanager_factory_name =

name

Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

=truehibernate.query.jpaql_strict_compliance

=falsehibernate.auto_quote_keyword

hibernate.implicit_naming_strategy

=org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl

In Hibernate 4.x (and greater), if is :new_generator_mappings true

@GeneratedValue(AUTO) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

@GeneratedValue(TABLE) maps to org.hibernate.id.enhanced.TableGenerator

@GeneratedValue(SEQUENCE) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

In Hibernate 4.x (and greater), if is :new_generator_mappings false

@GeneratedValue(AUTO) maps to Hibernate "native"

@GeneratedValue(TABLE) maps to org.hibernate.id.MultipleHiLoPerTableGenerator

@GeneratedValue(SEQUENCE) to Hibernate "seqhilo"

9.24 Persistence unit properties

The following properties are supported in the persistence unit definition (in the persistence.xml file):

Property Purpose

jboss.as.jpa.providerModule name of the persistence provider module (default is

). Should be , if a persistenceorg.hibernate application

provider is packaged with the application. See note below about

some module names that are built in (based on the).provider

jboss.as.jpa.adapterModule name of the integration classes that help WildFly to work with

the persistence provider.

jboss.as.jpa.adapterClass class name of the integration adapter.

jboss.as.jpa.managed set to to disable container managed JPA access to thefalse

persistence unit. The default is , which enables containertrue

managed JPA access to the persistence unit. This is typically

set to for Seam 2.x + Spring applications.false

WildFly 10

JBoss Community Documentation Page of 78 532

jboss.as.jpa.classtransformer set to to disable class transformers for the persistencefalse

unit. The default is , which allows classtrue

enhancing/rewriting. Hibernate also needs persistence unit

property to be true, forhibernate.ejb.use_class_enhancer

class enhancing to be enabled.

wildfly.jpa.default-unit set to to choose the default persistence unit in antrue

application. This is useful if you inject a persistence context

without specifying the unitName (@PersistenceContext

EntityManager em) but have multiple persistence units specified

in your persistence.xml.

wildfly.jpa.twophasebootstrap persistence providers (like Hibernate ORM 4.3.x via

EntityManagerFactoryBuilder), allow a two phase persistence

unit bootstrap, which improves JPA integration with CDI.

Setting the hint to false,wildfly.jpa.twophasebootstrap

disables the two phase bootstrap (for the persistence unit that

contains the hint).

wildfly.jpa.allowdefaultdatasourceuse set to false to prevent persistence unit from using the default

data source. Defaults to true. This is only important for

persistence units that do not specify a datasource.

jboss.as.jpa.deferdetach Controls whether transaction scoped persistence context used

in non-JTA transaction thread, will detach loaded entities after

each EntityManager invocation or when the persistence context

is closed (e.g. business method ends). Defaults to false

(entities are cleared after EntityManager invocation) and if set to

true, the detach is deferred until the context is closed.

wildfly.jpa.hibernate.search.module Controls which version of Hibernate Search to include on

classpath. Only makes sense when using Hibernate as JPA

implementation. The default is ; other valid values are auto none

or a full module identifier to use an alternative version.

jboss.as.jpa.scopedname Specify the qualified (application scoped) persistence unit name

to be used. By default, this is internally set to the application

name + persistence unit name. The

hibernate.cache.region_prefix will default to whatever you set

jboss.as.jpa.scopedname to. Make sure you set the

jboss.as.jpa.scopedname value to a value not already in use by

other applications deployed on the same application server

instance.

WildFly 10

JBoss Community Documentation Page of 79 532

9.25 Determine the persistence provider module

As mentioned above, if the property is not specified, the provider modulejboss.as.jpa.providerModule

name is determined by the name specified in the persistence.xml. The mapping is:provider

Provider Name Module name

blank org.hibernate

org.hibernate.ejb.HibernatePersistence org.hibernate

org.hibernate.ogm.jpa.HibernateOgmPersistence org.hibernate.ogm

oracle.toplink.essentials.PersistenceProvider oracle.toplink

oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider oracle.toplink

org.eclipse.persistence.jpa.PersistenceProvider org.eclipse.persistence

org.datanucleus.api.jpa.PersistenceProviderImpl org.datanucleus

org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider org.datanucleus:appengine

org.apache.openjpa.persistence.PersistenceProviderImpl org.apache.openjpa

WildFly 10

JBoss Community Documentation Page of 80 532

9.26 Binding EntityManagerFactory/EntityManager to

JNDI

By default WildFly does bind the entity manager factory to JNDI. However, you can explicitly configurenot

this in the persistence.xml of your application by setting the

 jboss.entity.manager.factory.jndi.name hint. The value of that property should

be the JNDI name to which the entity manager factory should be bound.

You can also bind a container managed (transaction scoped) entity manager to

 {JNDI as well, }}via hint jboss.entity.manager.jndi.name }{{. As a reminder, a

transaction scoped entity manager (persistence context), acts as a proxy that

always gets an unique underlying entity manager (at the persistence provider

level).

Here's an example:

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="myPU">

 <!-- If you are running in a production environment, add a managed

 data source, the example data source is just for proofs of concept! -->

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 <!-- Bind entity manager factory to JNDI at java:jboss/myEntityManagerFactory -->

 <property name="jboss.entity.manager.factory.jndi.name"

value="java:jboss/myEntityManagerFactory" />

 <property name="jboss.entity.manager.jndi.name" value="java:/myEntityManager"/>

 </properties>

 </persistence-unit>

</persistence>

@Stateful

public class ExampleSFSB {

 public void createSomeEntityWithTransactionScopedEM(String name) {

 Context context = new InitialContext();

 javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

context.lookup("java:/myEntityManager");

 SomeEntity someEntity = new SomeEntity();

 someEntity.setName(name); entityManager.persist(name);

 }

}

WildFly 10

JBoss Community Documentation Page of 81 532

9.27 Community

Many thanks to the community, for reporting issues, solutions and code changes. A number of people have

been answering Wildfly forum questions related to JPA usage. I would like to thank them for this, as well as

those reporting issues. For those of you that haven't downloaded the AS source code and started hacking

patches together. I would like to encourage you to start by reading . You will find that itHacking on WildFly

easy very easy to find your way around the WildFly/JPA/* source tree and make changes. Also, new for

WildFly, is the JipiJapa project that contains additional integration code that makes EE JPA application

deployments work better. The following list of contributors should grow over time, I hope to see more of you

listed here.

9.27.1 People who have contributed to the WildFly JPA layer:

 (lead of the EJB3 project)Carlo de Wolf

 (lead of the Hibernate ORM project)Steve Ebersole

 (lead of the Seam Persistence project, WildFly project team member/committer)Stuart Douglas

 (Active member of JBoss forums and JBoss EJB3 project team member)Jaikiran Pai

 (leads the productization effort of Hibernate in the EAP product)Strong Liu

 (lead of the WildFly container JPA sub-project)Scott Marlow

 Antti Laisi (OpenJPA integration changes)

 (Infinispan 2lc documentation)Galder Zamarreño

 (lead of the Hibernate Search project)Sanne Grinovero

 (Infinispan 2lc integration)Paul Ferraro

https://community.jboss.org/wiki/HackingOnWildFly
https://community.jboss.org/people/wolfc
http://in.relation.to/Bloggers/Steve
https://community.jboss.org/people/swd847
https://community.jboss.org/people/jaikiran
http://relation.to/Bloggers/StrongLiu
https://community.jboss.org/people/smarlow
https://community.jboss.org/people/alaisi
https://docs.jboss.org/author/display/~galder.zamarreno
https://docs.jboss.org/author/display/~sannegrinovero
https://issues.jboss.org/secure/ViewProfile.jspa?name=pferraro

WildFly 10

JBoss Community Documentation Page of 82 532

10 OSGi developer guide
Couldn't find a page to include called: OSGi Developer Guide

WildFly 10

JBoss Community Documentation Page of 83 532

11 JNDI reference guide

11.1 Overview

WildFly offers several mechanisms to retrieve components by name. Every WildFly instance has it's own

local JNDI namespace () which is unique per JVM. The layout of this namespace is primarilyjava:

governed by the Java EE specification. Applications which share the same WildFly instance can use this

namespace to intercommunicate. In addition to local JNDI, a variety of mechanisms exist to access remote

components.

Client JNDI - This is a mechanism by which remote components can be accessed using the JNDI

APIs, but . This approach is the most efficient, and without network round-trips removes a

. For this reason, it is highly recommended to use Client JNDI overpotential single point of failure

traditional remote JNDI access. However, to make this possible, it does require that all names follow a

strict layout, so user customizations are not possible. Currently only access to remote EJBs is

supported via the namespace. Future revisions will likely add a JMS client JNDI namespace.ejb:

Traditional Remote JNDI - This is a more familiar approach to EE application developers, where the

client performs a remote component name lookup against a server, and a proxy/stub to the

component is serialized as part of the name lookup and returned to the client. The client then invokes

a method on the proxy which results in another remote network call to the underlying service. In a

nutshell, traditional remote JNDI involves two calls to invoke an EE component, whereas Client JNDI

requires one. It does however allow for customized names, and for a centralised directory for multiple

application servers. This centralized directory is, however, . a single point of failure

EE Application Client / Server-To-Server Delegation - This approach is where local names are bound

as an to a remote name using one of the above mechanisms. This is useful in that it allowsalias

applications to only ever reference standard portable Java EE names in both code and deployment

descriptors. It also allows for the application to be unaware of network topology details/ This can even

work with Java SE clients by using the little known EE Application Client feature. This feature allows

you to run an extremely minimal AS server around your application, so that you can take advantage of

certain core services such as naming and injection.

11.2 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

WildFly 10

JBoss Community Documentation Page of 84 532

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

11.2.1 Binding entries to JNDI

There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

WildFly 10

JBoss Community Documentation Page of 85 532

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

WildFly 10

JBoss Community Documentation Page of 86 532

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

WildFly 10

JBoss Community Documentation Page of 87 532

11.2.2 Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

WildFly 10

JBoss Community Documentation Page of 88 532

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

11.3 Remote JNDI

WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

11.3.1 remote:

The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

WildFly 10

JBoss Community Documentation Page of 89 532

11.3.2 ejb:

The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

WildFly 10

JBoss Community Documentation Page of 90 532

12 Spring applications development and migration

guide
This document details the main points that need to be considered by Spring developers that wish to develop

new applications or to migrate existing applications to be run into WildFly 8.

12.1 Dependencies and Modularity

WildFly 8 has a modular class loading strategy, different from previous versions of JBoss AS, which enforces

a better class loading isolation between deployments and the application server itself. A detailed description

can be found in the documentation dedicated to .class loading in WildFly 8

This reduces significantly the risk of running into a class loading conflict and allows applications to package

their own dependencies if they choose to do so. This makes it easier for Spring applications that package

their own dependencies - such as logging frameworks or persistence providers to run on WildFly 8.

At the same time, this does not mean that duplications and conflicts cannot exist on the classpath. Some

module dependencies are implicit, depending on the type of deployment as shown . here

12.2 Persistence usage guide

Depending on the strategy being used, Spring applications can be:

native Hibernate applications;

JPA-based applications;

native JDBC applications;

12.3 Native Spring/Hibernate applications

Applications that use the Hibernate API directly with Spring (i.e. through either one of

LocalSessionFactoryBean or AnnotationSessionFactoryBean) may use a version of Hibernate 3 packaged

inside the application. Hibernate 4 (which is provided through the 'org.hibernate' module of WildFly 8) is not

supported by Spring 3.0 and Spring 3.1 (and may be supported by Spring 3.2 as described in), soSPR-8096

adding this module as a dependency is not a solution.

12.4 based applications

Spring applications using JPA may choose between:

using a server-deployed persistence unit;

using a Spring-managed persistence unit.

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Implicit+module+dependencies+for+deployments
https://jira.springsource.org/browse/SPR-8096

WildFly 10

JBoss Community Documentation Page of 91 532

12.4.1 Using server-deployed persistence units

Applications that use a server-deployed persistence unit must observe the typical Java EE rules in what

concerns dependency management, i.e. the javax.persistence classes and persistence provider (Hibernate)

are contained in modules which are added automatically by the application when the persistence unit is

deployed.

In order to use the server-deployed persistence units from within Spring, either the persistence context or the

persistence unit need to be registered in JNDI via web.xml as follows:

<persistence-context-ref>

 <persistence-context-ref-name>persistence/petclinic-em</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-context-ref>

or, respectively:

<persistence-unit-ref>

 <persistence-unit-ref-name>persistence/petclinic-emf</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-unit-ref>

When doing so, the persistence context or persistence unit are available to be looked up in JNDI, as follows:

<jee:jndi-lookup id="entityManager" jndi-name="java:comp/env/persistence/petclinic-em"

 expected-type="javax.persistence.EntityManager"/>

or

<jee:jndi-lookup id="entityManagerFactory" jndi-name="java:comp/env/persistence/petclinic-emf"

 expected-type="javax.persistence.EntityManagerFactory"/>

JNDI binding

JNDI binding via persistence.xml properties is not supported in WildFly 8.

WildFly 10

JBoss Community Documentation Page of 92 532

12.4.2 Using Spring-managed persistence units

Spring applications running in WildFly 8 may also create persistence units on their own, using the

LocalContainerEntityManagerFactoryBean. This is what these applications need to consider:

Placement of the persistence unit definitions
When the application server encounters a deployment that has a file named META-INF/persistence.xml (or,

for that matter, WEB-INF/classes/META-INF/persistence.xml), it will attempt to create a persistence unit

based on what is provided in the file. In most cases, such definition files are not compliant with the Java EE

requirements, mostly because required elements such as the datasource of the persistence unit are

supposed to be provided by the Spring context definitions, which will fail the deployment of the persistence

unit, and consequently of the entire deployment.

Spring applications can easily avoid this type of conflict, by using a feature of the

LocalContainerEntityManagerFactoryBean which is designed for this purpose. Persistence unit definition

files can exist in other locations than META-INF/persistence.xml and the location can be indicated through

the persistenceXmlLocation property of the factory bean class.

Assuming that the persistence unit is in the META-INF/jpa-persistence.xml, the corresponding definition can

be:

<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceXmlLocation"

value="classpath*:META-INF/jpa-persistence.xml"/>

 <!-- other definitions -->

</bean>

WildFly 10

JBoss Community Documentation Page of 93 532

12.4.3 Managing dependencies

Since the LocalContainerEntityManagerFactoryBean and the corresponding HibernateJpaVendorAdapter

are based on Hibernate 3, it is required to use that version with the application. Therefore, the Hibernate 3

jars must be included in the deployment. At the same time, due the presence of @PersistenceUnit or

@PersistenceContext annotations on the application classes, the application server will automatically add

the 'org.hibernate' module as a dependency.

This can be avoided by instructing the server to exclude the module from the deployment's list of

dependencies. In order to do so, include a META-INF/jboss-deployment-structure.xml or, for web

applications, WEB-INF/jboss-deployment-structure.xml with the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <exclusions>

 <module name="org.hibernate"/>

 </exclusions>

 </deployment>

</jboss-deployment-structure>

WildFly 10

JBoss Community Documentation Page of 94 532

13 All WildFly documentation
Couldn't find a page to include called: All JBoss AS 7 documentation

WildFly 10

JBoss Community Documentation Page of 95 532

14 Application Client Reference
As a Java EE6 compliant server, WildFly 8 contains an application client. An application client is essentially

a cut down server instance, that allow you to use EE features such as injection in a client side program.

This article is not a tutorial on application client development, rather it covers the specifics of the

WildFly application client. There are tutorials available elsewhere that cover application client

basics, such as .this one

Note that the application client is different to the EJB client libraries, it is perfectly possible to write

client application that do not use the application client, but instead use the jboss-ejb-client library

directly.

14.1 Getting Started

To launch the application client use the or script in the bin directory. Forappclient.sh appclient.bat

example:

./appclient.sh --host=10.0.0.1 myear.ear#appClient.jar arg1

The argument tells the appclient the server to connect to. The next argument is the application--host

client deployment to use, application clients can only run a single deployment, and this deployment must

also be deployed on the full server instance that the client is connecting too.

Any arguments after the deployment to use are passed directly through to the application clients main

function.

14.2 Connecting to more than one host

If you want to connect to more than one host or make use of the clustering functionality then you need to

specify a jboss-ejb-client.properties file rather than a host:

./appclient.sh --ejb-client-properties=my-jboss-ejb-client.properties myear.ear#appClient.jar

arg1

http://blogs.steeplesoft.com/2011/02/java-ees-buried-treasure-the-application-client-container/

WildFly 10

JBoss Community Documentation Page of 96 532

14.3 Example

A simple example how to package an application client and use it with WildFly can be within the quickstart

 which is located on Github .appclient

https://github.com/wildfly/quickstart/tree/master/app-client

WildFly 10

JBoss Community Documentation Page of 97 532

15 CDI Reference
WildFly uses , the CDI reference implementation as its CDI provider. To activate CDI for a deploymentWeld

simply add a file in any archive in the deployment.beans.xml

This document is not intended to be a CDI tutorial, it only covers CDI usage that is specific to WildFly. For

some general information on CDI see the below links:

CDI Specification

Weld Reference Guide

The AS7 Quickstarts

15.1 Using CDI Beans from outside the deployment

For WildFly 8 onwards, it is now possible have classes outside the deployment be picked up as CDI beans.

In order for this to work you must add a dependency on the external deployment that your beans are coming

from, and make sure the META-INF directory of this deployment is imported, so that your deployment has

visibility to the file (To import beans from outside the deployment they must be in an archivebeans.xml

with a file).beans.xml

There are two ways to do this, either using the or using MANIFEST.MF

.jboss-deployment-structure.xml

Using you need to add a entry, with meta-inf specified after the entry, e.g.MANIFEST.MF Dependencies

Dependencies: com.my-cdi-module meta-inf, com.my-other-cdi-module meta-inf

Using you need to add a dependency entry with jboss-deployment-structure.xml

, e.g.meta-inf="import"

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">

 <deployment>

 <dependencies>

 <module name="deployment.d1.jar" meta-inf="import"/>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

Note that this can be used to create beans from both modules in the directory, and from othermodules

deployments.

For more information on class loading and adding dependencies to your deployment please see the Class

Loading Guide

http://weld.cdi-spec.org/
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/

WildFly 10

JBoss Community Documentation Page of 98 532

15.2 Suppressing implicit bean archives

CDI 1.1 brings new options to packaging of CDI-enabled applications. In addition to well-known explicit

bean archives (basically any archive containing the file) the specification introduces beans.xml implicit

.bean archives

An implicit bean archive is any archive that contains one or more classes annotated with a bean defining

annotation (scope annotation) or one or more session beans. As a result, the beans.xml file is no longer

required for CDI to work in your application.

In an implicit bean archive that are either annotated with bean defining annotations oronly those classes

are session beans are recognized by CDI as beans (other classes cannot be injected).

This has a side-effect, though. Libraries exist that make use of scope annotation (bean defining annotations)

for their own convenience but are not designed to run with CDI support. Guava would be an example of such

library. If your application bundles such library it will be recognized as a CDI archive and may fail the

.deployment

Fortunately, WildFly makes it possible to suppress implicit bean archives and only enable CDI in archives

that bundle the beans.xml file. There are two ways to achieve this:

15.2.1 deployment configuration

You can either set this up for your deployment only by adding the following content to the

 file of your application:META-INF/jboss-all.xml

<jboss xmlns="urn:jboss:1.0">

 <weld xmlns="urn:jboss:weld:1.0" require-bean-descriptor="true"/>

</jboss>

15.2.2

15.2.3 Global configuration

Alternatively, you may configure this for all deployments in your WildFly instance by executing the following

command:

/subsystem=weld:write-attribute(name=require-bean-descriptor,value=true)

https://code.google.com/p/guava-libraries/issues/detail?id=1433
https://code.google.com/p/guava-libraries/issues/detail?id=1433

WildFly 10

JBoss Community Documentation Page of 99 532

15.3 Development mode

WildFly 10 introduces a special mode for application development which allows you to inspect and monitor

your CDI deployments. This mode is turned off by default and note that some features of the development

.mode may have negative impact on the performance and/or functionality of the application

15.3.1 deployment configuration

 You can enable it locally in your application by setting the Servlet initialization parameter web.xml

 to org.jboss.weld.development true:

<context-param>

 <param-name>org.jboss.weld.development</param-name>

 <param-value>true</param-value>

 </context-param>

15.3.2

15.3.3 Global configuration

Alternatively, you can enable it globally in Weld subsystem by setting attribute to development-mode

true:

/subsystem=weld:write-attribute(name=development-mode,value=true)

For more details and example you can check .Weld development mode

Once the development mode is enabled you can check your applications CDI information using Weld Probe

- .Weld Probe

http://docs.jboss.org/weld/reference/latest/en-US/html_single/#devmode
http://docs.jboss.org/weld/reference/latest/en-US/html_single/#probe

WildFly 10

JBoss Community Documentation Page of 100 532

15.4 portable mode

CDI 1.1 clarifies some aspects of how CDI protable extensions work. As a result, some extensions that do

not use the API properly (but were tolerated in CDI 1.0 environment) may stop working with CDI 1.1.If this is

the case of your application you will see an exception like this:

org.jboss.weld.exceptions.IllegalStateException: WELD-001332: BeanManager method getBeans() is

not available during application initialization

Fortunatelly, there is a non-portable mode available in WildFly which skips some of the API usage checks

and therefore allows the legacy extensions to work as before.

Again, there are two ways to enable the non-portable mode:

15.4.1 deployment configuration

You can either set this up for your deployment only by adding the following content to the

 file of your application:META-INF/jboss-all.xml

<jboss xmlns="urn:jboss:1.0">

 <weld xmlns="urn:jboss:weld:1.0" non-portable-mode="true" />

</jboss>

15.4.2 Global configuration

Alternatively, you may configure this for all deployments in your WildFly instance by executing the following

command:

/subsystem=weld:write-attribute(name=non-portable-mode,value=true)

 Note that new portable extensions should always use the BeanManager API properly and thus never

required the non-portable mode. The non-portable mode only exists to preserve compatibility with

legacy extensions!

http://docs.jboss.org/cdi/api/1.1/javax/enterprise/inject/spi/BeanManager.html

WildFly 10

JBoss Community Documentation Page of 101 532

16 Class Loading in WildFly
Since JBoss AS 7, Class loading is considerably different to previous versions of JBoss AS. Class loading is

based on the project. Instead of the more familiar hierarchical class loading environment,JBoss Modules

WildFly's class loading is based on modules that have to define explicit dependencies on other modules.

Deployments in WildFly are also modules, and do not have access to classes that are defined in jars in the

application server unless an explicit dependency on those classes is defined.

16.1 Deployment Module Names

Module names for top level deployments follow the format while subdeployment.myarchive.war

deployments are named like . deployment.myear.ear.mywar.war

This means that it is possible for a deployment to import classes from another deployment using the other

deployments module name, the details of how to add an explicit module dependency are explained below.

16.2 Automatic Dependencies

Even though in WildFly modules are isolated by default, as part of the deployment process some

dependencies on modules defined by the application server are set up for you automatically. For instance, if

you are deploying a Java EE application a dependency on the Java EE API's will be added to your module

automatically. Similarly if your module contains a beans.xml file a dependency on will be addedWeld

automatically, along with any supporting modules that weld needs to operate.

For a complete list of the automatic dependencies that are added, please see Implicit module dependencies

.for deployments

Automatic dependencies can be excluded through the use of .jboss-deployment-structure.xml

https://docs.jboss.org/author/display/MODULES
http://seamframework.org/Weld

WildFly 10

JBoss Community Documentation Page of 102 532

1.

2.

3.

4.

16.3 Class Loading Precedence

A common source of errors in Java applications is including API classes in a deployment that are also

provided by the container. This can result in multiple versions of the class being created and the deployment

failing to deploy properly. To prevent this in WildFly, module dependencies are added in a specific order that

should prevent this situation from occurring.

In order of highest priority to lowest priority

System Dependencies - These are dependencies that are added to the module automatically by the

container, including the Java EE api's.

User Dependencies - These are dependencies that are added through

 or through the manifest entry.jboss-deployment-structure.xml Dependencies:

Local Resource - Class files packaged up inside the deployment itself, e.g. class files from

 or of a war.WEB-INF/classes WEB-INF/lib

Inter deployment dependencies - These are dependencies on other deployments in an ear

deployment. This can include classes in an ear's lib directory, or classes defined in other ejb jars.

16.4 WAR Class Loading

The war is considered to be a single module, so classes defined in are treated the same asWEB-INF/lib

classes in . All classes packaged in the war will be loaded with the same class loader.WEB-INF/classes

16.5 EAR Class Loading

Ear deployments are multi-module deployments. This means that not all classes inside an ear will

necessarily have access to all other classes in the ear, unless explicit dependencies have been defined. By

default the directory is a single module, and every WAR or EJB jar deployment is also a separateEAR/lib

module. Sub deployments (wars and ejb-jars) always have a dependency on the parent module, which gives

them access to classes in , however they do not always have an automatic dependency on eachEAR/lib

other. This behaviour is controlled via the setting in the ee subsystemear-subdeployments-isolated

configuration:

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

</subsystem>

By default this is set to false, which allows the sub-deployments to see classes belonging to other

sub-deployments within the .ear.

For example, consider the following .ear deployment:

WildFly 10

JBoss Community Documentation Page of 103 532

myapp.ear

 |

 |--- web.war

 |

 |--- ejb1.jar

 |

 |--- ejb2.jar

If the ear-subdeployments-isolated is set to false, then the classes in web.war can access classes belonging

to ejb1.jar and ejb2.jar. Similarly, classes from ejb1.jar can access classes from ejb2.jar (and vice-versa).

The ear-subdeployments-isolated element value has no effect on the isolated classloader of the

.war file(s). i.e. irrespective of whether this flag is set to true or false, the .war within a .ear will have

a isolated classloader and other sub-deployments within that .ear will not be able to access classes

from that .war. This is as per spec.

If the ear-subdeployments-isolated is set to true then no automatic module dependencies between the

sub-deployments are set up. User must manually setup the dependency with entries, or byClass-Path

setting up explicit module dependencies.

Portability

The Java EE specification says that portable applications should not rely on sub deployments

having access to other sub deployments unless an explicit Class-Path entry is set in the

MANIFEST.MF. So portable applications should always use Class-Path entry to explicitly state their

dependencies.

It is also possible to override the ear-subdeployments-isolated element value at a per deployment

level. See the section on jboss-deployment-structure.xml below.

Dependencies: Manifest Entries

Deployments (or more correctly modules within a deployment) may set up dependencies on other modules

by adding a manifest entry. This entry consists of a comma separated list of moduleDependencies:

names that the deployment requires. The available modules can be seen under the directory in themodules

application server distribution. For example to add a dependency on javassist and apache velocity you can

add a manifest entry as follows:

Dependencies: org.javassist export,org.apache.velocity export services,org.antlr

Each dependency entry may also specify some of the following parameters by adding them after the module

name:

WildFly 10

JBoss Community Documentation Page of 104 532

 This means that the dependencies will be exported, so any module that depends on thisexport

module will also get access to the dependency.

 By default items in META-INF of a dependency are not accessible, this makes items from services

 accessible so in the modules can be loaded.META-INF/services services

 If this is specified the deployment will not fail if the module is not available.optional

 This will make the contents of the directory available (unlike , whichmeta-inf META-INF services

just makes available). In general this will not cause any deploymentMETA-INF/services

descriptors in META-INF to be processed, with the exception of . If a file isbeans.xml beans.xml

present this module will be scanned by Weld and any resulting beans will be available to the

application.

 If a jandex index has be created for the module these annotations will be merged intoannotations

the deployments annotation index. The index can be generated using the ,Jandex Jandex ant task

and must be named . Note that it is not necessary to break open the jarMETA-INF/jandex.idx

being indexed to add this to the modules class path, a better approach is to create a jar containing

just this index, and adding it as an additional resource root in the file.module.xml

Adding a dependency to all modules in an EAR

Using the parameter it is possible to add a dependency to all sub deployments in an ear. Ifexport

a module is exported from a entry in the top level of the ear (or by a jar in the Dependencies:

 directory) it will be available to all sub deployments as well.ear/lib

To generate a MANIFEST.MF entry when using maven put the following in your pom.xml:

pom.xml

<build>

 ...

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.slf4j</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

If your deployment is a jar you must use the rather than the maven-jar-plugin

.maven-war-plugin

http://download.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://github.com/jbossas/jandex
https://github.com/jbossas/jandex/blob/master/src/main/java/org/jboss/jandex/JandexAntTask.java

WildFly 10

JBoss Community Documentation Page of 105 532

16.5.1 Class Path Entries

It is also possible to add module dependencies on other modules inside the deployment using the

 manifest entry. This can be used within an ear to set up dependencies between subClass-Path

deployments, and also to allow modules access to additional jars deployed in an ear that are not sub

deployments and are not in the directory. If a jar in the directory references a jar via EAR/lib EAR/lib

 then this additional jar is merged into the parent ear's module, and is accessible to all subClass-Path:

deployments in the ear.

16.6 Global Modules

It is also possible to set up global modules, that are accessible to all deployments. This is done by modifying

the configuration file (standalone/domain.xml).

For example, to add javassist to all deployments you can use the following XML:

standalone.xml/domain.xml

<subsystem xmlns="urn:jboss:domain:ee:1.0" >

 <global-modules>

 <module name="org.javassist" slot="main" />

 </global-modules>

</subsystem>

Note that the field is optional and defaults to .slot main

16.7 JBoss Deployment Structure File

 is a JBoss specific deployment descriptor that can be used tojboss-deployment-structure.xml

control class loading in a fine grained manner. It should be placed in the top level deployment, in META-INF

(or for web deployments). It can do the following:WEB-INF

Prevent automatic dependencies from being added

Add additional dependencies

Define additional modules

Change an EAR deployments isolated class loading behaviour

Add additional resource roots to a module

An example of a complete file for an ear deployment is as follows:jboss-deployment-structure.xml

jboss-deployment-structure.xml

<jboss-deployment-structure>

 <!-- Make sub deployments isolated by default, so they cannot see each others classes without

a Class-Path entry -->

WildFly 10

JBoss Community Documentation Page of 106 532

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

 <!-- This corresponds to the top level deployment. For a war this is the war's module, for an

ear -->

 <!-- This is the top level ear module, which contains all the classes in the EAR's lib folder

-->

 <deployment>

 <!-- exclude-subsystem prevents a subsystems deployment unit processors running on a

deployment -->

 <!-- which gives basically the same effect as removing the subsystem, but it only affects

single deployment -->

 <exclude-subsystems>

 <subsystem name="resteasy" />

 </exclude-subsystems>

 <!-- Exclusions allow you to prevent the server from automatically adding some dependencies

-->

 <exclusions>

 <module name="org.javassist" />

 </exclusions>

 <!-- This allows you to define additional dependencies, it is the same as using the

Dependencies: manifest attribute -->

 <dependencies>

 <module name="deployment.javassist.proxy" />

 <module name="deployment.myjavassist" />

 <!-- Import META-INF/services for ServiceLoader impls as well -->

 <module name="myservicemodule" services="import"/>

 </dependencies>

 <!-- These add additional classes to the module. In this case it is the same as including

the jar in the EAR's lib directory -->

 <resources>

 <resource-root path="my-library.jar" />

 </resources>

 </deployment>

 <sub-deployment name="myapp.war">

 <!-- This corresponds to the module for a web deployment -->

 <!-- it can use all the same tags as the <deployment> entry above -->

 <dependencies>

 <!-- Adds a dependency on a ejb jar. This could also be done with a Class-Path entry -->

 <module name="deployment.myear.ear.myejbjar.jar" />

 </dependencies>

 <!-- Set's local resources to have the lowest priority -->

 <!-- If the same class is both in the sub deployment and in another sub deployment that -->

 <!-- is visible to the war, then the Class from the other deployment will be loaded, -->

 <!-- rather than the class actually packaged in the war. -->

 <!-- This can be used to resolve ClassCastExceptions if the same class is in multiple sub

deployments-->

 <local-last value="true" />

 </sub-deployment>

 <!-- Now we are going to define two additional modules -->

 <!-- This one is a different version of javassist that we have packaged -->

 <module name="deployment.myjavassist" >

 <resources>

 <resource-root path="javassist.jar" >

 <!-- We want to use the servers version of javassist.util.proxy.* so we filter it out-->

 <filter>

 <exclude path="javassist/util/proxy" />

 </filter>

 </resource-root>

 </resources>

WildFly 10

JBoss Community Documentation Page of 107 532

 </module>

 <!-- This is a module that re-exports the containers version of javassist.util.proxy -->

 <!-- This means that there is only one version of the Proxy classes defined -->

 <module name="deployment.javassist.proxy" >

 <dependencies>

 <module name="org.javassist" >

 <imports>

 <include path="javassist/util/proxy" />

 <exclude path="/**" />

 </imports>

 </module>

 </dependencies>

 </module>

</jboss-deployment-structure>

The xsd for jboss-deployment-structure.xml is available at

https://github.com/wildfly/wildfly/blob/master/build/src/main/resources/docs/schema/jboss-deployment-structure-1_2.xsd

16.8 Accessing JDK classes

Not all JDK classes are exposed to a deployment by default. If your deployment uses JDK classes that are

not exposed you can get access to them using jboss-deployment-structure.xml with system dependencies:

Using jboss-deployment-structure.xml to access JDK classes

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.1">

 <deployment>

 <dependencies>

 <system export="true">

 <paths>

 <path name="com/sun/corba/se/spi/legacy/connection"/>

 </paths>

 </system>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

16.9 The "jboss.api" property and application use of

modules shipped with WildFly

The WildFly distribution includes a large number of modules, a great many of which are included for use by

WildFly internals, with no testing of the appropriateness of their direct use by applications or any

commitment to continue to ship those modules in future releases if they are no longer needed by the

internals. So how can a user know whether it is advisable for their application to specify an explicit

dependency on a module WildFly ships? The "jboss.api" property specified in the module's module.xml file

can tell you:

https://github.com/wildfly/wildfly-core/blob/e737eff554ee433ca54835154fd67725fd52f63e/server/src/main/resources/schema/jboss-deployment-structure-1_2.xsd

WildFly 10

JBoss Community Documentation Page of 108 532

Example declaration of the jboss.api property

<module xmlns="urn:jboss:module:1.3" name="com.google.guava">

 <properties>

 <property name="jboss.api" value="private"/>

 </properties>

If a module does not have a property element like the above, then it's equivalent to one with a value of

"public".

Following are the meanings of the various values you may see for the jboss.api property:

Value Meaning

public May be explicitly depended upon by end user applications. Will continue to be available in

future releases within the same major series and should not have incompatible API changes

in future releases within the same minor series, and ideally not within the same major series.

private Intended for internal use only. Only tested according to internal usage. May not be safe for

end user applications to use directly.

Could change significantly or be removed in a future release without notice.

unsupported If you see this value in a module.xml in a WildFly release, please file a bug report, as it is

not applicable in WildFly. In EAP it has a meaning equivalent to "private" but that does not

mean the module is "private" in WildFly; it could very easily be "public".

preview May be explicitly depended upon by end user applications, but there are no guarantees of

continued availability in future releases or that there will not be incompatible API changes.

This is not a common classification in WildFly. It is not used in WildFly 10.

deprecated May be explicitly depended upon by end user applications. Stable and reliable but an

alternative should be sought. Will be removed in a future major release.

Note that these definitions are only applicable to WildFly. In EAP and other Red Hat products based on

WildFly the same classifiers are used, with generally similar meaning, but the precise meaning is per the

definitions on the Red Hat customer support portal.

If an application declares a direct dependency on a module marked "private", "unsupported" or "deprecated",

during deployment a WARN message will be logged. The logging will be in log categories

"org.jboss.as.dependency.private", "org.jboss.as.dependency.unsupported" and

"org.jboss.as.dependency.deprecated" respectively. These categories are not used for other purposes, so

once you feel sufficiently warned the logging can be safely suppressed by turning the log level for the

relevant category to ERROR or higher.

Other than the WARN messages noted above, declaring a direct dependency on a non-public module has

no impact on how WildFly processes the deployment.

WildFly 10

JBoss Community Documentation Page of 109 532

17 Deployment Descriptors used In WildFly
This page gives a list and a description of all the valid deployment descriptors that a WildFly deployment can

use. This document is a work in progress.

Descriptor Location Specification Description Info

jboss-deployment-structure.xml or META-INF

 of theWEB-INF

top level

deployment

 This file can be

used to control

class loading

for the

deployment

Class Loading in

WildFly

beans.xml or WEB-INF

META-INF

CDI The presence

of this

descriptor

(even if empty)

activates CDI

Weld Reference

Guide

web.xml WEB-INF Servlet Web

deployment

descriptor

jboss-web.xml WEB-INF JBoss Web

deployment

descriptor. This

can be use to

override

settings from

web.xml, and

to set

WildFly specific

options

ejb-jar.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

EJB The EJB spec

deployment

descriptor

ejb-jar.xml schema

https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS71/Class+Loading+in+AS7
http://docs.jboss.org/weld/reference/1.0.0/en-US/html_single/
http://docs.jboss.org/weld/reference/1.0.0/en-US/html_single/
http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

WildFly 10

JBoss Community Documentation Page of 110 532

jboss-ejb3.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

 The JBoss EJB

deployment

descriptor, this

can be used to

override

settings from

,ejb-jar.xml

and to set

WildFly specific

settings

application.xml of anMETA-INF

EAR

Java EE

Platform

Specification

 application.xml

schema

jboss-app.xml of anMETA-INF

EAR

 JBoss

application

deployment

descriptor, can

be used to

override

settings

application.xml,

and to set

WildFly specific

settings

persistence.xml META-INF JPA JPA descriptor

used for

defining

persistence

units

Hibernate Reference

Guide

jboss-ejb-client.xml of aWEB-INF

war, or

 of anMETA-INF

EJB jar

 Remote EJB

settings. This

file is used to

setup the EJB

client context

for a

deployment

that is used for

remote EJB

invocations

EJB invocations

from a remote

server instance

http://java.sun.com/xml/ns/javaee/application_6.xsd
http://java.sun.com/xml/ns/javaee/application_6.xsd
http://docs.jboss.org/hibernate/entitymanager/3.5/reference/en/html/configuration.html
http://docs.jboss.org/hibernate/entitymanager/3.5/reference/en/html/configuration.html
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+server+instance

WildFly 10

JBoss Community Documentation Page of 111 532

jbosscmp-jdbc.xml of anMETA-INF

EJB jar

 CMP

deployment

descriptor.

Used to map

CMP entity

beans to a

database. The

format is

largely

unchanged

from previous

versions.

ra.xml of aMETA-INF

rar archive

 Spec

deployment

descriptor for

resource

adaptor

deployments

IronJacamar

 Reference Guide

Schema

ironjacamar.xml of aMETA-INF

rar archive

 JBoss

deployment

descriptor for

resource

adaptor

deployments

IronJacamar

Reference Guide

*-jms.xml or META-INF

WEB-INF

 JMS message

destination

deployment

descriptor,

used to deploy

message

destinations

with a

deployment

*-ds.xml or META-INF

WEB-INF

 Datasource

deployment

descriptor, use

to bundle

datasources

with a

deployment

DataSource

Configuration

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://java.sun.com/xml/ns/javaee/connector_1_6.xsd
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html_single/
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration

WildFly 10

JBoss Community Documentation Page of 112 532

application-client.xml of anMETA-INF

application client

jar

Java EE6

Platform

Specification

The spec

deployment

descriptor for

application

client

deployments

application-client.xml

schema

jboss-client.xml of anMETA-INF

application client

jar

 The

WildFly specific

deployment

descriptor for

application

client

deployments

jboss-webservices.xml forMETA-INF

EJB webservice

deployments or

 forWEB-INF

POJO

webservice

deployments/EJB

webservice

endpoints

bundled in .war

 The JBossWS

4.0.x specific

deployment

descriptor for

webservice

endpoints

http://java.sun.com/xml/ns/javaee/application-client_6.xsd
http://java.sun.com/xml/ns/javaee/application-client_6.xsd

WildFly 10

JBoss Community Documentation Page of 113 532

18 Development Guidelines and Recommended

Practices
The purpose of this page is to document tips and techniques that will assist developers in creating fast,

secure, and reliable applications. It is also a place to note what you should doing when developingavoid

applications.

WildFly 10

JBoss Community Documentation Page of 114 532

19 EE Concurrency Utilities

19.1 Overview

EE Concurrency Utilities (JSR 236) is a technology introduced with Java EE 7, which adapts well known

Java SE concurrency utilities to the Java EE application environment specifics. The Java EE application

server is responsible for the creation (and shutdown) of every instance of the EE Concurrency Utilities, and

provide these to the applications, ready to use.

The EE Concurrency Utilities support the propagation of the invocation context, capturing the existent

context in the application threads to use in their own threads, the same way a logged-in user principal is

propagated when a servlet invokes an EJB asynchronously. The propagation of the invocation context

includes, by default, the class loading, JNDI and security contexts.

WildFly creates a single default instance of each EE Concurrency Utility type in all configurations within the

distribution, as mandated by the specification, but additional instances, perhaps customised to better serve a

specific usage, may be created through WildFly's EE Subsystem Configuration. To learn how to configure

EE Concurrency Utilities please refer to . Additionally, the EEEE Concurrency Utilities Configuration

subsystem configuration also includes the configuration of which instance should be considered the default

instance mandated by the Java EE specification, and such configuration is covered by Default EE Bindings

.Configuration

https://docs.jboss.org/author/display/WFLY10/EE+Concurrency+Utilities+Configuration
https://docs.jboss.org/author/display/WFLY10/Default+EE+Bindings+Configuration
https://docs.jboss.org/author/display/WFLY10/Default+EE+Bindings+Configuration

WildFly 10

JBoss Community Documentation Page of 115 532

19.2 Context Service

The Context Service () is a brand new concurrencyjavax.enterprise.concurrent.ContextService

utility, which applications may use to build contextual proxies from existing objects.

A contextual proxy is an object that sets a invocation context, captured when created, whenever is invoked,

before delegating the invocation to the original object.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Runnable contextualTask = contextService.createContextualProxy(task, Runnable.class);

 // ...

}

WildFly default configurations creates a single default instance of a Context Service, which may be retrieved

through injection:@Resource

@Resource

private ContextService contextService;

To retrieve instead a non default Context Service instance, 's attribute needs@Resource lookup

to specify the JNDI name used in the wanted instance configuration. WildFly will always inject the

default instance, no matter what's the attribute value, if the attribute is not defined.name lookup

Applications may alternatively use instead the standard JNDI API:

ContextService contextService = InitialContext.doLookup("java:comp/DefaultContextService");

As mandated by the Java EE specification, the default Context Service instance's JNDI name is

.java:comp/DefaultContextService

19.3 Managed Thread Factory

The Managed Thread Factory () allowsjavax.enterprise.concurrent.ManagedThreadFactory

Java EE applications to create Java threads. It is an extension of Java SE's Thread Factory (

) adapted to the Java EE platform specifics.java.util.concurrent.ThreadFactory

WildFly 10

JBoss Community Documentation Page of 116 532

Managed Thread Factory instances are managed by the application server, thus Java EE applications are

forbidden to invoke any lifecycle related method.

In case the Managed Thread Factory is configured to use a Context Service, the application's thread context

is captured when a thread creation is requested, and such context is propagated to the thread's Runnable

execution.

Managed Thread Factory threads implement ,javax.enterprise.concurrent.ManageableThread

which allows an application to learn about termination status.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Thread thread = managedThreadFactory.newThread(task);

 thread.start();

 // ...

}

WildFly default configurations creates a single default instance of a Managed Thread Factory, which may be

retrieved through injection:@Resource

@Resource

private ManagedThreadFactory managedThreadFactory;

To retrieve instead a non default Managed Thread Factory instance, 's @Resource lookup

attribute needs to specify the JNDI name used in the wanted instance configuration. WildFly will

always inject the default instance, no matter what's the attribute value, in case the name lookup

attribute is not defined.

Applications may alternatively use instead the standard JNDI API:

ManagedThreadFactory managedThreadFactory =

InitialContext.doLookup("java:comp/DefaultManagedThreadFactory");

As mandated by the Java EE specification, the default Managed Thread Factory instance's JNDI

name is .java:comp/DefaultManagedThreadFactory

WildFly 10

JBoss Community Documentation Page of 117 532

19.4 Managed Executor Service

The Managed Executor Service () allowsjavax.enterprise.concurrent.ManagedExecutorService

Java EE applications to submit tasks for asynchronous execution. It is an extension of Java SE's Executor

Service () adapted to the Java EE platform requirements.java.util.concurrent.ExecutorService

Managed Executor Service instances are managed by the application server, thus Java EE applications are

forbidden to invoke any lifecycle related method.

In case the Managed Executor Service is configured to use a Context Service, the application's thread

context is captured when the task is submitted, and propagated to the executor thread responsible for the

task execution.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 Future future = managedExecutorService.submit(task);

 // ...

}

WildFly default configurations creates a single default instance of a Managed Executor Service, which may

be retrieved through injection:@Resource

@Resource

private ManagedExecutorService managedExecutorService;

To retrieve instead a non default Managed Executor Service instance, 's @Resource lookup

attribute needs to specify the JNDI name used in the wanted instance configuration. WildFly will

always inject the default instance, no matter what's the attribute value, in case the name lookup

attribute is not defined.

Applications may alternatively use instead the standard JNDI API:

ManagedExecutorService managedExecutorService =

InitialContext.doLookup("java:comp/DefaultManagedExecutorService");

As mandated by the Java EE specification, the default Managed Executor Service instance's JNDI

name is .java:comp/DefaultManagedExecutorService

WildFly 10

JBoss Community Documentation Page of 118 532

19.5 Managed Scheduled Executor Service

The Managed Scheduled Executor Service (

) allows Java EEjavax.enterprise.concurrent.ManagedScheduledExecutorService

applications to schedule tasks for asynchronous execution. It is an extension of Java SE's Executor Service (

) adapted to the Java EE platformjava.util.concurrent.ScheduledExecutorService

requirements.

Managed Scheduled Executor Service instances are managed by the application server, thus Java EE

applications are forbidden to invoke any lifecycle related method.

In case the Managed Scheduled Executor Service is configured to use a Context Service, the application's

thread context is captured when the task is scheduled, and propagated to the executor thread responsible

for the task execution.

Usage example:

public void onGet(...) {

 Runnable task = ...;

 ScheduledFuture future = managedScheduledExecutorService.schedule(task, 60,

TimeUnit.SECONDS);

 // ...

}

WildFly default configurations creates a single default instance of a Managed Scheduled Executor Service,

which may be retrieved through injection:@Resource

@Resource

private ManagedScheduledExecutorService managedScheduledExecutorService;

To retrieve instead a non default Managed Scheduled Executor Service instance, 's @Resource

 attribute needs to specify the JNDI name used in the wanted instance configuration.lookup

WildFly will always inject the default instance, no matter what's the attribute value, in casename

the attribute is not defined.lookup

Applications may alternatively use instead the standard JNDI API:

ManagedScheduledExecutorService managedScheduledExecutorService =

InitialContext.doLookup("java:comp/DefaultManagedScheduledExecutorService");

WildFly 10

JBoss Community Documentation Page of 119 532

As mandated by the Java EE specification, the default Managed Scheduled Executor Service

instance's JNDI name is .java:comp/DefaultManagedScheduledExecutorService

WildFly 10

JBoss Community Documentation Page of 120 532

20 EJB 3 Reference Guide

This chapter details the extensions that are available when developing Enterprise Java Beans on WildFlytm

8.

Currently there is no support for configuring the extensions using an implementation specific descriptor file.

20.1 Resource Adapter for Message Driven Beans

Each Message Driven Bean must be connected to a resource adapter.

20.1.1 Specification of Resource Adapter using Metadata

Annotations

The annotation is used to specify the resource adapter with which the MDB shouldResourceAdapter

connect.

The of the annotation is the name of the deployment unit containing the resource adapter. Forvalue

example .jms-ra.rar

For example:

@MessageDriven(messageListenerInterface = PostmanPat.class)

@ResourceAdapter("ejb3-rar.rar")

WildFly 10

JBoss Community Documentation Page of 121 532

20.2 as Principal

Whenever a run-as role is specified for a given method invocation the default anonymous principal is used

as the caller principal. This principal can be overridden by specifying a run-as principal.

20.2.1 Specification of Run-as Principal using Metadata

Annotations

The annotation is used to specify the run-as principal to use for a given methodRunAsPrincipal

invocation.

The of the annotation specifies the name of the principal to use. The actual type of the principal isvalue

undefined and should not be relied upon.

Using this annotation without specifying a run-as role is considered an error.

For example:

@RunAs("admin")

@RunAsPrincipal("MyBean")

20.3 Security Domain

Each Enterprise Java Bean can be associated with a security domain. Only when an EJB is associatedtm

with a security domain will authentication and authorization be enforced.

20.3.1 Specification of Security Domain using Metadata

Annotations

The annotation is used to specify the security domain to associate with the EJB.SecurityDomain

The of the annotation is the name of the security domain to be used.value

For example:

@SecurityDomain("other")

20.4 Transaction Timeout

For any newly started transaction a transaction timeout can be specified in seconds.

WildFly 10

JBoss Community Documentation Page of 122 532

When a transaction timeout of is used, then the actual transaction timeout will default to the domain0

configured default.

TODO: add link to tx subsystem

Although this is only applicable when using transaction attribute or theREQUIRED REQUIRES_NEW

application server will not detect invalid setups.

New Transactions

Take care that even when transaction attribute is specified, the timeout will only beREQUIRED

applicable if a transaction is started.new

20.4.1 Specification of Transaction Timeout with Metadata

Annotations

The annotation is used to specify the transaction timeout for a given method.TransactionTimeout

The of the annotation is the timeout used in the given granularity. It must be a positive integervalue unit

or 0. Whenever 0 is specified the default domain configured timeout is used.

The specifies the granularity of the . The actual value used is converted to seconds. Specifyingunit value

a granularity lower than is considered an error, even when the computed value will result in anSECONDS

even amount of seconds.

For example:@TransactionTimeout(value = 10, unit = TimeUnit.SECONDS)

WildFly 10

JBoss Community Documentation Page of 123 532

20.4.2 Specification of Transaction Timeout in the Deployment

Descriptor

The element is used to define the transaction timeout for business, home, component, andtrans-timeout

message-listener interface methods; no-interface view methods; web service endpoint methods; and timeout

callback methods.

The element resides in the namespace and is part of the standard trans-timeout urn:trans-timeout

 element as defined in the jboss namespace.container-transaction

For the rules when a is applicable please refer to EJB 3.1 FR 13.3.7.2.1.container-transaction

Example of trans-timeout

jboss-ejb3.xml

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:tx="urn:trans-timeout"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd

urn:trans-timeout http://www.jboss.org/j2ee/schema/trans-timeout-1_0.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>BeanWithTimeoutValue</ejb-name>

 <method-name>*</method-name>

 <method-intf>Local</method-intf>

 </method>

 <tx:trans-timeout>

 <tx:timeout>10</tx:timeout>

 <tx:unit>Seconds</tx:unit>

 </tx:trans-timeout>

 </container-transaction>

 </assembly-descriptor>

</jboss:ejb-jar>

20.5 Timer service

The service is responsible to call the registered timeout methods of the different session beans.

WildFly 10

JBoss Community Documentation Page of 124 532

A persistent timer will be identified by the name of the EAR, the name of the sub-deployment JAR

and the Bean's name.

If one of those names are changed (e.g. EAR name contain a version) the timer entry became

orphaned and the timer event will not longer be fired.

20.5.1 Single event timer

The timer is will be started once at the specified time.

In case of a server restart the timeout method of a persistent timer will only be called directly if the specified

time is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will be not longer available if JBoss is restarted or

the application is redeployed.

20.5.2 Recurring timer

The timer will be started at the specified first occurrence and after that point at each time if the interval is

elapsed.

If the timer will be started during the last execution is not finished the execution will be suppressed with a

warning to avoid concurrent execution.

In case of server downtime for a persistent timer, the timeout method will be called only once if one, or more

than one, interval is elapsed.

If the timer is not persistent (since EJB3.1 see 18.2.3) it will not longer be active after the server is restarted

or the application is redeployed.

WildFly 10

JBoss Community Documentation Page of 125 532

20.5.3 Calendar timer

The timer will be started if the schedule expression match. It will be automatically deactivated and removed if

there will be no next expiration possible, i.e. If you set a specific year.

For example:

@Schedule(... dayOfMonth="1", month="1", year="2012")

// start once at 01-01-2012 00:00:00

Programmatic calendar timer
If the timer is persistent it will be fetched at server start and the missed timeouts are called concurrent.

If a persistent timer contains an end date it will be executed once nevertheless how many times the

execution was missed. Also a retry will be suppressed if the timeout method throw an Exception.

In case of such expired timer access to the given Timer object might throw a NoMoreTimeoutExcption or

NoSuchObjectException.

If the timer is non persistent it will not longer be active after the server is restarted or the application is

redeployed.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

Annotated calendar timer
If the timer is non persistent it will not activated for missed events during the server is down. In case of

server start the timer is scheduled based on the @Schedule annotation.

If the timer is persistent (default if not deactivated by annotation) all missed events are fetched at server start

and the annotated timeout method is called concurrent.

: clarify whether this should happen concurrently/blocked or even fired only once like a recurring timer!TODO

20.6 Container interceptors

20.6.1 Overview

JBoss AS versions prior to WildFly8 allowed a JBoss specific way to plug-in user application specific

interceptors on the server side so that those interceptors get invoked during an EJB invocation. Such

interceptors differed from the typical (portable) spec provided Java EE interceptors. The Java EE

interceptors are expected to run after the container has done necessary invocation processing which

involves security context propagation, transaction management and other such duties. As a result, these

Java EE interceptors come too late into the picture, if the user applications have to intercept the call before

certain container specific interceptor(s) are run.

WildFly 10

JBoss Community Documentation Page of 126 532

1.

2.

3.

4.

5.

6.

20.6.2 Typical EJB invocation call path on the server

A typical EJB invocation looks like this:

Client application

MyBeanInterface bean = lookupBean();

bean.doSomething();

The invocation on the bean.doSomething() triggers the following (only relevant portion of the flow shown

below):

WildFly specific interceptor (a.k.a container interceptor) 1

WildFly specific interceptor (a.k.a container interceptor) 2

....

WildFly specific interceptor (a.k.a container interceptor) N

User application specific Java EE interceptor(s) (if any)

Invocation on the EJB instance's method

The WildFly specific interceptors include the security context propagation, transaction management and

other container provided services. In some cases, the " " (let's call them that)container interceptors

might even decide break the invocation flow and not let the invocation proceed (for example: due to the

invoking caller not being among the allowed user roles who can invoke the method on the bean).

Previous versions of JBoss AS allowed a way to plug-in the user application specific interceptors (which

relied on JBoss AS specific libraries) into this invocation flow so that they do run some application specific

logic before the control reaches step#5 above. For example, AS5 allowed the use of JBoss AOP interceptors

to do this.

WildFly 8 doesn't have such a feature.

20.6.3 Feature request for WildFly

There were many community users who requested for this feature to be made available in WildFly. As a

result, JIRA was raised. This feature is now implemented.https://issues.jboss.org/browse/AS7-5897

https://issues.jboss.org/browse/AS7-5897

WildFly 10

JBoss Community Documentation Page of 127 532

20.6.4 Configuring container interceptors

As you can see from the JIRA , one of the goals of this featurehttps://issues.jboss.org/browse/AS7-5897

implementation was to make sure that we don't introduce any new WildFly specific library dependencies for

the container interceptors. So we decided to allow the Java EE interceptors (which are just POJO classes

with lifecycle callback annotations) to be used as container interceptors. As such you won't need any

dependency on any WildFly specific libraries. That will allow us to support this feature for a longer time in

future versions of WildFly.

Furthermore, configuring these container interceptors is similar to configuring the Java EE interceptors for

EJBs. In fact, it uses the same xsd elements that are allowed in ejb-jar.xml for 3.1 version of ejb-jar

deployment descriptor.

Container interceptors can only be configured via deployment descriptors. There's no annotation

based way to configure container interceptors. This was an intentional decision, taken to avoid

introducing any WildFly specific library dependency for the annotation.

Configuring the container interceptors can be done in jboss-ejb3.xml file, which then gets placed under the

META-INF folder of the EJB deployment, just like the ejb-jar.xml. Here's an example of how the container

interceptor(s) can be configured in jboss-ejb3.xml:

https://issues.jboss.org/browse/AS7-5897

WildFly 10

JBoss Community Documentation Page of 128 532

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:ci ="urn:container-interceptors:1.0">

 <jee:assembly-descriptor>

 <ci:container-interceptors>

 <!-- Default interceptor -->

 <jee:interceptor-binding>

 <ejb-name>*</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>

</jee:interceptor-binding>

 <!-- Class level container-interceptor -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>

</jee:interceptor-binding>

 <!-- Method specific container-interceptor -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>

<method>

 <method-name>echoWithMethodSpecificContainerInterceptor</method-name>

 </method>

 </jee:interceptor-binding>

 <!-- container interceptors in a specific order -->

 <jee:interceptor-binding>

 <ejb-name>AnotherFlowTrackingBean</ejb-name>

 <interceptor-order>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor</interceptor-class>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterceptor</interceptor-class>

<interceptor-class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</interceptor-class>

</interceptor-order>

 <method>

 <method-name>echoInSpecificOrderOfContainerInterceptors</method-name>

 </method>

 </jee:interceptor-binding>

 </ci:container-interceptors>

 </jee:assembly-descriptor>

</jboss>

The usage of urn:container-interceptors:1.0 namespace which allows the container-interceptors

elements to be configured

The container-interceptors element which contain the interceptor bindings

The interceptor bindings themselves are the same elements as what the EJB3.1 xsd allows for

standard Java EE interceptors

The interceptors can be bound either to all EJBs in the deployment (using the the * wildcard) or

individual bean level (using the specific EJB name) or at specific method level for the EJBs.

WildFly 10

JBoss Community Documentation Page of 129 532

The xsd for the urn:container-interceptors:1.0 namespace is available here

https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-interceptors_1_0.xsd

The interceptor classes themselves are simple POJOs and use the @javax.annotation.AroundInvoke

to mark the around invoke method which will get invoked during the invocation on the bean. Here's an

example of the interceptor:

Example of container interceptor

public class ClassLevelContainerInterceptor {

 @AroundInvoke

 private Object iAmAround(final InvocationContext invocationContext) throws Exception {

 return this.getClass().getName() + " " + invocationContext.proceed();

 }

}

20.6.5 Container interceptor positioning in the interceptor

chain

The container interceptors configured for a EJB are guaranteed to be run before the WildFly provided

security interceptors, transaction management interceptors and other such interceptors thus allowing the

user application specific container interceptors to setup any relevant context data before the invocation

proceeds.

20.6.6 Semantic difference between container interceptor(s)

and Java EE interceptor(s) API

Although the container interceptors are modeled to be similar to the Java EE interceptors, there are some

differences in the API semantics. One such difference is that invoking on

javax.interceptor.InvocationContext.getTarget() method is illegal for container interceptors since these

interceptors are invoked way before the EJB components are setup or instantiated.

20.6.7 Testcase

This testcase in the WildFly codebase can be used for reference for implementing container interceptors in

user applications

https://github.com/jbossas/jboss-as/blob/master/testsuite/integration/basic/src/test/java/org/jboss/as/test/integration/ejb/container/interceptor/ContainerInterceptorsTestCase.java

https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-interceptors_1_0.xsd
https://github.com/jbossas/jboss-as/blob/master/testsuite/integration/basic/src/test/java/org/jboss/as/test/integration/ejb/container/interceptor/ContainerInterceptorsTestCase.java

WildFly 10

JBoss Community Documentation Page of 130 532

20.7 EJB3 Clustered Database Timers

20.7.1 Overview

Wildfly now supports clustered database backed timers. The clustering support is provided through the

database, and as a result it is not intended to be a super high performance solution that supports thousands

of timers going off a second, however properly tuned it should provide sufficient performance for most use

cases.

Note that database timers can also be used in non-clustered mode.

Note that for this to work correctly the underlying database must support the READ_COMMITTED

or SERIALIZABLE isolation mode and the datasource must be configured accordingly

WildFly 10

JBoss Community Documentation Page of 131 532

20.7.2 Setup

In order to use clustered timers it is necessary to add a database backed timer store. This can be done from

the CLI with the following command:

/subsystem=ejb3/service=timer-service/database-data-store=my-clustered-store:add(allow-execution=true,

datasource-jndi-name='java:/MyDatasource', refresh-interval=60000, database='postgresql',

partition='mypartition')

An explanation of the parameters is below:

 - If this node is allowed to execute timers. If this is false then timers added on thisallow-execution

node will be added to the database for another node to execute. This allows you to limit timer

execution to a few nodes in a cluster, which can greatly reduce database load for large clusters.

 - The datasource to usedatasource-jndi-name

 - The refresh interval in milliseconds. This is the period of time that must elapserefresh-interval

before this node will check the database for new timers added by other nodes. A smaller value means

that timers will be picked up more quickly, however it will result in more load on the database. This is

most important to tune if you are adding timers that will expire quickly. If the node that added the timer

cannot execute it (e.g. because it has failed or because allow-execution is false), this timer may not

be executed until a node has refreshed.

 - Define the type of database that is in use. Some SQL statements are customised bydatabase

database, and this tells the data store which version of the SQL to use.

Without this attribute the server try to detected the type automatically, current supported types are

 and .postgresql, mysql, oracle, db2, hsql h2

Note that this SQL resides in the file

modules/system/layers/base/org/jboss/as/ejb3/main/timers/timer-sql.properties

And as such is it possible to modify the SQL that is executed or add support for new databases by

adding new DB specific SQL to this file (if you do add support for a new database it would be greatly

appreciated if you could contribute the SQL back to the project).

 - A node will only see timers from other nodes that have the same partition name. Thispartition

allows you to break a large cluster up into several smaller clusters, which should improve

performance. e.g. instead of having a cluster of 100 nodes, where all hundred are trying to execute

and refresh the same timers, you can create 20 clusters of 5 nodes by giving ever group of 5 a

different partition name.

Non clustered timers
Note that you can still use the database data store for non-clustered timers, in which case set the refresh

interval to zero and make sure that every node has a unique partition name (or uses a different database).

WildFly 10

JBoss Community Documentation Page of 132 532

20.7.3 Using clustered timers in a deployment

It is possible to use the data store as default for all applications by changing the default-data-store within the

ejb3 subsystem:

<timer-service thread-pool-name="timer" default-data-store="clustered-store">

 <data-stores>

 <database-data-store name="clustered-store"

datasource-jndi-name="java:jboss/datasources/ExampleDS" partition="timer"/>

 </data-stores>

 </timer-service>

Another option is to use a separate data store for specific applications, all that is required is to set the timer

data store name in jboss-ejb3.xml:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:timer="urn:timer-service:1.0"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

 http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <timer:timer>

 <ejb-name>*</ejb-name>

 <timer:persistence-store-name>my-clustered-store</timer:persistence-store-name>

 </timer:timer>

 </assembly-descriptor>

</jboss:ejb-jar>

20.7.4 Technical details

Internally every node that is allowed to execute timers schedules a timeout for every timer is knows about.

When this timeout expires then this node attempts to 'lock' the timer, by updating its state to running. The

query this executes looks like:

UPDATE JBOSS_EJB_TIMER SET TIMER_STATE=? WHERE ID=? AND TIMER_STATE<>? AND NEXT_DATE=?;

Due to the use of a transaction and READ_COMMITTED or SERIALIZABLE isolation mode only one node

will succeed in updating the row, and this is the node that the timer will run on.

WildFly 10

JBoss Community Documentation Page of 133 532

20.8 EJB3 subsystem configuration guide

This page lists the options that are available for configuring the EJB subsystem.

A complete example of the config is shown below, with a full explanation of each

WildFly 10

JBoss Community Documentation Page of 134 532

<subsystem xmlns="urn:jboss:domain:ejb3:1.2">

 <session-bean>

 <stateless>

 <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>

 </stateless>

 <stateful default-access-timeout="5000" cache-ref="simple" clustered-cache-ref="clustered"/>

 <singleton default-access-timeout="5000"/>

 </session-bean>

 <mdb>

 <resource-adapter-ref resource-adapter-name="hornetq-ra"/>

 <bean-instance-pool-ref pool-name="mdb-strict-max-pool"/>

 </mdb>

 <entity-bean>

 <bean-instance-pool-ref pool-name="entity-strict-max-pool"/>

 </entity-bean>

 <pools>

 <bean-instance-pools>

 <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 <strict-max-pool name="entity-strict-max-pool" max-pool-size="100"

instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>

 </bean-instance-pools>

 </pools>

 <caches>

 <cache name="simple" aliases="NoPassivationCache"/>

 <cache name="passivating" passivation-store-ref="file" aliases="SimpleStatefulCache"/>

 <cache name="clustered" passivation-store-ref="infinispan" aliases="StatefulTreeCache"/>

 </caches>

 <passivation-stores>

 <file-passivation-store name="file"/>

 <cluster-passivation-store name="infinispan" cache-container="ejb"/>

 </passivation-stores>

 <async thread-pool-name="default"/>

 <timer-service thread-pool-name="default">

 <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/>

 </timer-service>

 <remote connector-ref="remoting-connector" thread-pool-name="default"/>

 <thread-pools>

 <thread-pool name="default">

 <max-threads count="10"/>

 <keepalive-time time="100" unit="milliseconds"/>

 </thread-pool>

 </thread-pools>

 <iiop enable-by-default="false" use-qualified-name="false"/>

 <in-vm-remote-interface-invocation pass-by-value="false"/> <!-- Warning see notes below about

possible issues -->

</subsystem>

WildFly 10

JBoss Community Documentation Page of 135 532

20.8.1 <session-bean>

<stateless>
This element is used to configure the instance pool that is used by default for stateless session beans. If it is

not present stateless session beans are not pooled, but are instead created on demand for every invocation.

The instance pool can be overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

<stateful>
This element is used to configure Stateful Session Beans.

 This attribute specifies the default time concurrent invocations on thedefault-access-timeout

same bean instance will wait to acquire the instance lock. It can be overridden via the deployment

descriptor or via the annotation.javax.ejb.AccessTimeout

 This attribute is used to set the default cache for non-clustered beans. It can becache-ref

overridden by , or via the annotation.jboss-ejb3.xml org.jboss.ejb3.annotation.Cache

 This attribute is used to set the default cache for clustered beans.clustered-cache-ref

<singleton>
This element is used to configure Singleton Session Beans.

 This attribute specifies the default time concurrent invocations will waitdefault-access-timeout

to acquire the instance lock. It can be overridden via the deployment descriptor or via the

 annotation.javax.ejb.AccessTimeout

20.8.2 <mdb>

<resource-adaptor-ref>
This element sets the default resource adaptor for Message Driven Beans.

<bean-instance-pool-ref>
This element is used to configure the instance pool that is used by default for Message Driven Beans. If it is

not present they are not pooled, but are instead created on demand for every invocation. The instance pool

can be overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

WildFly 10

JBoss Community Documentation Page of 136 532

20.8.3 <entity-bean>

This element is used to configure the behavior for EJB2 EntityBeans.

<bean-instance-pool-ref>
This element is used to configure the instance pool that is used by default for Entity Beans. If it is not present

they are not pooled, but are instead created on demand for every invocation. The instance pool can be

overridden on a per deployment or per bean level using or the jboss-ejb3.xml

 annotation. The instance pools themselves are configured in the org.jboss.ejb3.annotation.Pool

 element.<pools>

20.8.4

20.8.5 <pools>

20.8.6 <caches>

20.8.7 <passivation-stores>

20.8.8 <async>

This element enables async EJB invocations. It is also used to specify the thread pool that these invocations

will use.

20.8.9 <timer-service>

This element enables the EJB timer service. It is also used to specify the thread pool that these invocations

will use.

<data-store>
This is used to configure the directory that persistent timer information is saved to.

WildFly 10

JBoss Community Documentation Page of 137 532

20.8.10 <remote>

This is used to enable remote EJB invocations. It specifies the remoting connector to use (as defined in the

remoting subsystem configuration), and the thread pool to use for remote invocations.

20.8.11 <thread-pools>

This is used to configure the thread pools used by async, timer and remote invocations.

20.8.12 <iiop>

This is used to enable IIOP (i.e. CORBA) invocation of EJB's. If this element is present then the JacORB

subsystem must also be installed. It supports the following two attributes:

 If this is true then all EJB's with EJB2.x home interfaces are exposed via IIOP,enable-by-default

otherwise they must be explicitly enabled via .jboss-ejb3.xml

 If this is true then EJB's are bound to the corba naming context with ause-qualified-name

binding name that contains the application and modules name of the deployment (e.g.

myear/myejbjar/MyBean), if this is false the default binding name is simply the bean name.

WildFly 10

JBoss Community Documentation Page of 138 532

20.8.13 <in-vm-remote-interface-invocation>

By default remote interface invocations use pass by value, as required by the EJB spec. This element can

use used to enable pass by reference, which can give you a performance boost. Note WildFly will do a

shallow check to see if the caller and the EJB have access to the same class definitions, which means if you

are passing something such as a List<MyObject>, WildFly only checks the List to see if it is the same class

definition on the call & EJB side. If the top level class definition is the same, JBoss will make the call using

pass by reference, which means that if MyObject or any objects beneath it are loaded from different

classloaders, you would get a ClassCastException. If the top level class definitions are loaded from different

classloaders, JBoss will use pass by value. JBoss cannot do a deep check of all of the classes to ensure no

ClassCastExceptions will occur because doing a deep check would eliminate any performance boost you

would have received by using call by reference. It is recommended that you configure pass by reference

only on callers that you are sure will use the same class definitions and not globally. This can be done via a

configuration in the jboss-ejb-client.xml as shown below.

To configure a caller/client use pass by reference, you configure your top level deployment with a

META-INF/jboss-ejb-client.xml containing:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers local-receiver-pass-by-value="false"/>

 </client-context>

</jboss-ejb-client>

WildFly 10

JBoss Community Documentation Page of 139 532

20.9 EJB IIOP Guide

20.9.1 Enabling IIOP

To enable IIOP you must have the JacORB subsystem installed, and the element present in the<iiop/>

ejb3 subsystem configuration. The configuration that comes with the distributionstandalone-full.xml

has both of these enabled.

The element takes two attributes that control the default behaviour of the server, for full details see<iiop/>

.EJB3 subsystem configuration guide

20.9.2 Enabling JTS

To enable JTS simply add a element to the transactions subsystem configuration.<jts/>

It is also necessary to enable the JacORB transactions interceptor as shown below.

<subsystem xmlns="urn:jboss:domain:jacorb:1.1">

 <orb>

 <initializers transactions="on"/>

 </orb>

</subsystem>

20.9.3 Dynamic Stub's

Downloading stubs directly from the server is no longer supported. If you do not wish to pre-generate your

stub classes JDK Dynamic stubs can be used instead. The enable JDK dynamic stubs simply set the

 system property to .com.sun.CORBA.ORBUseDynamicStub true

20.9.4 Configuring EJB IIOP settings via jboss-ejb3.xml

TODO

20.10 jboss-ejb3.xml Reference

 is a custom deployment descriptor that can be placed in either ejb-jar or war archives. Ifjboss-ejb3.xml

it is placed in an ejb-jar then it must be placed in the folder, in a web archive it must be placed inMETA-INF

the folder.WEB-INF

The contents of are merged with the contents of , with the jboss-ejb3.xml ejb-jar.xml

 items taking precedence.jboss-ejb3.xml

https://docs.jboss.org/author/display/AS71/EJB3+subsystem+configuration+guide

WildFly 10

JBoss Community Documentation Page of 140 532

20.10.1 Example File

A simple example is shown below:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <enterprise-beans>

 <message-driven>

 <ejb-name>ReplyingMDB</ejb-name>

<ejb-class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingMDB</ejb-class>

 <activation-config>

 <activation-config-property>

<activation-config-property-name>destination</activation-config-property-name>

 <activation-config-property-value>java:jboss/mdbtest/messageDestinationQueue

 </activation-config-property-value>

 </activation-config-property>

 </activation-config>

 </message-driven>

 </enterprise-beans>

 <assembly-descriptor>

 <s:security>

 <ejb-name>DDMyDomainSFSB</ejb-name>

 <s:security-domain>myDomain</s:security-domain>

 <s:run-as-principal>myPrincipal</s:run-as-principal>

 </s:security>

 </assembly-descriptor>

</jboss:ejb-jar>

As you can see the format is largely similar to , in fact they even use the same namespaces,ejb-jar.xml

however adds some additional namespaces of its own to allow for configuring non-specjboss-ejb3.xml

info. The format of the standard is well documented elsewhere,http://java.sun.com/xml/ns/javaee

this document will cover the non-standard namespaces.

The root namespace http://www.jboss.com/xml/ns/javaee

Assembly descriptor namespaces
The following namespaces can all be used in the element. They can be used to<assembly-descriptor>

apply their configuration to a single bean, or to all beans in the deployment by using as the .* ejb-name

WildFly 10

JBoss Community Documentation Page of 141 532

The security namespace urn:security
This allows you to set the security domain and the run-as principal for an EJB.

<s:security>

 <ejb-name>*</ejb-name>

 <s:security-domain>myDomain</s:security-domain>

 <s:run-as-principal>myPrincipal</s:run-as-principal>

</s:security>

The resource adaptor namespace urn:resource-adapter-binding
This allows you to set the resource adaptor for an MDB.

<r:resource-adapter-binding>

 <ejb-name>*</ejb-name>

 <r:resource-adapter-name>myResourceAdaptor</r:resource-adapter-name>

</r:resource-adapter-binding>

The IIOP namespace urn:iiop
The IIOP namespace is where IIOP settings are configured. As there are quite a large number of options

these are covered in the .IIOP guide

The pool namespace urn:ejb-pool:1.0
This allows you to select the pool that is used by the SLSB or MDB. Pools are defined in the server

configuration (i.e. or)standalone.xml domain.xml

<p:pool>

 <ejb-name>*</ejb-name>

 <p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>

</p:pool>

The cache namespace urn:ejb-cache:1.0
This allows you to select the cache that is used by the SFSB. Caches are defined in the server configuration

(i.e. or)standalone.xml domain.xml

<c:cache>

 <ejb-name>*</ejb-name>

 <c:cache-ref>my-cache</c:cache-ref>

</c:cache>

The clustering namespace urn:clustering:1.0
This namespace is deprecated and as of WildFly 8 its use has no effect. The clustering behavior of EJBs is

determined by the profile in use on the server.

https://docs.jboss.org/author/display/AS71/EJB+IIOP+Guide

WildFly 10

JBoss Community Documentation Page of 142 532

20.11 Message Driven Beans Controlled Delivery

There are three mechanisms in Wildfly that allow controlling if a specific MDB is actively receiving or not

messages:

delivery active

delivery groups

clustered singleton

We will see each one of them in the following sections.

20.11.1 Delivery Active

Delivery active is simply an attribute associated with the MDB that indicates if the MDB is receiving

messages or not. If an MDB is not currently receiving messages, the messages will be saved in the queue or

topic for later, according to the rules of the topic/queue.

You can configure delivery active using xml or annotations, and you can change its value after deployment

using the cli.

jboss-ejb3.xml:

In the jboss-ejb3 xml file, configure the value of active as false to mark that the MDB will not be receiving

messages as soon as it is deployed:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd" version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>HelloWorldQueueMDB</ejb-name>

 <d:active>false</d:active>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

You can use a wildcard “*” in the place of ejb-name if you want to apply that active value to all MDBs in your

application.

annotation

Alternatively, you can use the org.jboss.ejb3.annotation.DeliveryActive annotation, as in the example below:

WildFly 10

JBoss Community Documentation Page of 143 532

@MessageDriven(name = "HelloWorldMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@DeliveryActive(false)

public class HelloWorldMDB implements MessageListener {

 public void onMessage(Message rcvMessage) {

 // ...

 }

}

Start-delivery and Stop-Delivery
These management operations dynamically change the value of the active attribute, enabling or disabling

delivery for the MDB. at runtime To use them, connect to the Wildfly instance you want to manage, then

enter the path of the MDB you want to manage delivery for:

[standalone@localhost:9990 /] cd

deployment=jboss-helloworld-mdb.war/subsystem=ejb3/message-driven-bean=HelloWorldMDB

[standalone@localhost:9990 message-driven-bean=HelloWorldMDB] :stop-delivery

{"outcome" => "success"}

[standalone@localhost:9990 message-driven-bean=HelloWorldMDB] :start-delivery

{"outcome" => "success"}

20.11.2 Delivery Groups

Delivery groups provide a straightforward way to manage delivery for a group of MDBs. Every MDB

belonging to a delivery group has delivery active if and only if that group is active, and has delivery inactive

whenever the group is not active.

You can add a delivery group to the ejb3 subsystem using either the subsystem xml or cli. Next, we will see

examples of each case. In those examples we will add only a single delivery group, but keep in mind that

you can add as many delivery groups as you need to a Wildfly instance.

 the ejb3 subsystem xml (located in your configuration xml, such as standalone.xml)

WildFly 10

JBoss Community Documentation Page of 144 532

<subsystem xmlns="urn:jboss:domain:ejb3:4.0">

 ...

 <mdb>

 ...

 <delivery-groups>

 <delivery-group name="mdb-group-name" active="true"/>

 </delivery-groups>

 </mdb>

 ...

</subsystem>

The example above adds a delivery group named “mdb-group-name” (you can use whatever name suits you

best as the group name). The “true” active attribute indicates that all MDBs belonging to that group will have

delivery active right after deployment. If you mark that attribute as false, you are indicating that every MDB

belonging to the group will not start receiving messages after deployment, a condition that will remain until

the group becomes active.

jboss-cli

You can add a mdb-delivery-group using the add command as below:

[standalone@localhost:9990 /] ./subsystem=ejb3/mdb-delivery-group=mdb-group-name:add

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 145 532

Reading and Writing the Delivery State of a Delivery Group
You can check whether delivery is active for a group by reading the active attribute, which defaults to true:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => true }

To make the the delivery-group inactive, just write the active attribute with a false value:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:write-attribute(name=active,value=false)

{"outcome" => "success"}

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => false }

To make it active again, write the attribute with a true value:

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:write-attribute(name=active,value=true)

{"outcome" => "success"}

[standalone@localhost:9990 /]

./subsystem=ejb3/mdb-delivery-group=mdb-group-name:read-attribute(name=active)

{ "outcome" => "success", "result" => true }

Using Delivery Groups
To mark that an MDB belongs to a delivery-group, declare so in the jboss-ejb3.xml file:

WildFly 10

JBoss Community Documentation Page of 146 532

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>HelloWorldMDB</ejb-name>

 <d:group>mdb-delivery-group</d:group>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

You can also use a wildcard to mark that all MDBs in your application belong to a delivery-group. In the

following example, we add all MDBs in the application to group1, except for HelloWorldMDB, that is added to

group2:

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:d="urn:delivery-active:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <d:delivery>

 <ejb-name>*</ejb-name>

 <d:group>group1</d:group>

 </d:delivery>

 <d:delivery>

 <ejb-name>HelloWorldMDB</ejb-name>

 <d:group>group2</d:group>

 </d:delivery>

 </assembly-descriptor>

</jboss:ejb-jar>

Another option is to use org.jboss.ejb3.annotation.DeliveryGroup annotation on each MDB class belonging

to a group:

WildFly 10

JBoss Community Documentation Page of 147 532

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@DeliveryGroup(“group2”)

public class HelloWorldMDB implements MessageListener {

 ...

}

A MDB cannot belong to more than one delivery group. Also, all the delivery-groups used by an application

must be installed in the Wildfly server upon deployment, or the deployment will fail with a message stating

that the delivery-group is missing.

20.11.3 Clustered Singleton Delivery

Delivery can be marked as singleton in a clustered environment. In this case, only one node in the cluster

will have delivery active for that MDB, whereas in all other nodes, delivery will be inactive. This option can be

used for applications that are deployed in all nodes of the cluster. Such applications will be active in all

nodes of the cluster, except for the MDBs that are marked as clustered singleton. For those MDBs, only one

cluster node will be processing their messages. In case that node stops, another node will have delivery

activated, guaranteeing that there is always one node processing the messages. This node is what we call

the MDB clustered singleton master node.

Notice that applications using clustered singleton delivery can only be deployed in clustered Wildfly servers

(i.e., servers that are using the ha configuration).

To mark delivery as clustered singleton, you can use the jboss-ejb3.xml or the @ClusteredSingleton

annotation:

 jboss-ejb3.xml:

WildFly 10

JBoss Community Documentation Page of 148 532

<?xml version="1.1" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:c="urn:clustering:1.1"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <c:clustering>

 <ejb-name>HelloWorldMDB</ejb-name>

 <c:clustered-singleton>true</c:clustered-singleton>

 </c:clustering>

 </assembly-descriptor>

</jboss:ejb-jar>

As in the previous jboss-ejb3.xml examples, a wildcard can be used in the place of the ejb-name to indicate

that all MDBs in the application are singleton clustered.

 annotation

You can use the org.jboss.ejb3.annotation.ClusteredSingleton annotation to mark an MDB as clustered

singleton:

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

 @ActivationConfigProperty(propertyName = "destination", propertyValue =

"queue/HELLOWORLDMDBQueue"),

 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-acknowledge")

})

@ClusteredSingleton

public class HelloWorldMDB implements MessageListener { ... }

WildFly 10

JBoss Community Documentation Page of 149 532

20.11.4 Using Multiple MDB Delivery Control Mechanisms

The previous d y control mechanisms can be used together in a single MDB. In this case, they work aseliver

a set of restrictions for delivery to be active in a MDB.

For example, if an MDB belongs to a delivery group and is also a clustered singleton MDB, the delivery will

be active for that MDB only if the delivery group is active in the cluster node that was elected as the

singleton master.

Also, if you use jboss-cli to stopDelivery on a MDB that belongs to a delivery group, the MDB will stop

receiving messages in case that group was active. If that group was not active, the MDB will continue in the

same, inactive state. But, once that group is active, the MDB will not receive messages, unless a

startDelivery operation is executed to revert the previously exectued stopDelivery operation.

Invoking stopDelivery on an MDB that is marked as clustered singleton will work in a similar way: no visible

effect if the current node is not the clustered singleton master; but it will stop delivery of messages for that

MDB if the current node is the clustered singleton master. If the current node is not the master, but

eventually becomes so, the delivery of messages will not be active for that MDB, unless a startDelivery

operation is invoked.

In other words, when more than one delivery control mechanism is used in conjunction, they act as a set of

restrictions that need all to be true in order for the MDB to receive messages:

: the delivery group needs to be active and the delivery needs to bedelivery-group + stop-delivery

started in order for that MDB to start receiving messages;

 : the delivery group needs to be active and the current nodedelivery-group + clustered singleton

needs to be the clustered singleton master node in order for that MDB to start receiving messages;

: as above, delivery-group active, currentdelivery-group + clustered singleton + stop-delivery

node equals the clustered singleton master node, plus, start-delivery needs to be invoked on that

MDB, only with these three factors being true the MDB will start receiving messages.

20.12 Securing EJBs

20.12.1 Overview

The Java EE spec specifies certain annotations (like @RolesAllowed, @PermitAll, @DenyAll) which can be

used on EJB implementation classes and/or the business method implementations of the beans. Like with all

other configurations, these security related configurations can also be done via the deployment descriptor

(ejb-jar.xml). We be going into the details of Java EE specific annotations/deployment descriptorwon't

configurations in this chapter but instead will be looking at the vendor specific extensions to the security

configurations.

WildFly 10

JBoss Community Documentation Page of 150 532

20.12.2 Security Domain

The Java EE spec doesn't mandate a specific way to configure security domain for a bean. It leaves it to the

vendor implementations to allow such configurations, the way they wish. In WildFly 8, the use of

 annotation allows the developer to configure the@org.jboss.ejb3.annotation.SecurityDomain

security domain for a bean. Here's an example:

import org.jboss.ejb3.annotation.SecurityDomain;

import javax.ejb.Stateless;

@Stateless

@SecurityDomain("other")

public class MyBean ...

{

....

The use of @SecurityDomain annotation lets the developer to point the container to the name of the security

domain which is configured in the EJB3 subsystem in the standalone/domain configuration. The

configuration of the security domain in the EJB3 subsystem is out of the scope of this chapter.

An alternate way of configuring a security domain, instead of using annotation, is to use jboss-ejb3.xml

deployment descriptor. Here's an example of how the configuration will look like:

<?xml version="1.0" encoding="UTF-8"?>

<jboss:jboss

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 version="3.1" impl-version="2.0">

 <assembly-descriptor>

 <s:security>

 <!-- Even wildcard * is supported -->

 <ejb-name>MyBean</ejb-name>

 <!-- Name of the security domain which is configured in the EJB3 subsystem -->

 <s:security-domain>other</s:security-domain>

 </s:security>

 </assembly-descriptor>

</jboss:jboss>

As you can see we use the security-domain element to configure the security domain.

WildFly 10

JBoss Community Documentation Page of 151 532

The jboss-ejb3.xml is expected to be placed in the .jar/META-INF folder of a .jar deployment or

.war/WEB-INF folder of a .war deployment.

20.12.3 Absence of security domain configuration but

presence of other security metadata

Let's consider the following example bean:

@Stateless

public class FooBean {

 @RolesAllowed("bar")

 public void doSomething() {

 ..

 }

...

}

As you can see the method is configured to be accessible for users with role "bar". However,doSomething

the bean isn't configured for any specific security domain. Prior to WildFly 8, the absence of an explicitly

configured security domain on the bean would leave the bean unsecured, which meant that even if the

 method was configured with anyone even without the "bar" roledoSomething @RolesAllowed("bar")

could invoke on the bean.

In WildFly 8, the presence of any security metadata (like @RolesAllowed, @PermitAll, @DenyAll, @RunAs,

@RunAsPrincipal) on the bean or any business method of the bean, makes the bean secure, even in the

absence of an explicitly configured security domain. In such cases, the security domain name is default to

"other". Users can explicitly configure an security domain for the bean if they want to using either the

annotation or deployment descriptor approach explained earlier.

20.12.4 Access to methods without explicit security metadata,

on a secured bean

Consider this example bean:

WildFly 10

JBoss Community Documentation Page of 152 532

@Stateless

public class FooBean {

 @RolesAllowed("bar")

 public void doSomething() {

 ..

 }

 public void helloWorld() {

 ...

 }

}

As you can see the method is marked for access for only users with role "bar". That enablesdoSomething

security on the bean (with security domain defaulted to "other"). However, notice that the method

 doesn't have any specific security configurations.helloWorld

In WildFly 8, such methods which have no explicit security configurations, in a secured bean, will be treated

similar to a method with configuration. What that means is, no one is allowed access to the @DenyAll

 method. This behaviour can be controlled via the jboss-ejb3.xml deployment descriptor at ahelloWorld

per bean level or a per deployment level as follows:

<?xml version="1.0" encoding="UTF-8"?>

<jboss:jboss

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:s="urn:security:1.1"

 version="3.1" impl-version="2.0">

 <assembly-descriptor>

 <s:security>

 <!-- Even wildcard * is supported where * is equivalent to all EJBs in the deployment -->

 <ejb-name>FooBean</ejb-name>

<s:missing-method-permissions-deny-access>false</s:missing-method-permissions-deny-access>

 </s:security>

 </assembly-descriptor>

</jboss:jboss>

Notice the use of element. The value for this element<missing-method-permissions-deny-access>

can either be true or false. If this element isn't configured then it is equivalent to a value of true i.e. no one is

allowed access to methods, which have no explicit security configurations, on secured beans. Setting this to

false allows access to such methods for all users i.e. the behaviour will be switched to be similar to

.@PermitAll

This behaviour can also be configured at the EJB3 subsystem level so that it applies to all EJB3

deployments on the server, as follows:

WildFly 10

JBoss Community Documentation Page of 153 532

<subsystem xmlns="urn:jboss:domain:ejb3:1.4">

...

 <default-missing-method-permissions-deny-access value="true"/>

...

</subsystem>

Again, the element accepts either a true ordefault-missing-method-permissions-deny-access

false value. A value of true makes the behaviour similar to and a value of false makes it behave@DenyAll

like @PermitAll

WildFly 10

JBoss Community Documentation Page of 154 532

21 EJB invocations from a remote client using

JNDI
This chapter explains how to invoke EJBs from a remote client by using the JNDI API to first lookup the bean

proxy and then invoke on that proxy.

After you have read this article, do remember to take a look at Remote EJB invocations via JNDI -

EJB client API or remote-naming project

Before getting into the details, we would like the users to know that we have introduced a new EJB client

API, which is a WildFly-specific API and allows invocation on remote EJBs. This client API isn't based on

JNDI. So remote clients need not rely on JNDI API to invoke on EJBs. A separate document covering the

EJB remote client API will be made available. For now, you can refer to the javadocs of the EJB client

project at . In this document, we'll just concentrate on the traditional JNDIhttp://docs.jboss.org/ejbclient/

based invocation on EJBs. So let's get started:

21.1 Deploying your EJBs on the server side:

Users who already have EJBs deployed on the server side can just skip to the next section.

As a first step, you'll have to deploy your application containing the EJBs on the Wildfly server. If you want

those EJBs to be remotely invocable, then you'll have to expose at least one remote view for that bean. In

this example, let's consider a simple Calculator stateless bean which exposes a RemoteCalculator remote

business interface. We'll also have a simple stateful CounterBean which exposes a RemoteCounter remote

business interface. Here's the code:

package org.jboss.as.quickstarts.ejb.remote.stateless;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCalculator {

 int add(int a, int b);

 int subtract(int a, int b);

}

https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
https://docs.jboss.org/author/display/WFLY8/Remote+EJB+invocations+via+JNDI+-+EJB+client+API+or+remote-naming+project
http://docs.jboss.org/ejbclient/

WildFly 10

JBoss Community Documentation Page of 155 532

package org.jboss.as.quickstarts.ejb.remote.stateless;

import javax.ejb.Remote;

import javax.ejb.Stateless;

/**

 * @author Jaikiran Pai

 */

@Stateless

@Remote(RemoteCalculator.class)

public class CalculatorBean implements RemoteCalculator {

 @Override

 public int add(int a, int b) {

 return a + b;

 }

 @Override

 public int subtract(int a, int b) {

 return a - b;

 }

}

package org.jboss.as.quickstarts.ejb.remote.stateful;

/**

 * @author Jaikiran Pai

 */

public interface RemoteCounter {

 void increment();

 void decrement();

 int getCount();

}

WildFly 10

JBoss Community Documentation Page of 156 532

package org.jboss.as.quickstarts.ejb.remote.stateful;

import javax.ejb.Remote;

import javax.ejb.Stateful;

/**

 * @author Jaikiran Pai

 */

@Stateful

@Remote(RemoteCounter.class)

public class CounterBean implements RemoteCounter {

 private int count = 0;

 @Override

 public void increment() {

 this.count++;

 }

 @Override

 public void decrement() {

 this.count--;

 }

 @Override

 public int getCount() {

 return this.count;

 }

}

Let's package this in a jar (how you package it in a jar is out of scope of this chapter) named

"jboss-as-ejb-remote-app.jar" and deploy it to the server. Make sure that your deployment has been

processed successfully and there aren't any errors.

21.2 Writing a remote client application for accessing

and invoking the EJBs deployed on the server

The next step is to write an application which will invoke the EJBs that you deployed on the server. In

WildFly, you can either choose to use the WildFly specific EJB client API to do the invocation or use JNDI to

lookup a proxy for your bean and invoke on that returned proxy. In this chapter we will concentrate on the

JNDI lookup and invocation and will leave the EJB client API for a separate chapter.

So let's take a look at what the client code looks like for looking up the JNDI proxy and invoking on it. Here's

the entire client code which invokes on a stateless bean:

package org.jboss.as.quickstarts.ejb.remote.client;

import javax.naming.Context;

import javax.naming.InitialContext;

WildFly 10

JBoss Community Documentation Page of 157 532

import javax.naming.NamingException;

import java.security.Security;

import java.util.Hashtable;

import org.jboss.as.quickstarts.ejb.remote.stateful.CounterBean;

import org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter;

import org.jboss.as.quickstarts.ejb.remote.stateless.CalculatorBean;

import org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator;

import org.jboss.sasl.JBossSaslProvider;

/**

 * A sample program which acts a remote client for a EJB deployed on Wildfly 10 server.

 * This program shows how to lookup stateful and stateless beans via JNDI and then invoke on

them

 *

 * @author Jaikiran Pai

 */

public class RemoteEJBClient {

 public static void main(String[] args) throws Exception {

 // Invoke a stateless bean

 invokeStatelessBean();

 // Invoke a stateful bean

 invokeStatefulBean();

 }

 /**

 * Looks up a stateless bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatelessBean() throws NamingException {

 // Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

 System.out.println("Remote calculator returned sum = " + sum);

 if (sum != a + b) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect sum "

+ sum + " ,expected sum was " + (a + b));

 }

 // try one more invocation, this time for subtraction

 int num1 = 3434;

 int num2 = 2332;

 System.out.println("Subtracting " + num2 + " from " + num1 + " via the remote stateless

calculator deployed on the server");

 int difference = statelessRemoteCalculator.subtract(num1, num2);

 System.out.println("Remote calculator returned difference = " + difference);

 if (difference != num1 - num2) {

 throw new RuntimeException("Remote stateless calculator returned an incorrect

difference " + difference + " ,expected difference was " + (num1 - num2));

 }

WildFly 10

JBoss Community Documentation Page of 158 532

 }

 /**

 * Looks up a stateful bean and invokes on it

 *

 * @throws NamingException

 */

 private static void invokeStatefulBean() throws NamingException {

 // Let's lookup the remote stateful counter

 final RemoteCounter statefulRemoteCounter = lookupRemoteStatefulCounter();

 System.out.println("Obtained a remote stateful counter for invocation");

 // invoke on the remote counter bean

 final int NUM_TIMES = 20;

 System.out.println("Counter will now be incremented " + NUM_TIMES + " times");

 for (int i = 0; i < NUM_TIMES; i++) {

 System.out.println("Incrementing counter");

 statefulRemoteCounter.increment();

 System.out.println("Count after increment is " + statefulRemoteCounter.getCount());

 }

 // now decrementing

 System.out.println("Counter will now be decremented " + NUM_TIMES + " times");

 for (int i = NUM_TIMES; i > 0; i--) {

 System.out.println("Decrementing counter");

 statefulRemoteCounter.decrement();

 System.out.println("Count after decrement is " + statefulRemoteCounter.getCount());

 }

 }

 /**

 * Looks up and returns the proxy to remote stateless calculator bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCalculator lookupRemoteStatelessCalculator() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

WildFly 10

JBoss Community Documentation Page of 159 532

class

 final String beanName = CalculatorBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCalculator.class.getName();

 // let's do the lookup

 return (RemoteCalculator) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName);

 }

 /**

 * Looks up and returns the proxy to remote stateful counter bean

 *

 * @return

 * @throws NamingException

 */

 private static RemoteCounter lookupRemoteStatefulCounter() throws NamingException {

 final Hashtable jndiProperties = new Hashtable();

 jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 final Context context = new InitialContext(jndiProperties);

 // The app name is the application name of the deployed EJBs. This is typically the ear

name

 // without the .ear suffix. However, the application name could be overridden in the

application.xml of the

 // EJB deployment on the server.

 // Since we haven't deployed the application as a .ear, the app name for us will be an

empty string

 final String appName = "";

 // This is the module name of the deployed EJBs on the server. This is typically the jar

name of the

 // EJB deployment, without the .jar suffix, but can be overridden via the ejb-jar.xml

 // In this example, we have deployed the EJBs in a jboss-as-ejb-remote-app.jar, so the

module name is

 // jboss-as-ejb-remote-app

 final String moduleName = "jboss-as-ejb-remote-app";

 // AS7 allows each deployment to have an (optional) distinct name. We haven't specified

a distinct name for

 // our EJB deployment, so this is an empty string

 final String distinctName = "";

 // The EJB name which by default is the simple class name of the bean implementation

class

 final String beanName = CounterBean.class.getSimpleName();

 // the remote view fully qualified class name

 final String viewClassName = RemoteCounter.class.getName();

 // let's do the lookup (notice the ?stateful string as the last part of the jndi name

for stateful bean lookup)

 return (RemoteCounter) context.lookup("ejb:" + appName + "/" + moduleName + "/" +

distinctName + "/" + beanName + "!" + viewClassName + "?stateful");

 }

}

The entire server side and client side code is hosted at the github repo here ejb-remote

https://github.com/wildfly/quickstart/tree/master/ejb-remote

WildFly 10

JBoss Community Documentation Page of 160 532

The code has some comments which will help you understand each of those lines. But we'll explain here in

more detail what the code does. As a first step in the client code, we'll do a lookup of the EJB using a JNDI

name. In AS7, for remote access to EJBs, you use the ejb: namespace with the following syntax:

For stateless beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>

For stateful beans:

ejb:<app-name>/<module-name>/<distinct-name>/<bean-name>!<fully-qualified-classname-of-the-remote-interface>?stateful

The ejb: namespace identifies it as a EJB lookup and is a constant (i.e. doesn't change) for doing EJB

lookups. The rest of the parts in the jndi name are as follows:

 : This is the name of the .ear (without the .ear suffix) that you have deployed on the server andapp-name

contains your EJBs.

Java EE 6 allows you to override the application name, to a name of your choice by setting it in the

application.xml. If the deployment uses uses such an override then the app-name used in the JNDI

name should match that name.

EJBs can also be deployed in a .war or a plain .jar (like we did in step 1). In such cases where the

deployment isn't an .ear file, then the app-name must be an empty string, while doing the lookup.

 : This is the name of the .jar (without the .jar suffix) that you have deployed on the server andmodule-name

the contains your EJBs. If the EJBs are deployed in a .war then the module name is the .war name (without

the .war suffix).

Java EE 6 allows you to override the module name, by setting it in the ejb-jar.xml/web.xml of your

deployment. If the deployment uses such an override then the module-name used in the JNDI name

should match that name.

Module name part cannot be an empty string in the JNDI name

 : This is a WildFly-specific name which can be optionally assigned to the deployments thatdistinct-name

are deployed on the server. More about the purpose and usage of this will be explained in a separate

chapter. If a deployment doesn't use distinct-name then, use an empty string in the JNDI name, for

distinct-name

 : This is the name of the bean for which you are doing the lookup. The bean name is typicallybean-name

the unqualified classname of the bean implementation class, but can be overriden through either ejb-jar.xml

or via annotations. The bean name part cannot be an empty string in the JNDI name.

 : This is the fully qualified class name of the interfacefully-qualified-classname-of-the-remote-interface

for which you are doing the lookup. The interface should be one of the remote interfaces exposed by the

bean on the server. The fully qualified class name part cannot be an empty string in the JNDI name.

WildFly 10

JBoss Community Documentation Page of 161 532

For stateful beans, the JNDI name expects an additional "?stateful" to be appended after the fully qualified

interface name part. This is because for stateful beans, a new session gets created on JNDI lookup and the

EJB client API implementation doesn't contact the server during the JNDI lookup to know what kind of a

bean the JNDI name represents (we'll come to this in a while). So the JNDI name itself is expected to

indicate that the client is looking up a stateful bean, so that an appropriate session can be created.

Now that we know the syntax, let's see our code and check what JNDI name it uses. Since our stateless

EJB named CalculatorBean is deployed in a jboss-as-ejb-remote-app.jar (without any ear) and since we are

looking up the org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator remote interface, our JNDI

name will be:

ejb:/jboss-as-ejb-remote-app//CalculatorBean!org.jboss.as.quickstarts.ejb.remote.stateless.RemoteCalculator

That's what the lookupRemoteStatelessCalculator() method in the above client code uses.

For the stateful EJB named CounterBean which is deployed in hte same jboss-as-ejb-remote-app.jar and

which exposes the org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter, the JNDI name will be:

ejb:/jboss-as-ejb-remote-app//CounterBean!org.jboss.as.quickstarts.ejb.remote.stateful.RemoteCounter?stateful

That's what the lookupRemoteStatefulCounter() method in the above client code uses.

Now that we know of the JNDI name, let's take a look at the following piece of code in the

lookupRemoteStatelessCalculator():

final Hashtable jndiProperties = new Hashtable();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

Here we are creating a JNDI InitialContext object by passing it some JNDI properties. The

Context.URL_PKG_PREFIXES is set to org.jboss.ejb.client.naming. This is necessary because we should

let the JNDI API know what handles the ejb: namespace that we use in our JNDI names for lookup. The

"org.jboss.ejb.client.naming" has a URLContextFactory implementation which will be used by the JNDI APIs

to parse and return an object for ejb: namespace lookups. You can either pass these properties to the

constructor of the InitialContext class or have a jndi.properites file in the classpath of the client application,

which (atleast) contains the following property:

java.naming.factory.url.pkgs=org.jboss.ejb.client.naming

So at this point, we have setup the InitialContext and also have the JNDI name ready to do the lookup. You

can now do the lookup and the appropriate proxy which will be castable to the remote interface that you

used as the fully qualified class name in the JNDI name, will be returned. Some of you might be wondering,

how the JNDI implementation knew which server address to look, for your deployed EJBs. The answer is in

AS7, the proxies returned via JNDI name lookup for ejb: namespace do not connect to the server unless an

invocation on those proxies is done.

WildFly 10

JBoss Community Documentation Page of 162 532

Now let's get to the point where we invoke on this returned proxy:

// Let's lookup the remote stateless calculator

 final RemoteCalculator statelessRemoteCalculator = lookupRemoteStatelessCalculator();

 System.out.println("Obtained a remote stateless calculator for invocation");

 // invoke on the remote calculator

 int a = 204;

 int b = 340;

 System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator

deployed on the server");

 int sum = statelessRemoteCalculator.add(a, b);

We can see here that the proxy returned after the lookup is used to invoke the add(...) method of the bean.

It's at this point that the JNDI implementation (which is backed by the EJB client API) needs to know the

server details. So let's now get to the important part of setting up the EJB client context properties.

21.3 Setting up EJB client context properties

A EJB client context is a context which contains contextual information for carrying out remote invocations

on EJBs. This is a WildFly-specific API. The EJB client context can be associated with multiple EJB

receivers. Each EJB receiver is capable of handling invocations on different EJBs. For example, an EJB

receiver "Foo" might be able to handle invocation on a bean identified by

app-A/module-A/distinctinctName-A/Bar!RemoteBar, whereas a EJB receiver named "Blah" might be able to

handle invocation on a bean identified by app-B/module-B/distinctName-B/BeanB!RemoteBean. Each such

EJB receiver knows about what set of EJBs it can handle and each of the EJB receiver knows which server

target to use for handling the invocations on the bean. For example, if you have a AS7 server at 10.20.30.40

IP address which has its remoting port opened at 4447 and if that's the server on which you deployed that

CalculatorBean, then you can setup a EJB receiver which knows its target address is 10.20.30.40:4447.

Such an EJB receiver will be capable enough to communicate to the server via the JBoss specific EJB

remote client protocol (details of which will be explained in-depth in a separate chapter).

Now that we know what a EJB client context is and what a EJB receiver is, let's see how we can setup a

client context with 1 EJB receiver which can connect to 10.20.30.40 IP address at port 4447. That EJB client

context will then be used (internally) by the JNDI implementation to handle invocations on the bean proxy.

The client will have to place a jboss-ejb-client.properties file in the classpath of the application. The

jboss-ejb-client.properties can contain the following properties:

WildFly 10

JBoss Community Documentation Page of 163 532

endpoint.name=client-endpoint

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

This file includes a reference to a default password. Be sure to change this as soon as possible.

The above properties file is just an example. The actual file that was used for this sample program is

available here for reference jboss-ejb-client.properties

We'll see what each of it means.

First the endpoint.name property. We mentioned earlier that the EJB receivers will communicate

with the server for EJB invocations. Internally, they use JBoss Remoting project to carry out the

communication. The endpoint.name property represents the name that will be used to create the

client side of the enpdoint. The endpoint.name property is optional and if not specified in the

jboss-ejb-client.properties file, it will default to "config-based-ejb-client-endpoint" name.

Next is the remote.connectionprovider.create.options.<....> properties:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

The "remote.connectionprovider.create.options." property prefix can be used to pass the options

that will be used while create the connection provider which will handle the "remote:" protocol. In

this example we use the "remote.connectionprovider.create.options." property prefix to pass the

"org.xnio.Options.SSL_ENABLED" property value as false. That property will then be used during

the connection provider creation. Similarly other properties can be passed too, just append it to the

"remote.connectionprovider.create.options." prefix

Next we'll see:

remote.connections=default

https://github.com/wildfly/quickstart/blob/master/ejb-remote/client/src/main/resources/jboss-ejb-client.properties

WildFly 10

JBoss Community Documentation Page of 164 532

This is where you define the connections that you want to setup for communication with the remote

server. The "remote.connections" property uses a comma separated value of connection "names".

The connection names are just logical and are used grouping together the connection configuration

properties later on in the properties file. The example above sets up a single remote connection

named "default". There can be more than one connections that are configured. For example:

remote.connections=one, two

Here we are listing 2 connections named "one" and "two". Ultimately, each of the connections will

map to a EJB receiver. So if you have 2 connections, that will setup 2 EJB receivers that will be

added to the EJB client context. Each of these connections will be configured with the connection

specific properties as follows:

remote.connection.default.host=10.20.30.40

remote.connection.default.port = 8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we are using the "remote.connection.<connection-name>." prefix for specifying the

connection specific property. The connection name here is "default" and we are setting the "host"

property of that connection to point to 10.20.30.40. Similarly we set the "port" for that connection to

4447.

By default WildFly uses 8080 as the remoting port. The EJB client API uses the http port, with the

http-upgrade functionality, for communicating with the server for remote invocations, so that's the port we

use in our client programs (unless the server is configured for some other http port)

remote.connection.default.username=appuser

remote.connection.default.password=apppassword

The given user/password must be set by using the command bin/add-user.sh (or.bat).

The user and password must be set because the security-realm is enabled for the subsystem

remoting (see standalone*.xml or domain.xml) by default.

If you do not need the security for remoting you might remove the attribute security-realm in the

configuration.

security-realm is enabled by default.

WildFly 10

JBoss Community Documentation Page of 165 532

We then use the "remote.connection.<connection-name>.connect.options." property prefix to setup

options that will be used during the connection creation.

Here's an example of setting up multiple connections with different properties for each of those:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=one, two

remote.connection.one.host=localhost

remote.connection.one.port=6999

remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.connection.two.host=localhost

remote.connection.two.port=7999

remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

As you can see we setup 2 connections "one" and "two" which both point to "localhost" as the

"host" but different ports. Each of these connections will internally be used to create the EJB

receivers in the EJB client context.

So that's how the jboss-ejb-client.properties file can be setup and placed in the classpath.

Using a different file for setting up EJB client context
The EJB client code will by default look for jboss-ejb-client.properties in the classpath. However,

you can specify a different file of your choice by setting the "jboss.ejb.client.properties.file.path"

system property which points to a properties file on your filesystem, containing the client context

configurations. An example for that would be

"-Djboss.ejb.client.properties.file.path=/home/me/my-client/custom-jboss-ejb-client.properties"

Setting up the client classpath with the jars that are required to

run the client application
A jboss-client jar is shipped in the distribution. It's available at

WILDFLY_HOME/bin/client/jboss-client.jar. Place this jar in the classpath of your client application.

If you are using Maven to build the client application, then please follow the instructions in the

WILDFLY_HOME/bin/client/README.txt to add this jar as a Maven dependency.

WildFly 10

JBoss Community Documentation Page of 166 532

21.4 Summary

In the above examples, we saw what it takes to invoke a EJB from a remote client. To summarize:

On the server side you need to deploy EJBs which expose the remote views.

On the client side you need a client program which:

Has a jboss-ejb-client.properties in its classpath to setup the server connection information

Either has a jndi.properties to specify the java.naming.factory.url.pkgs property or passes that

as a property to the InitialContext constructor

Setup the client classpath to include the jboss-client jar that's required for remote invocation of

the EJBs. The location of the jar is mentioned above. You'll also need to have your

application's bean interface jars and other jars that are required by your application, in the

client classpath

WildFly 10

JBoss Community Documentation Page of 167 532

22 EJB invocations from a remote server instance
The purpose of this chapter is to demonstrate how to lookup and invoke on EJBs deployed on an

WildFly server instance WildFly server instance. This is different from invoking the EJBs from another from

a remote standalone client

Let's call the server, from which the invocation happens to the EJB, as "Client Server" and the server on

which the bean is deployed as the "Destination Server".

Note that this chapter deals with the case where the bean is deployed on the "Destination Server"

but on the "Client Server".not

22.1 Application packaging

In this example, we'll consider a EJB which is packaged in a myejb.jar which is within a myapp.ear. Here's

how it would look like:

myapp.ear

|

|---- myejb.jar

| |

| |---- <org.myapp.ejb.*> // EJB classes

Note that packaging itself isn't really important in the context of this article. You can deploy the

EJBs in any standard way (.ear, .war or .jar).

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 168 532

22.2 Beans

In our example, we'll consider a simple stateless session bean which is as follows:

package org.myapp.ejb;

public interface Greeter {

 String greet(String user);

}

package org.myapp.ejb;

import javax.ejb.Remote;

import javax.ejb.Stateless;

@Stateless

@Remote (Greeter.class)

public class GreeterBean implements Greeter {

 @Override

 public String greet(String user) {

 return "Hello " + user + ", have a pleasant day!";

 }

}

22.3 Security

WildFly 8 is secure by default. What this means is that no communication can happen with an

WildFly instance from a remote client (irrespective of whether it is a standalone client or another server

instance) without passing the appropriate credentials. Remember that in this example, our "client server" will

be communicating with the "destination server". So in order to allow this communication to happen

successfully, we'll have to configure user credentials which we will be using during this communication. So

let's start with the necessary configurations for this.

WildFly 10

JBoss Community Documentation Page of 169 532

22.4 Configuring a user on the "Destination Server"

As a first step we'll configure a user on the destination server who will be allowed to access the destination

server. We create the user using the script that's available in the JBOSS_HOME/bin folder. Inadd-user

this example, we'll be configuring a named and with a password in the Application User ejb test

. Running the script is an interactive process and you will seeApplicationRealm add-user

questions/output as follows:

add-user

jpai@jpai-laptop:bin$./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

Enter the details of the new user to add.

Realm (ApplicationRealm) :

Username : ejb

Password :

Re-enter Password :

What roles do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)\[\]:

About to add user 'ejb' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-users.properties'

Added user 'ejb' to file

'/jboss-as-7.1.1.Final/domain/configuration/application-users.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/standalone/configuration/application-roles.properties'

Added user 'ejb' with roles to file

'/jboss-as-7.1.1.Final/domain/configuration/application-roles.properties'

As you can see in the output above we have now configured a user on the destination server who'll be

allowed to access this server. We'll use this user credentials later on in the client server for communicating

with this server. The important bits to remember are the user we have created in this example is and theejb

password is test.

Note that you can use any username and password combination you want to.

You do require the server to be started to add a user using the add-user script.not

WildFly 10

JBoss Community Documentation Page of 170 532

22.5 Start the "Destination Server"

As a next step towards running this example, we'll start the "Destination Server". In this example, we'll use

the standalone server and use the configuration. The startup command will look like:standalone-full.xml

./standalone.sh -server-config=standalone-full.xml

Ensure that the server has started without any errors.

It's very important to note that if you are starting both the server instances on the same machine,

then each of those server instances have a unique system property.must jboss.node.name

You can do that by passing an appropriate value for system property to the-Djboss.node.name

startup script:

./standalone.sh -server-config=standalone-full.xml -Djboss.node.name=<add appropriate

value here>

22.6 Deploying the application

The application (in our case) will be deployed to "Destination Server". The process of deployingmyapp.ear

the application is out of scope of this chapter. You can either use the Command Line Interface or the Admin

console or any IDE or manually copy it to JBOSS_HOME/standalone/deployments folder (for standalone

server). Just ensure that the application has been deployed successfully.

So far, we have built a EJB application and deployed it on the "Destination Server". Now let's move to the

"Client Server" which acts as the client for the deployed EJBs on the "Destination Server".

22.7 Configuring the "Client Server" to point to the EJB

remoting connector on the "Destination Server"

As a first step on the "Client Server", we need to let the server know about the "Destination Server"'s EJB

remoting connector, over which it can communicate during the EJB invocations. To do that, we'll have to add

a " " to the remoting subsystem on the "Client Server". The "remote-outbound-connection

" configuration indicates that a outbound connection will be created to a remoteremote-outbound-connection

server instance from that server. The " " will be backed by a "remote-outbound-connection

" which will point to a remote host and a remote port (of the "Destination Server").outbound-socket-binding

So let's see how we create these configurations.

WildFly 10

JBoss Community Documentation Page of 171 532

22.8 Start the "Client Server"

In this example, we'll start the "Client Server" on the same machine as the "Destination Server". We have

copied the entire server installation to a different folder and while starting the "Client Server" we'll use a

port-offset (of 100 in this example) to avoid port conflicts:

./standalone.sh -server-config=standalone-full.xml -Djboss.socket.binding.port-offset=100

22.9 Create a security realm on the client server

Remember that we need to communicate with a secure destination server. In order to do that the client

server has to pass the user credentials to the destination server. Earlier we created a user on the destination

server who'll be allowed to communicate with that server. Now on the "client server" we'll create a

security-realm which will be used to pass the user information.

In this example we'll use a security realm which stores a Base64 encoded password and then passes on

that credentials when asked for. Earlier we created a user named and password . So our first taskejb test

here would be to create the base64 encoded version of the password . You can use any utility whichtest

generates you a base64 version for a string. I used which generates the base64 encodedthis online site

string. So for the password, the base64 encoded version is test dGVzdA==

While generating the base64 encoded string make sure that you don't have any trailing or leading

spaces for the original password. That can lead to incorrect encoded versions being generated.

With new versions the add-user script will show the base64 password if you type 'y' if you've been

ask

Is this new user going to be used for one AS process to connect to another AS process

e.g. slave domain controller?

Now that we have generated that base64 encoded password, let's use in the in the security realm that we

are going to configure on the "client server". I'll first shutdown the client server and edit the

standalone-full.xml file to add the following in the section<management>

Now let's create a " " for the base64 encoded password.security-realm

/core-service=management/security-realm=ejb-security-realm:add()

/core-service=management/security-realm=ejb-security-realm/server-identity=secret:add(value=dGVzdA==)

http://www.base64encode.org/

WildFly 10

JBoss Community Documentation Page of 172 532

Notice that the CLI show the message , so you have to restart"process-state" => "reload-required"

the server before you can use this change.

upon successful invocation of this command, the following configuration will be created in the management

section:

standalone-full.xml

<management>

 <security-realms>

 ...

 <security-realm name="ejb-security-realm">

 <server-identities>

 <secret value="dGVzdA=="/>

 </server-identities>

 </security-realm>

 </security-realms>

...

As you can see I have created a security realm named "ejb-security-realm" (you can name it anything) with

the base64 encoded password. So that completes the security realm configuration for the client server. Now

let's move on to the next step.

WildFly 10

JBoss Community Documentation Page of 173 532

22.10 Create a outbound-socket-binding on the "Client

Server"

Let's first create a which points the "Destination Server"'s host and port. We'll useoutbound-socket-binding

the CLI to create this configuration:

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=remote-ejb:add(host=localhost,

port=8080)

The above command will create a outbound-socket-binding named " " (we can name it anything)remote-ejb

which points to "localhost" as the host and port 8080 as the destination port. Note that the host information

should match the host/IP of the "Destination Server" (in this example we are running on the same machine

so we use "localhost") and the port information should match the http-remoting connector port used by the

EJB subsystem (by default it's 8080). When this command is run successfully, we'll see that the

standalone-full.xml (the file which we used to start the server) was updated with the following

outbound-socket-binding in the socket-binding-group:

<socket-binding-group name="standard-sockets" default-interface="public"

port-offset="${jboss.socket.binding.port-offset:0}">

 ...

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="8080"/>

 </outbound-socket-binding>

 </socket-binding-group>

22.11 Create a "remote-outbound-connection" which

uses this newly created "outbound-socket-binding"

Now let's create a " " which will use the newly created outbound-socket-bindingremote-outbound-connection

(pointing to the EJB remoting connector of the "Destination Server"). We'll continue to use the CLI to create

this configuration:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb,

protocol=http-remoting, security-realm=ejb-security-realm, username=ejb)

The above command creates a remote-outbound-connection, named " " (we can nameremote-ejb-connection

it anything), in the remoting subsystem and uses the previously created " "remote-ejb

outbound-socket-binding (notice the outbound-socket-binding-ref in that command) with the http-remoting

protocol. Furthermore, we also set the security-realm attribute to point to the security-realm that we created

in the previous step. Also notice that we have set the username attribute to use the user name who is

allowed to communicate with the destination server.

WildFly 10

JBoss Community Documentation Page of 174 532

What this step does is, it creates a outbound connection, on the client server, to the remote destination

server and sets up the username to the user who allowed to communicate with that destination server and

also sets up the security-realm to a pre-configured security-realm capable of passing along the user

credentials (in this case the password). This way when a connection has to be established from the client

server to the destination server, the connection creation logic will have the necessary security credentials to

pass along and setup a successful secured connection.

Now let's run the following two operations to set some default connection creation options for the outbound

connection:

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

/subsystem=remoting/remote-outbound-connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

Ultimately, upon successful invocation of this command, the following configuration will be created in the

remoting subsystem:

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

....

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection"

outbound-socket-binding-ref="remote-ejb" protocol="http-remoting"

security-realm="ejb-security-realm" username="ejb">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

From a server configuration point of view, that's all we need on the "Client Server". Our next step is to deploy

an application on the "Client Server" which will invoke on the bean deployed on the "Destination Server".

WildFly 10

JBoss Community Documentation Page of 175 532

22.12 Packaging the client application on the "Client

Server"

Like on the "Destination Server", we'll use .ear packaging for the client application too. But like previously

mentioned, that's not mandatory. You can even use a .war or .jar deployments. Here's how our client

application packaging will look like:

client-app.ear

|

|--- META-INF

| |

| |--- jboss-ejb-client.xml

|

|--- web.war

| |

| |--- WEB-INF/classes

| | |

| | |---- <org.myapp.FooServlet> // classes in the web app

In the client application we'll use a servlet which invokes on the bean deployed on the "Destination Server".

We can even invoke the bean on the "Destination Server" from a EJB on the "Client Server". The code

remains the same (JNDI lookup, followed by invocation on the proxy). The important part to notice in this

client application is the file which is packaged in the META-INF folder of a top leveljboss-ejb-client.xml

deployment (in this case our client-app.ear). This contains the EJB client configurationsjboss-ejb-client.xml

which will be used during the EJB invocations for finding the appropriate destinations (also known as, EJB

receivers). The contents of the jboss-ejb-client.xml are explained next.

If your application is deployed as a top level .war deployment, then the jboss-ejb-client.xml is

expected to be placed in .war/WEB-INF/ folder (i.e. the same location where you place any

web.xml file).

WildFly 10

JBoss Community Documentation Page of 176 532

22.13 Contents on jboss-ejb-client.xml

The jboss-ejb-client.xml will look like:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">

 <client-context>

 <ejb-receivers>

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

You'll notice that we have configured the EJB client context (for this application) to use a

remoting-ejb-receiver which points to our earlier created " " named "remote-outbound-connection

". This links the EJB client context to use the " " which ultimatelyremote-ejb-connection remote-ejb-connection

points to the EJB remoting connector on the "Destination Server".

22.14 Deploy the client application

Let's deploy the client application on the "Client Server". The process of deploying the application is out of

scope, of this chapter. You can use either the CLI or the admin console or a IDE or deploy manually to

JBOSS_HOME/standalone/deployments folder. Just ensure that the application is deployed successfully.

WildFly 10

JBoss Community Documentation Page of 177 532

22.15 Client code invoking the bean

We mentioned that we'll be using a servlet to invoke on the bean, but the code to invoke the bean isn't

servlet specific and can be used in other components (like EJB) too. So let's see how it looks like:

import javax.naming.Context;

import java.util.Hashtable;

import javax.naming.InitialContext;

...

public void invokeOnBean() {

 try {

 final Hashtable props = new Hashtable();

 // setup the ejb: namespace URL factory

 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

 // create the InitialContext

 final Context context = new javax.naming.InitialContext(props);

 // Lookup the Greeter bean using the ejb: namespace syntax which is explained here

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

 final Greeter bean = (Greeter) context.lookup("ejb:" + "myapp" + "/" + "myejb" + "/"

+ "" + "/" + "GreeterBean" + "!" + org.myapp.ejb.Greeter.class.getName());

 // invoke on the bean

 final String greeting = bean.greet("Tom");

 System.out.println("Received greeting: " + greeting);

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

}

That's it! The above code will invoke on the bean deployed on the "Destination Server" and return the result.

WildFly 10

JBoss Community Documentation Page of 178 532

23 Example Applications - Migrated to WildFly

23.1 Example Applications Migrated from Previous

Releases

The applications in this section were written for a previous version of the server but have been modified to

run on WildFly 8. Changes were made to resolve issues that arose during deployment and runtime or to fix

problems with application behaviour. Each example below documents the changes that were made to get

the application to run successfully on WildFly.

23.1.1 Seam 2 JPA example

To see details on changes required to run this application on WildFly, see Seam 2 JPA example deployment

.on WildFly 8

23.1.2 Seam 2 DVD Store example

For details on how to migrate this demo application, see on MarekSeam 2 DVD Store example on WildFly 8

Novotny's Blog.

23.1.3 Seam 2 Booking example

For details on how to migrate this demo application, see on MarekSeam 2 Booking example on WildFly 8

Novotny's Blog.

23.1.4 Seam 2 Booking - step-by-step migration of binaries

This document takes a somewhat different "brute force" approach. The idea is to deploy the binaries to

WildFly, then see what issues you hit and learn how debug and resolve them. See Seam 2 Booking EAR

.Migration of Binaries - Step by Step

23.1.5 jBPM-Console application

Kris Verlaenen migrated this application from AS 5 to WildFly 8. For details about this migration, see jBPM5

 on his Kris's Blog.on WildFly

https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7#HowdoImigratemyapplicationfromAS5orAS6toAS7-Seam2JPAexampledeploymentonJBossAS7
https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7#HowdoImigratemyapplicationfromAS5orAS6toAS7-Seam2JPAexampledeploymentonJBossAS7
https://community.jboss.org/blogs/marek-novotny/2011/12/16/dvdstore-migration-for-jboss-as-710beta
http://community.jboss.org/blogs/marek-novotny/2011/07/29/seam-2-booking-example-on-jboss-as-7
https://docs.jboss.org/author/display/AS7/Seam+2+Booking+EAR+Migration+of+Binaries+-+Step+by+Step
https://docs.jboss.org/author/display/AS7/Seam+2+Booking+EAR+Migration+of+Binaries+-+Step+by+Step
http://kverlaen.blogspot.com/2011/07/jbpm5-on-as7-lightning.html
http://kverlaen.blogspot.com/2011/07/jbpm5-on-as7-lightning.html

WildFly 10

JBoss Community Documentation Page of 179 532

23.1.6 Order application used for performance testing

Andy Miller migrated this application from AS 5 to WildFly. For details about this migration, see Order

.Application Migration from EAP5.1 to WildFly

23.1.7 Migrate example application

A step by step work through of issues, and their solutions, that might crop up when migrating applications to

WildFly 8. See the following for details.github project

23.2 Example Applications Based on EE6

Applications in this section were designed and written specifically to use the features and functions of EE6.

Quickstarts: A number of quickstart applications were written to demonstrate Java EE 6 and a few

additional technologies. They provide small, specific, working examples that can be used as a

reference for your own project. For more information about the quickstarts, see Get Started

Developing Applications

23.3 Porting the Order Application from EAP 5.1

to WildFly 8

Andy Miller ported an example Order application that was used for performance testing from EAP 5.1 to

WildFly 8. These are the notes he made during the migration process.

23.3.1 Overview of the application

The application is relatively simple. it contains three servlets, some stateless session beans, a stateful

session bean, and some entities.

In addition to application code changes, modifications were made to the way the EAR was packaged. This is

because WildFly removed support of some proprietary features that were available in EAP 5.1.

https://docs.jboss.org/author/display/AS7/Order+Application+Migration+from+EAP5.1+to+AS7
https://docs.jboss.org/author/display/AS7/Order+Application+Migration+from+EAP5.1+to+AS7
https://github.com/danbev/migrate
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Introduction/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Introduction/

WildFly 10

JBoss Community Documentation Page of 180 532

23.3.2 Summary of changes

Code Changes

Modify JNDI lookup code
Since this application was first written for EAP 4.2/4.3, which did not support EJB reference injection, the

servlets were using pre-EE 5 methods for looking up stateless and stateful session bean interfaces. While

migrating to WildFly, it seemed a good time to change the code to use the @EJB annotation, although this

was not a required change.

The real difference is in the lookup name. WildFly only supports the new EE 6 portable JNDI names rather

than the old EAR structure based names. The JNDI lookup code changed as follows:

Example of code in the EAP 5.1 version:

try {

 context = new InitialContext();

 distributionCenterManager = (DistributionCenterManager)

context.lookup("OrderManagerApp/DistributionCenterManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find DistributionCenterManager bean", lookupError);

}

try {

 customerManager = (CustomerManager)

context.lookup("OrderManagerApp/CustomerManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find CustomerManager bean", lookupError);

}

try {

 productManager = (ProductManager)

context.lookup("OrderManagerApp/ProductManagerBean/local");

} catch(Exception lookupError) {

 throw new ServletException("Couldn't find the ProductManager bean", lookupError);

}

Example of how this is now coded in WildFly:

@EJB(lookup="java:app/OrderManagerEJB/DistributionCenterManagerBean!services.ejb.DistributionCenterManager")
private

DistributionCenterManager distributionCenterManager;

@EJB(lookup="java:app/OrderManagerEJB/CustomerManagerBean!services.ejb.CustomerManager")

private CustomerManager customerManager;

@EJB(lookup="java:app/OrderManagerEJB/ProductManagerBean!services.ejb.ProductManager")

private ProductManager productManager;

In addition to the change to injection, which was supported in EAP 5.1.0, the lookup name changed from:

WildFly 10

JBoss Community Documentation Page of 181 532

OrderManagerApp/DistributionCenterManagerBean/local

to:

java:app/OrderManagerEJB/DistributionCenterManagerBean!services.ejb.DistributionCenterManager

All the other beans were changed in a similar manner. They are now based on the portable JNDI names

described in EE 6.

WildFly 10

JBoss Community Documentation Page of 182 532

Modify logging code
The next major change was to logging within the application. The old version was using the commons

logging infrastructure and Log4J that is bundled in the application server. Rather than bundling third-party

logging, the application was modified to use the new WildFly Logging infrastructure.

The code changes themselves are rather trivial, as this example illustrates:

Old JBoss Commons Logging/Log4J:

private static Log log = LogFactory.getLog(CustomerManagerBean.class);

New WildFly Logging

private static Logger logger = Logger.getLogger(CustomerManagerBean.class.toString());

Old JBoss Commons Logging/Log4J:

if(log.isTraceEnabled()) {

 log.trace("Just flushed " + batchSize + " rows to the database.");

 log.trace("Total rows flushed is " + (i+1));

}

New WildFly Logging:

if(logger.isLoggable(Level.TRACE)) {

 logger.log(Level.TRACE, "Just flushed " + batchSize + " rows to the database.");

 logger.log(Level.TRACE, "Total rows flushed is " + (i+1));

}

In addition to the code changes made to use the new AS7 JBoss log manager module, you must add this

dependency to the file as follows:MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.jboss.logmanager

WildFly 10

JBoss Community Documentation Page of 183 532

Modify the code to use Infinispan for 2nd level cache
Jboss Cache has been replaced by Infinispan for 2nd level cache. This requires modification of the

 file.persistence.xml

This is what the file looked like in EAP 5.1:

<properties>

<property name="hibernate.cache.region.factory_class"

value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>

<property name="hibernate.cache.region.jbc2.cachefactory" value="java:CacheManager"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

<property name="hibernate.cache.use_query_cache" value="false"/>

<property name="hibernate.cache.use_minimal_puts" value="true"/>

<property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-entity"/>

<property name="hibernate.cache.region_prefix" value="services"/>

</properties>

This is how it was modified to use Infinispan for the same configuration:

<properties>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

<property name="hibernate.cache.use_minimal_puts" value="true"/>

</properties>

<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Most of the properties are removed since they will default to the correct values for the second level cache.

See for more details."Using the Infinispan second level cache"

That was the extent of the code changes required to migrate the application to AS7.

https://docs.jboss.org/author/display/AS71/JPA+Reference+Guide#JPAReferenceGuide-UsingtheInfinispansecondlevelcache

WildFly 10

JBoss Community Documentation Page of 184 532

1.

2.

EAR Packaging Changes
Due to modular class loading changes, the structure of the existing EAR failed to deploy successfully in

WildFly.

The old structure of the EAR was as follows:

$ jar tf OrderManagerApp.ear

META-INF/MANIFEST.MF

META-INF/application.xml

OrderManagerWeb.war

OrderManagerEntities.jar

OrderManagerEJB.jar

META-INF/

In this structure, the entities and the were in one jar file, persistence.xml

, and the stateless and stateful session beans were in another jar file, OrderManagerEntities.jar

. This did not work due to modular class loading changes in WildFly. There are aOrderManagerEJB.jar

couple of ways to resolve this issue:

Modify the class path in the MANIFEST.MF

Flatten the code and put all the beans in one JAR file.

The second approach was selected because it simplified the EAR structure:

$ jar tf OrderManagerApp.ear

META-INF/application.xml

OrderManagerWeb.war

OrderManagerEJB.jar

META-INF/

Since there is no longer an file, the file was modified toOrderManagerEntities.jar applcation.xml

remove the entry.

An entry was added to the file in the to resolve another classMANIFEST.MF OrderManagerWeb.war

loading issue resulting from the modification to use EJB reference injection in the servlets.

Manifest-Version: 1.0

Dependencies: org.jboss.logmanager

Class-Path: OrderManagerEJB.jar

The entry tells the application to look in the file for the injectedClass-Path OrderManagerEJB.jar

beans.

WildFly 10

JBoss Community Documentation Page of 185 532

Summary
Although the existing EAR structure could have worked with additional modifications to the MANIFEST.MF

file, this approach seemed more appealing because it simplified the structure while maintaining the web tier

in its own WAR.

The source files for both versions is attached so you can view the changes that were made to the

application.

23.4 Seam 2 Booking Application - Migration of Binaries

from EAP5.1 to WildFly

This is a step-by-step how-to guide on porting the Seam Booking application binaries from EAP5.1 to

WildFly 8. Although there are better approaches for migrating applications, the purpose of this document is

to show the types of issues you might encounter when migrating an application and how to debug and

resolve those issues.

For this example, the application EAR is deployed to the JBOSS_HOME/standalone/deployments directory

with no changes other than extracting the archives so we can modify the XML files contained within them.

WildFly 10

JBoss Community Documentation Page of 186 532

1.

2.

3.

4.

23.4.1 Step 1: Build and deploy the EAP5.1 version of the Seam

Booking application

Build the EAR

cd /EAP5_HOME/jboss-eap5.1/seam/examples/booking

 ~/tools/apache-ant-1.8.2/bin/ant explode

Copy the EAR to the JBOSS_HOME deployments directory:

cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.ear

AS7_HOME/standalone/deployments/

 cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.war

AS7_HOME/standalone/deployments/jboss-seam.ear

 cp -r

EAP5_HOME/jboss-eap-5.1/seam/examples/booking/exploded-archives/jboss-seam-booking.jar

AS7_HOME/standalone/deployments/jboss-seam.ear

Start the WildFly server and check the log. You will see:

INFO [org.jboss.as.deployment] (DeploymentScanner-threads - 1) Found

jboss-seam-booking.ear in deployment directory. To trigger deployment create a file called

jboss-seam-booking.ear.dodeploy

Create an empty file with the name and copy it into thejboss-seam-booking.ear.dodeploy

deployments directory. In the log, you will now see the following, indicating that it is deploying:

INFO [org.jboss.as.server.deployment] (MSC service thread 1-1) Starting deployment of

"jboss-seam-booking.ear"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Starting deployment of

"jboss-seam-booking.jar"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-6) Starting deployment of

"jboss-seam.jar"

 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment of

"jboss-seam-booking.war"

At this point, you will first encounter your first deployment error. In the next section, we will step through each

issue and how to debug and resolve it.

WildFly 10

JBoss Community Documentation Page of 187 532

23.4.2 Step 2: Debug and resolve deployment errors and

exceptions

First Issue: java.lang.ClassNotFoundException:

javax.faces.FacesException
When you deploy the application, the log contains the following error:

ERROR \[org.jboss.msc.service.fail\] (MSC service thread 1-1) MSC00001: Failed to start service

jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:

org.jboss.msc.service.StartException in service

jboss.deployment.subunit."jboss-seam-booking.ear"."jboss-seam-booking.war".POST_MODULE:

Failed to process phase POST_MODULE of subdeployment "jboss-seam-booking.war" of deployment

"jboss-seam-booking.ear"

 (.. additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: javax.faces.FacesException from \[Module

"deployment.jboss-seam-booking.ear:main" from Service Module Loader\]

 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:191)

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

 and you need to explicitly add the dependency.javax.faces.FacesException

WildFly 10

JBoss Community Documentation Page of 188 532

How to resolve it:
Find the module name for that class in the directory by looking for a path that matchesAS7_HOME/modules

the missing class. In this case, you will find 2 modules that match:

javax/faces/api/main

 javax/faces/api/1.2

Both modules have the same module name: “javax.faces.api” but one in the main directory is for JSF 2.0

and the one located in the 1.2 directory is for JSF 1.2. If there was only one module available, we could

simply create a file and added the module dependency. But in this case, we want to use theMANIFEST.MF

JSF 1.2 version and not the 2.0 version in main, so we need to be able to specify one and exclude the other.

To do this, we create a file in the EAR directory thatjboss-deployment-structure.xml META-INF/

contains the following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

In the "deployment" section, we add the dependency for the for the JSF 1.2 module.javax.faces.api

We also add the dependency for the JSF 1.2 module in the sub-deployment section for the WAR and

exclude the module for JSF 2.0.

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 file in the same directory.jboss-seam-booking.ear.dodeploy

Next Issue: java.lang.ClassNotFoundException:

org.apache.commons.logging.Log
When you deploy the application, the log contains the following error:

WildFly 10

JBoss Community Documentation Page of 189 532

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-8) MSC00001: Failed to start service

jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:

org.jboss.msc.service.StartException in service

jboss.deployment.unit."jboss-seam-booking.ear".INSTALL:

Failed to process phase INSTALL of deployment "jboss-seam-booking.ear"

 (.. additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.apache.commons.logging.Log from [Module

"deployment.jboss-seam-booking.ear.jboss-seam-booking.war:main" from Service Module Loader]

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

 and you need to explicitly add the dependency.org.apache.commons.logging.Log

How to resolve it:
Find the module name for that class in the directory by looking for a path thatJBOSS_HOME/modules/

matches the missing class. In this case, you will find one module that matches the path

. The module name is “org.apache.commons.logging”.org/apache/commons/logging/

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.apache.commons.logging" export="true"/>

The should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

WildFly 10

JBoss Community Documentation Page of 190 532

Next Issue: java.lang.ClassNotFoundException:

org.dom4j.DocumentException
When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-3) Exception sending context initialized event to listener instance of class

org.jboss.seam.servlet.SeamListener: java.lang.NoClassDefFoundError: org/dom4j/DocumentException

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.dom4j.DocumentException from [Module

"deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.dom4j.DocumentException

WildFly 10

JBoss Community Documentation Page of 191 532

How to resolve it:
Find the module name in the directory by looking for the JBOSS_HOME/modules/

. The module name is “org.dom4j”.org/dom4j/DocumentException

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.dom4j" export="true"/>

The file should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

WildFly 10

JBoss Community Documentation Page of 192 532

Next Issue: java.lang.ClassNotFoundException:

org.hibernate.validator.InvalidValue
When you deploy the application, the log contains the following error:

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-6) Exception sending context initialized event to listener instance of class

org.jboss.seam.servlet.SeamListener: java.lang.RuntimeException: Could not create Component:

org.jboss.seam.international.statusMessages

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue from [Module

"deployment.jboss-seam-booking.ear.jboss-seam.jar:main" from Service Module Loader]

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.hibernate.validator.InvalidValue

How to resolve it:
There is a module “org.hibernate.validator”, but the JAR does not contain the

 class, so adding the module dependency will not resolveorg.hibernate.validator.InvalidValue

this issue.

In this case, the JAR containing the class was part of the EAP 5.1 deployment. We will look for the JAR that

contains the missing class in the directory. To do this, open aEAP5_HOME/jboss-eap-5.1/seam/lib/

console and type the following:

cd EAP5_HOME/jboss-eap-5.1/seam/lib

grep 'org.hibernate.validator.InvalidValue' `find . -name '*.jar'`

The result shows:

Binary file ./hibernate-validator.jar matches

Binary file ./test/hibernate-all.jar matches

In this case, we need to copy the to the hibernate-validator.jar jboss-seam-booking.ear/lib/

directory:

cp EAP5_HOME/jboss-eap-5.1/seam/lib/hibernate-validator.jar jboss-seam-booking.ear/lib

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

WildFly 10

JBoss Community Documentation Page of 193 532

Next Issue: java.lang.InstantiationException:

org.jboss.seam.jsf.SeamApplicationFactory
When you deploy the application, the log contains the following error:

INFO [javax.enterprise.resource.webcontainer.jsf.config] (MSC service thread 1-7) Unsanitized

stacktrace from failed start...: com.sun.faces.config.ConfigurationException: Factory

'javax.faces.application.ApplicationFactory' was not configured properly.

 at

com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:296)

[jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]

 (... additional logs removed ...)

Caused by: javax.faces.FacesException: org.jboss.seam.jsf.SeamApplicationFactory

 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:606)

[jsf-api-1.2_13.jar:1.2_13-b01-FCS]

 (... additional logs removed ...)

 at

com.sun.faces.config.processor.FactoryConfigProcessor.verifyFactoriesExist(FactoryConfigProcessor.java:294)

[jsf-impl-2.0.4-b09-jbossorg-4.jar:2.0.4-b09-jbossorg-4]

 ... 11 more

Caused by: java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory

 at java.lang.Class.newInstance0(Class.java:340) [:1.6.0_25]

 at java.lang.Class.newInstance(Class.java:308) [:1.6.0_25]

 at javax.faces.FactoryFinder.getImplGivenPreviousImpl(FactoryFinder.java:604)

[jsf-api-1.2_13.jar:1.2_13-b01-FCS]

 ... 16 more

What it means:
The com.sun.faces.config.ConfigurationException and java.lang.InstantiationException indicate a

dependency issue. In this case, it is not as obvious.

WildFly 10

JBoss Community Documentation Page of 194 532

How to resolve it:
We need to find the module that contains the com.sun.faces classes. While there is no com.sun.faces

module, there are are two com.sun.jsf-impl modules. A quick check of the jsf-impl-1.2_13.jar in the 1.2

directory shows it contains the com.sun.faces classes.

As we did with the javax.faces.FacesException ClassNotFoundException, we want to use the JSF 1.2

version and not the JSF 2.0 version in main, so we need to be able to specify one and exclude the other. We

need to modify the jboss-deployment-structure.xml to add the module dependency to the deployment section

of the file. We also need to add it to the WAR subdeployment and exclude the JSF 2.0 module. The file

should now look like this:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: java.lang.ClassNotFoundException:

org.apache.commons.collections.ArrayStack
When you deploy the application, the log contains the following error:

WildFly 10

JBoss Community Documentation Page of 195 532

ERROR [org.apache.catalina.core.ContainerBase.[jboss.web].[default-host].[/seam-booking]] (MSC

service thread 1-1) Exception sending context initialized event to listener instance of class

com.sun.faces.config.ConfigureListener: java.lang.RuntimeException:

com.sun.faces.config.ConfigurationException: CONFIGURATION FAILED!

org.apache.commons.collections.ArrayStack from [Module "deployment.jboss-seam-booking.ear:main"

from Service Module Loader]

 (... additional logs removed ...)

Caused by: java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack from

[Module "deployment.jboss-seam-booking.ear:main" from Service Module Loader]

What it means:
Again, the ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

.org.apache.commons.collections.ArrayStack

WildFly 10

JBoss Community Documentation Page of 196 532

How to resolve it:
Find the module name in the directory by looking for the JBOSS_HOME/modules/

 path. The module name is “org.apache.commons.collections”.org/apache/commons/collections

Modify the to add the module dependency to the deploymentjboss-deployment-structure.xml

section of the file.

<module name="org.apache.commons.collections" export="true"/>

The file should now look like this:jboss-deployment-structure.xml

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: Services with missing/unavailable dependencies
When you deploy the application, the log contains the following error:

WildFly 10

JBoss Community Documentation Page of 197 532

ERROR [org.jboss.as.deployment] (DeploymentScanner-threads - 2) {"Composite operation failed and

was rolled back. Steps that failed:" => {"Operation step-2" => {"Services with

missing/unavailable dependencies" =>

["jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.AuthenticatorAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"

]","jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.HotelSearchingAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".HotelSearchingAction.\"env/org.jboss.seam.example.booking.HotelSearchingAction/em\"

]","

<... additional logs removed ...>

"jboss.deployment.subunit.\"jboss-seam-booking.ear\".\"jboss-seam-booking.jar\".component.BookingListAction.START

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".BookingListAction.\"env/org.jboss.seam.example.booking.BookingListAction/em\"

]","jboss.persistenceunit.\"jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase\"

missing [jboss.naming.context.java.bookingDatasource]"]}}}

What it means:
When you get a “Services with missing/unavailable dependencies” error, look that the text within the

brackets after “missing”.

In this case you see:

missing [

jboss.naming.context.java.comp.jboss-seam-booking.\"jboss-seam-booking.jar\".AuthenticatorAction.\"env/org.jboss.seam.example.booking.AuthenticatorAction/em\"

]

The “/em” indicates an Entity Manager and datasource issue.

How to resolve it:
In WildFly 8, datasource configuration has changed and needs to be defined in the

 file. Since WildFly ships with an example database thatstandalone/configuration/standalone.xml

is already defined in the standalone.xml file, we will modify the file to use that examplepersistence.xml

database. Looking in the file, you can see that the jndi-name for the example database isstandalone.xml

"java:jboss/datasources/ExampleDS".

Modify the file to comment the existingjboss-seam-booking.jar/META-INF/persistence.xml

jta-data-source element and replace it as follows:

<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->

<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

WildFly 10

JBoss Community Documentation Page of 198 532

Next Issue: java.lang.ClassNotFoundException:

org.hibernate.cache.HashtableCacheProvider
When you deploy the application, the log contains the following error:

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-4) MSC00001: Failed to start service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase":

org.jboss.msc.service.StartException in service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase": Failed to

start service

 at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1786)

 (... log messages removed ...)

Caused by: javax.persistence.PersistenceException: [PersistenceUnit: bookingDatabase] Unable to

build EntityManagerFactory

 at org.hibernate.ejb.Ejb3Configuration.buildEntityManagerFactory(Ejb3Configuration.java:903)

 {... log messages removed ...)

Caused by: org.hibernate.HibernateException: could not instantiate RegionFactory

[org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge]

 at org.hibernate.cfg.SettingsFactory.createRegionFactory(SettingsFactory.java:355)

 (... log messages removed ...)

Caused by: java.lang.reflect.InvocationTargetException

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) [:1.6.0_25]

 (... log messages removed ...)

Caused by: org.hibernate.cache.CacheException: could not instantiate CacheProvider

[org.hibernate.cache.HashtableCacheProvider]

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:68)

... 20 more

Caused by: java.lang.ClassNotFoundException: org.hibernate.cache.HashtableCacheProvider from

[Module "org.hibernate:main" from local module loader @12a3793 (roots:

/home/sgilda/tools/jboss7/modules)]

 at org.jboss.modules.ModuleClassLoader.findClass(ModuleClassLoader.java:191)

 (... log messages removed ...)

What it means:
The ClassNotFoundException indicates a missing dependency. In this case, it can not find the class

org.hibernate.cache.HashtableCacheProvider.

WildFly 10

JBoss Community Documentation Page of 199 532

How to resolve it:
There is no module for “org.hibernate.cache”. In this case, the JAR containing the class was part of the EAP

5.1 deployment. We will look for the JAR that contains the missing class in the

 directory.EAP5_HOME/jboss-eap-5.1/seam/lib/

To do this, open a console and type the following:

cd EAP5_HOME/jboss-eap-5.1/seam/lib

grep 'org.hibernate.validator.InvalidValue' `find . -name '*.jar'`

The result shows:

Binary file ./hibernate-core.jar matches

Binary file ./test/hibernate-all.jar matches

In this case, we need to copy the to the hibernate-core.jar jboss-seam-booking.ear/lib/

directory:

cp EAP5_HOME/jboss-eap-5.1/seam/lib/hibernate-core.jar jboss-seam-booking.ear/lib

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

Next Issue: java.lang.ClassCastException:

org.hibernate.cache.HashtableCacheProvider
When you deploy the application, the log contains the following error:

WildFly 10

JBoss Community Documentation Page of 200 532

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-2) MSC00001: Failed to start service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase":

org.jboss.msc.service.StartException in service

jboss.persistenceunit."jboss-seam-booking.ear/jboss-seam-booking.jar#bookingDatabase": Failed to

start service

 at org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:1786)

 (... log messages removed ...)

Caused by: javax.persistence.PersistenceException: [PersistenceUnit: bookingDatabase] Unable to

build EntityManagerFactory

 at org.hibernate.ejb.Ejb3Configuration.buildEntityManagerFactory(Ejb3Configuration.java:903)

 (... log messages removed ...)

Caused by: org.hibernate.HibernateException: could not instantiate RegionFactory

[org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge]

 at org.hibernate.cfg.SettingsFactory.createRegionFactory(SettingsFactory.java:355)

 (... log messages removed ...)

Caused by: java.lang.reflect.InvocationTargetException

 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) [:1.6.0_25]

 (... log messages removed ...)

Caused by: org.hibernate.cache.CacheException: could not instantiate CacheProvider

[org.hibernate.cache.HashtableCacheProvider]

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:68)

... 20 more

Caused by: java.lang.ClassCastException: org.hibernate.cache.HashtableCacheProvider cannot be

cast to org.hibernate.cache.spi.CacheProvider

 at

org.hibernate.cache.internal.bridge.RegionFactoryCacheProviderBridge.<init>(RegionFactoryCacheProviderBridge.java:65)

... 20 more

What it means:
A ClassCastException can be a result of many problems. If you look at this exception in the log, it appears

the class org.hibernate.cache.HashtableCacheProvider extends org.hibernate.cache.spi.CacheProvider and

is being loaded by a different class loader than the class it extends. The

org.hibernate.cache.HashtableCacheProvider class is in in the hibernate-core.jar and is being loaded by the

application class loader. The class it extends, org.hibernate.cache.spi.CacheProvider, is in the

org/hibernate/main/hibernate-core-4.0.0.Beta1.jar and is implicitly loaded by that module.

This is not obvious, but due to changes in Hibernate 4, this problem is caused by a backward compatibility

issue due moving the HashtableCacheProvider class into another package. This class was moved from the

org.hibernate.cache package to the org.hibernate.cache.internal package. If you don't remove the

hibernate.cache.provider_class property from the persistence.xml file, it will force the Seam application to

bundle the old Hibernate libraries, resulting in ClassCastExceptions, In WildFly, you should move away from

using HashtableCacheProvider and use Infinispan instead.

WildFly 10

JBoss Community Documentation Page of 201 532

How to resolve it:
In WildFly, you need to comment out the hibernate.cache.provider_class property in the

 file as follows:jboss-seam-booking.jar/META-INF persistence.xml

<!-- <property name="hibernate.cache.provider_class"

value="org.hibernate.cache.HashtableCacheProvider"/> -->

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 in the same directory.jboss-seam-booking.ear.dodeploy file

No more issues: Deployment errors should be resolved
At this point, the application should deploy without errors, but when you access the URL “

” in a browser and attempt "Account Login", you will get a runtime errorhttp://localhost:8080/seam-booking/

“The page isn't redirecting properly”. In the next section, we will step through each runtime issue and how to

debug and resolve it.

23.4.3 Step 3: Debug and resolve runtime errors and

exceptions

First Issue: javax.naming.NameNotFoundException: Name

'jboss-seam-booking' not found in context ''
The application deploys successfully, but when you access the URL “ ” inhttp://localhost:8080/seam-booking/

a browser, you get “The page isn't redirecting properly” and the log contains the following error:

SEVERE [org.jboss.seam.jsf.SeamPhaseListener] (http--127.0.0.1-8080-1) swallowing exception:

java.lang.IllegalStateException: Could not start transaction

 at org.jboss.seam.jsf.SeamPhaseListener.begin(SeamPhaseListener.java:598) [jboss-seam.jar:]

 (... log messages removed ...)

Caused by: org.jboss.seam.InstantiationException: Could not instantiate Seam component:

org.jboss.seam.transaction.synchronizations

 at org.jboss.seam.Component.newInstance(Component.java:2170) [jboss-seam.jar:]

 (... log messages removed ...)

Caused by: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''

 at org.jboss.as.naming.util.NamingUtils.nameNotFoundException(NamingUtils.java:109)

 (... log messages removed ...)

What it means:
A NameNotFoundException indications a JNDI naming issue. JNDI naming rules have changed in

WildFly and we need to modify the lookup names to follow the new rules.

http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

WildFly 10

JBoss Community Documentation Page of 202 532

How to resolve it:
To debug this, look earlier in the server log trace to what JNDI binding were used. Looking at the server log

we see this:

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named RegisterAction in deployment unit subdeployment

"jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register

java:app/jboss-seam-booking.jar/RegisterAction!org.jboss.seam.example.booking.Register

 java:module/RegisterAction!org.jboss.seam.example.booking.Register

 java:global/jboss-seam-booking/jboss-seam-booking.jar/RegisterAction

 java:app/jboss-seam-booking.jar/RegisterAction

 java:module/RegisterAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named BookingListAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/BookingListAction!org.jboss.seam.example.booking.BookingList

java:app/jboss-seam-booking.jar/BookingListAction!org.jboss.seam.example.booking.BookingList

 java:module/BookingListAction!org.jboss.seam.example.booking.BookingList

 java:global/jboss-seam-booking/jboss-seam-booking.jar/BookingListAction

 java:app/jboss-seam-booking.jar/BookingListAction

 java:module/BookingListAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named HotelBookingAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

java:app/jboss-seam-booking.jar/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

 java:module/HotelBookingAction!org.jboss.seam.example.booking.HotelBooking

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelBookingAction

 java:app/jboss-seam-booking.jar/HotelBookingAction

 java:module/HotelBookingAction

15:01:16,138 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named AuthenticatorAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

java:app/jboss-seam-booking.jar/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

 java:module/AuthenticatorAction!org.jboss.seam.example.booking.Authenticator

 java:global/jboss-seam-booking/jboss-seam-booking.jar/AuthenticatorAction

 java:app/jboss-seam-booking.jar/AuthenticatorAction

 java:module/AuthenticatorAction

15:01:16,139 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named ChangePasswordAction in deployment unit

WildFly 10

JBoss Community Documentation Page of 203 532

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

java:app/jboss-seam-booking.jar/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

java:module/ChangePasswordAction!org.jboss.seam.example.booking.ChangePassword

 java:global/jboss-seam-booking/jboss-seam-booking.jar/ChangePasswordAction

 java:app/jboss-seam-booking.jar/ChangePasswordAction

 java:module/ChangePasswordAction

15:01:16,139 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-1) JNDI bindings for session bean named HotelSearchingAction in deployment unit

subdeployment "jboss-seam-booking.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

java:app/jboss-seam-booking.jar/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

java:module/HotelSearchingAction!org.jboss.seam.example.booking.HotelSearching

 java:global/jboss-seam-booking/jboss-seam-booking.jar/HotelSearchingAction

 java:app/jboss-seam-booking.jar/HotelSearchingAction

 java:module/HotelSearchingAction

15:01:16,140 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-6) JNDI bindings for session bean named EjbSynchronizations in deployment unit

subdeployment "jboss-seam.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

java:app/jboss-seam/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

 java:module/EjbSynchronizations!org.jboss.seam.transaction.LocalEjbSynchronizations

 java:global/jboss-seam-booking/jboss-seam/EjbSynchronizations

 java:app/jboss-seam/EjbSynchronizations

 java:module/EjbSynchronizations

15:01:16,140 INFO

[org.jboss.as.ejb3.deployment.processors.EjbJndiBindingsDeploymentUnitProcessor] (MSC service

thread 1-6) JNDI bindings for session bean named TimerServiceDispatcher in deployment unit

subdeployment "jboss-seam.jar" of deployment "jboss-seam-booking.ear" are as follows:

 java:global/jboss-seam-booking/jboss-seam/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

java:app/jboss-seam/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

 java:module/TimerServiceDispatcher!org.jboss.seam.async.LocalTimerServiceDispatcher

 java:global/jboss-seam-booking/jboss-seam/TimerServiceDispatcher

 java:app/jboss-seam/TimerServiceDispatcher

 java:module/TimerServiceDispatcher

We need to modify the WAR's lib/components.xml file to use the new JNDI bindings. In the log, note the EJB

JNDI bindings all start with "java:app/jboss-seam-booking.jar"

Replace the <core:init> element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

WildFly 10

JBoss Community Documentation Page of 204 532

Next, we need to add the EjbSynchronizations and TimerServiceDispatcher JNDI bindings. Add the following

component elements to the file:

<component class="org.jboss.seam.transaction.EjbSynchronizations"

jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

<component class="org.jboss.seam.async.TimerServiceDispatcher"

jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

The components.xml file should now look like this:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://jboss.com/products/seam/components"

 xmlns:core="http://jboss.com/products/seam/core"

 xmlns:security="http://jboss.com/products/seam/security"

 xmlns:transaction="http://jboss.com/products/seam/transaction"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

 "http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.2.xsd

 http://jboss.com/products/seam/transaction

http://jboss.com/products/seam/transaction-2.2.xsd

 http://jboss.com/products/seam/security

http://jboss.com/products/seam/security-2.2.xsd

 http://jboss.com/products/seam/components

http://jboss.com/products/seam/components-2.2.xsd">

 <!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

 <core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

 <core:manager conversation-timeout="120000"

 concurrent-request-timeout="500"

 conversation-id-parameter="cid"/>

 <transaction:ejb-transaction/>

 <security:identity authenticate-method="#{authenticator.authenticate}"/>

 <component class="org.jboss.seam.transaction.EjbSynchronizations"

 jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

 <component class="org.jboss.seam.async.TimerServiceDispatcher"

 jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

</components>

Redeploy the application by deleting the

 file and creating a blank standalone/deployments/jboss-seam-booking.ear.failed

 file in the same directory.jboss-seam-booking.ear.dodeploy

At this point, the application should deploy and run without error. When you access the URL “

” in a browser, you will be able to login successfully.http://localhost:8080/seam-booking/

http://localhost:8080/seam-booking/

WildFly 10

JBoss Community Documentation Page of 205 532

1.

2.

23.4.4 Step 4: Access the application

Access the URL “ ” in a browser and login with demo/demo. You shouldhttp://localhost:8080/seam-booking/

the Booking welcome page.

23.4.5 Summary of Changes

Although it would be much more efficient to determine dependencies in advance and add the implicit

dependencies in one step, this exercise shows how problems appear in the log and provides some

information on how to debug and resolve them.

The following is a summary of changes made to the application when migrating it to WildFly:

We created a file in the EAR's directory. Wejboss-deployment-structure.xml META-INF/

added "dependencies" and "exclusions" to resolve ClassNotFoundExceptions. This file contains the

following data:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <dependencies>

 <module name="javax.faces.api" slot="1.2" export="true"/>

 <module name="com.sun.jsf-impl" slot="1.2" export="true"/>

 <module name="org.apache.commons.logging" export="true"/>

 <module name="org.dom4j" export="true"/>

 <module name="org.apache.commons.collections" export="true"/>

 </dependencies>

 </deployment>

 <sub-deployment name="jboss-seam-booking.war">

 <exclusions>

 <module name="javax.faces.api" slot="main"/>

 <module name="com.sun.jsf-impl" slot="main"/>

 </exclusions>

 <dependencies>

 <module name="javax.faces.api" slot="1.2"/>

 <module name="com.sun.jsf-impl" slot="1.2"/>

 </dependencies>

 </sub-deployment>

</jboss-deployment-structure>

We copied the following JARs from the directory to the EAP5_HOME/jboss-eap-5.1/seam/lib/

 directory to resolve ClassNotFoundExceptions:jboss-seam-booking.ear/lib/

hibernate-core.jar

hibernate-validator.jar

http://localhost:8080/seam-booking/

WildFly 10

JBoss Community Documentation Page of 206 532

3.

1.

2.

4.

1.

2.

We modified the {{jboss-seam-booking.jar/META-INF/persistence.xml} file as follows.

First, we changed the jta-data-source element to use the Example database that ships with

AS7:

<!-- <jta-data-source>java:/bookingDatasource</jta-data-source> -->

<jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

Next, we commented out the hibernate.cache.provider_class property:

<!-- <property name="hibernate.cache.provider_class"

value="org.hibernate.cache.HashtableCacheProvider"/> -->

We modified the WAR's lib/components.xml file to use the new JNDI bindings

We replaced the <core:init> existing element as follows:

<!-- <core:init jndi-pattern="jboss-seam-booking/#{ejbName}/local" debug="true"

distributable="false"/> -->

<core:init jndi-pattern="java:app/jboss-seam-booking.jar/#{ejbName}" debug="true"

distributable="false"/>

We added component elements for the "EjbSynchronizations" and "TimerServiceDispatcher"

JNDI bindings

<component class="org.jboss.seam.transaction.EjbSynchronizations"

jndi-name="java:app/jboss-seam/EjbSynchronizations"/>

 <component class="org.jboss.seam.async.TimerServiceDispatcher"

jndi-name="java:app/jboss-seam/TimerServiceDispatcher"/>

The unmodified EAR from EAP 5.1 (jboss-seam-booking-eap51.ear.tar.gz) and the EAR as modified to run

on AS7 (jboss-seam-booking-as7.ear.tar.gz) are attached to this document.

WildFly 10

JBoss Community Documentation Page of 207 532

24 How do I migrate my application from AS7 to

WildFly

About this Document

Overview of WildFly

Server Migration

JacORB Subsystem

JacORB Subsystem Configuration

JBoss Web Subsystem

JBoss Web Subsystem Configuration

WebSockets

Messaging Subsystem

Messaging Subsystem Configuration

Management model

XML Configuration

Messaging Interceptors

JMS Destinations

Messaging Logging

Messaging Data

WildFly 10

JBoss Community Documentation Page of 208 532

Application Migration

EJBs

CMP Entity EJBs

EJB Client

Default Remote Connection Port

Default Connector

JMS

Proprietary JMS Resource Definitions

External JMS Clients

JPA (and Hibernate)

Applications That Plan to Use Hibernate ORM 5.0

Applications that currently use Hibernate ORM 4.0 - 4.3

Applications that currently use Hibernate 3

Web Applications

JBoss Web Valves

Web Services

CXF Spring Webservices

JAX-RPC

JAX-RS 2.0

REST Client API

Application Clustering

HA Singleton

Stateful Session EJB Clustering

Web Session Clustering

Other Specifications and Frameworks

Remote JNDI Clients

JSR-88

Module Dependencies

24.1 About this Document

The purpose of this guide is to document changes that are needed to successfully run and deploy AS 7

applications on WildFly. It provides information on to resolve deployment and runtime problems and how to

prevent changes in application behavior. This is the first step in moving to the new platform. Once the

application is successfully deployed and running on the new platform, plans can be made to upgrade

individual components to use the new functions and features of WildFly.

WildFly 10

JBoss Community Documentation Page of 209 532

24.2 Overview of WildFly

The list of WildFly new functionality is extensive, being the most relevant, with respect to server and

application migrations:

Java EE7 - WildFly is a certified implementation of Java EE7, meeting both the Web and the Full

profiles, and already includes support for the latest iterations of CDI (1.2) and Web Sockets (1.1).

Undertow - A new cutting-edge web server in WildFly, designed for maximum throughput and

scalability, including environments with over a million connections. And the latest web technologies,

such as the new HTTP/2 standard, are already onboard.

Apache ActiveMQ Artemis - WildFly's new JMS broker. Based on an code donation from HornetQ,

this Apache subproject provides outstanding performance based on a proven non-blocking

architecture.

IronJacamar 1.2 - The latest IronJacamar provides a stable and feature rich JCA & Datasources

support.

JBossWS 5 - The fifth generation of JBossWS, a major leap forward, brings new features and

performances improvements to WildFly Web Services

RESTEasy 3 - WildFly includes the latest generation of RESTEasy, which goes beyond the standard

Java EE REST APIs (JAX-RS 2.0), by also providing a number of useful extensions, such as JSON

Web Encryption, Jackson, Yaml, JSON-P, and Jettison.

OpenJDK ORB - WildFly switched the IIOP implementation from JacORB, to a downstream branch of

the OpenJDK Orb, leading to better interoperability with the JVM ORB and the Java EE RI.

Feature Rich Clustering - Clustering support was heavily refactored in WildFly, and includes several

APIs for applications

Port Reduction - By utilising HTTP upgrade, WildFly has moved nearly all of its protocols to be

multiplexed over just two HTTP ports: a management port (9990), and an application port (8080).

Enhanced Logging - The management API now supports the ability to list and view the available log

files on a server, or even define custom formatters other than the default pattern

formatter. Deployment's logging setup is also greatly enhanced.

The support for some technologies was removed, due to the high maintenance cost, low community interest,

and much better alternative solutions:

CMP EJB - JPA offers a much more performant and flexible API

JAX-RPC - JAX-WS offers a much more accurate and complete solution

JSR-88 - With very little adoption, the more complete deployment APIs provided by vendors are

preferred

24.3 Server Migration

Migrating an AS7 server to WildFly consists of migrating custom configuration files, and some persisted data

that may exist.

WildFly 10

JBoss Community Documentation Page of 210 532

24.3.1 JacORB Subsystem

WildFly ORB support is provided by the JDK itself, instead of relying on JacORB. A subsystem configuration

migration is required.

JacORB Subsystem Configuration
The extension's module , while theorg.jboss.as.jacorb *is replaced by module *org.wildfly.iiop-openjdk

subsystem configuration namespace is replaced by urn:jboss:domain:jacorb:2.0

.urn:jboss:domain:iiop-openjdk:1.0

The XML configuration of the new subsystem accepts only a subset of the legacy elements/attributes.

Consider the following example of the JacORB subsystem configuration, containing all valid elements and

attributes:

<subsystem xmlns="urn:jboss:domain:jacorb:1.3">

 <orb name="JBoss" print-version="off" use-imr="off" use-bom="off" cache-typecodes="off"

 cache-poa-names="off" giop-minor-version ="2" socket-binding="jacorb"

ssl-socket-binding="jacorb-ssl">

 <connection retries="5" retry-interval="500" client-timeout="0" server-timeout="0"

 max-server-connections="500" max-managed-buf-size="24" outbuf-size="2048"

 outbuf-cache-timeout="-1"/>

 <initializers security="off" transactions="spec"/>

 </orb>

 <poa monitoring="off" queue-wait="on" queue-min="10" queue-max="100">

 <request-processors pool-size="10" max-threads="32"/>

 </poa>

 <naming root-context="JBoss/Naming/root" export-corbaloc="on"/>

 <interop sun="on" comet="off" iona="off" chunk-custom-rmi-valuetypes="on"

 lax-boolean-encoding="off" indirection-encoding-disable="off"

strict-check-on-tc-creation="off"/>

 <security support-ssl="off" add-component-via-interceptor="on" client-supports="MutualAuth"

 client-requires="None" server-supports="MutualAuth" server-requires="None"/>

 <properties>

 <property name="some_property" value="some_value"/>

 </properties>

</subsystem>

Properties that are not supported and have to be removed:

<orb/>: client-timeout, max-managed-buf-size, max-server-connections, outbuf-cache-timeout,

outbuf-size, connection retries, retry-interval, name,server-timeout

<poa/>: queue-min, queue-max, pool-size, max-threads

On-off properties: have to either be removed or in off mode:

<orb/>: cache-poa-names, cache-typecodes, print-version, use-bom, use-imr

<interop/>: all except sun

<poa/>: monitoring, queue-wait

WildFly 10

JBoss Community Documentation Page of 211 532

In case the legacy subsystem configuration is available, such configuration may be migrated to the new

subsystem by invoking its operation, using the CLI management client:migrate

/subsystem=jacorb:migrate

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=jacorb:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

Properties X cannot be emulated using OpenJDK ORB and are not supported

This warning means that mentioned properties are not supported and won't be included in the new

subsystem configuration. As a result of that admin must be aware that any behaviour implied by those

properties would be inexistent. Admin has to check whether subsystem is able to operate correctly

without that behaviour on the new server.Unsupported properties: cache-poa-names,

cache-typecodes, chunk-custom-rmi-valuetypes, client-timeout, comet, indirection-encoding-disable,

iona, lax-boolean-encoding, max-managed-buf-size, max-server-connections, max-threads,

outbuf-cache-timeout, outbuf-size, queue-max, queue-min, poa-monitoring, print-version, retries,

retry-interval, queue-wait, server-timeout, strict-check-on-tc-creation, use-bom, use-imr.

The properties X use expressions. Configuration properties that are used to resolve those

expressions should be transformed manually to the new iiop-openjdk subsystem format

Admin has to transform all the configuration files to work correctly with the jacorb subsystem. f.e.

jacorb has a property giop-minor-version whereas openjdk uses property giop-version. Let's suppose

we use '1' minor version in jacorb and have it configured in standalone.conf file as system variable:

-Diiop-giop-minor-version=1. Admin is responsible for changing this variable to 1.1 after the migration

to make sure that the new subsystem will work correctly.

24.3.2 JBoss Web Subsystem

JBoss Web is replaced by Undertow in WildFly, which means that the legacy subsystem configuration

should be migrated to WildFly's Undertow subsystem configuration.

JBoss Web Subsystem Configuration
The extension's module ,org.jboss.as.web *is replaced by module *org.wildfly.extension.undertow

while the subsystem configuration namespace is replaced by urn:jboss:domain:web:*

.urn:jboss:domain:undertow:3.0

The XML configuration of the new subsystem is relatively different. Consider the following example of the

JBoss Web subsystem configuration, containing all valid elements and attributes:

WildFly 10

JBoss Community Documentation Page of 212 532

<?xml version="1.0" encoding="UTF-8"?>

<subsystem xmlns="urn:jboss:domain:web:2.2" default-virtual-server="default-host" native="true"

default-session-timeout="30" instance-id="foo">

 <configuration>

 <static-resources listings="true"

 sendfile="1000"

 file-encoding="utf-8"

 read-only="true"

 webdav="false"

 secret="secret"

 max-depth="5"

 disabled="false"

 />

 <jsp-configuration development="true"

 disabled="false"

 keep-generated="true"

 trim-spaces="true"

 tag-pooling="true"

 mapped-file="true"

 check-interval="20"

 modification-test-interval="1000"

 recompile-on-fail="true"

 smap="true"

 dump-smap="true"

 generate-strings-as-char-arrays="true"

 error-on-use-bean-invalid-class-attribute="true"

 scratch-dir="/some/dir"

 source-vm="1.7"

 target-vm="1.7"

 java-encoding="utf-8"

 x-powered-by="true"

 display-source-fragment="true" />

 <mime-mapping name="ogx" value="application/ogg" />

 <welcome-file>titi</welcome-file>

 </configuration>

 <connector name="http" scheme="http"

 protocol="HTTP/1.1"

 socket-binding="http"

 enabled="true"

 enable-lookups="false"

 proxy-binding="reverse-proxy"

 max-post-size="2097153"

 max-save-post-size="512"

 redirect-binding="https"

 max-connections="300"

 secure="false"

 executor="some-executor"

 />

 <connector name="https" scheme="https" protocol="HTTP/1.1" secure="true"

socket-binding="https">

 <ssl certificate-key-file="${file-base}/server.keystore"

 ca-certificate-file="${file-base}/jsse.keystore"

 key-alias="test"

 password="changeit"

 cipher-suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA"

 protocol="SSLv3"

 verify-client="true"

WildFly 10

JBoss Community Documentation Page of 213 532

 verify-depth="3"

 certificate-file="certificate-file.ext"

 ca-revocation-url="https://example.org/some/url"

 ca-certificate-password="changeit"

 keystore-type="JKS"

 truststore-type="JKS"

 session-cache-size="512"

 session-timeout="3000"

 ssl-protocol="RFC4279"

 />

 </connector>

 <connector name="http-vs" scheme="http" protocol="HTTP/1.1" socket-binding="http" >

 <virtual-server name="vs1" />

 <virtual-server name="vs2" />

 </connector>

 <virtual-server name="default-host" enable-welcome-root="true" default-web-module="foo.war">

 <alias name="localhost" />

 <alias name="example.com" />

 <access-log resolve-hosts="true" extended="true" pattern="extended" prefix="prefix"

rotate="true" >

 <directory relative-to="jboss.server.base.dir" path="toto" />

 </access-log>

 <rewrite name="myrewrite" pattern="^/helloworld(.*)" substitution="/helloworld/test.jsp"

flags="L" />

 <rewrite name="with-conditions" pattern="^/helloworld(.*)"

substitution="/helloworld/test.jsp" flags="L" >

 <condition name="https" pattern="off" test="%{HTTPS}" flags="NC"/>

 <condition name="user" test="%{USER}" pattern="toto" flags="NC"/>

 <condition name="no-flags" test="%{USER}" pattern="toto"/>

 </rewrite>

 <sso reauthenticate="true" domain="myDomain" cache-name="myCache"

 cache-container="cache-container" http-only="true"/>

 </virtual-server>

 <virtual-server name="vs1" />

 <virtual-server name="vs2" />

 <valve name="myvalve" module="org.jboss.some.module" class-name="org.jboss.some.class"

enabled="true">

 <param param-name="param-name" param-value="some-value"/>

 </valve>

 <valve name="accessLog" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.AccessLogValve">

 <param param-name="prefix" param-value="myapp_access_log." />

 <param param-name="suffix" param-value=".log" />

 <param param-name="rotatable" param-value="true" />

 <param param-name="fileDateFormat" param-value="yyyy-MM-dd" />

 <param param-name="pattern" param-value="common" />

 <param param-name="directory" param-value="${jboss.server.log.dir}" />

 <param param-name="resolveHosts" param-value="false"/>

 <param param-name="conditionIf" param-value="log-enabled"/>

 </valve>

 <valve name="request-dumper" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.RequestDumperValve"/>

 <valve name="remote-addr" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.RemoteAddrValve">

 <param param-name="allow" param-value="127.0.0.1,127.0.0.2" />

 <param param-name="deny" param-value="192.168.1.20" />

 </valve>

 <valve name="crawler" class-name="org.apache.catalina.valves.CrawlerSessionManagerValve"

WildFly 10

JBoss Community Documentation Page of 214 532

module="org.jboss.as.web" >

 <param param-name="sessionInactiveInterval" param-value="1" />

 <param param-name="crawlerUserAgents" param-value="Google" />

 </valve>

 <valve name="proxy" class-name="org.apache.catalina.valves.RemoteIpValve"

module="org.jboss.as.web" >

 <param param-name="internalProxies" param-value="192\.168\.0\.10|192\.168\.0\.11" />

 <param param-name="remoteIpHeader" param-value="x-forwarded-for" />

 <param param-name="proxiesHeader" param-value="x-forwarded-by" />

 <param param-name="trustedProxies" param-value="proxy1|proxy2" />

 </valve>

</subsystem>

FIXME compare with Undertow, list unsupported features

It's possible to do a migration of the legacy subsystem configuration, and related persisted data. , by

invoking the legacy’s subsystem’s operation, using the CLI management client:migrate

/subsystem=web:migrate

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=web:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

WildFly 10

JBoss Community Documentation Page of 215 532

Could not migrate resource X

This warning means that mentioned resource configuration is not supported and won't be included in

the new subsystem configuration. As a result of that admin must be aware that any behaviour implied

by those resources would be inexistent. Admin has to check whether subsystem is able to operate

correctly without that behaviour on the new server.

FIXME must document which are the resources that trigger this

Could not migrate attribute X from resource Y.

This warning means that mentioned resource configuration property is not supported and won't be

included in the new subsystem configuration. As a result of that admin must be aware that any

behaviour implied by those properties would be inexistent. Admin has to check whether subsystem is

able to operate correctly without that behaviour on the new server.

FIXME must document which are the properties that trigger this

Could not migrate SSL connector as no SSL config is defined

Could not migrate verify-client attribute %s to the Undertow equivalent

Could not migrate verify-client expression %s

Could not migrate valve X

This warning means that mentioned valve configuration is not supported and won't be included in the

new subsystem configuration. As a result of that admin must be aware that any behaviour implied by

those resources would be inexistent. Admin has to check whether subsystem is able to operate

correctly without that behaviour on the new server. This warning may happen for :

org.apache.catalina.valves.RemoteAddrValve : must have at least one allowed or denied

value.

org.apache.catalina.valves.RemoteHostValve : must have at least one allowed or denied

value.

org.apache.catalina.authenticator.BasicAuthenticator

org.apache.catalina.authenticator.DigestAuthenticator

org.apache.catalina.authenticator.FormAuthenticator

org.apache.catalina.authenticator.SSLAuthenticator

org.apache.catalina.authenticator.SpnegoAuthenticator

custom valves

Could not migrate attribute X from valve Y

This warning means that mentioned valve configuration property is not supported and won't be

included in the new subsystem configuration. As a result of that admin must be aware that any

behaviour implied by those properties would be inexistent. Admin has to check whether subsystem is

able to operate correctly without that behaviour on the new server. This warning may happen for :

org.apache.catalina.valves.AccessLogValve : if you use the following parameters resolveHosts

, , , , , , .fileDateFormat renameOnRotate encoding locale requestAttributesEnabled buffered

org.apache.catalina.valves.ExtendedAccessLogValve : if you use the following parameters

, , , , , , resolveHosts fileDateFormat renameOnRotate encoding locale requestAttributesEnabled

.buffered

org.apache.catalina.valves.RemoteIpValve:

if is defined and isn't set to "x-forwarded-for".remoteIpHeader

if is defined and isn't set to "x-forwarded-proto".protocolHeader

if you use the following parameters and .httpServerPort httpsServerPort

WildFly 10

JBoss Community Documentation Page of 216 532

1.

2.

3.

Also, please note that Undertow doesn't support JBoss Web , but some of these may be migrated tovalves

Undertow handlers, and JBoss Web subsystem’s operation do that too.migrate

Here is a list of those valves and their corresponding Undertow handler:

Valve Handler

org.apache.catalina.valves.AccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

org.apache.catalina.valves.ExtendedAccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

org.apache.catalina.valves.RequestDumperValve io.undertow.server.handlers.RequestDumpingHandler

org.apache.catalina.valves.RewriteValve io.undertow.server.handlers.SetAttributeHandler

org.apache.catalina.valves.RemoteHostValve io.undertow.server.handlers.AccessControlListHandler

org.apache.catalina.valves.RemoteAddrValve io.undertow.server.handlers.IPAddressAccessControlHandler

org.apache.catalina.valves.RemoteIpValve io.undertow.server.handlers.ProxyPeerAddressHandler

org.apache.catalina.valves.StuckThreadDetectionValve io.undertow.server.handlers.StuckThreadDetectionHandler

org.apache.catalina.valves.CrawlerSessionManagerValve io.undertow.servlet.handlers.CrawlerSessionManagerHandler

The can't be automatically migrated to org.apache.catalina.valves.JDBCAccessLogValve

 as the expectations differ.io.undertow.server.handlers.JDBCLogHandler

The migration can be done manually thought :

create the driver module and add the driver to the list of available drivers

create a datasource pointing to the database where the log entries are going to be stored

add an definition with the following expression:expression-filter

"jdbc-access-log(datasource='datasource-jndi-name')

<valve name="jdbc" module="org.jboss.as.web"

class-name="org.apache.catalina.valves.JDBCAccessLogValve">

 <param param-name="driverName" param-value="com.mysql.jdbc.Driver" />

 <param param-name="connectionName" param-value="root" />

 <param param-name="connectionPassword" param-value="password" />

 <param param-name="connectionURL"

param-value="jdbc:mysql://localhost:3306/wildfly?zeroDateTimeBehavior=convertToNull" />

 <param param-name="format" param-value="combined" />

</valve>

should become:

WildFly 10

JBoss Community Documentation Page of 217 532

3.

<subsystem xmlns="urn:jboss:domain:datasources:1.2">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/accessLogDS" pool-name="ccessLogDS"

enabled="true" use-java-context="true">

<connection-url>jdbc:mysql://localhost:3306/wildfly?zeroDateTimeBehavior=convertToNull</connection-url>

<driver>mysql</driver>

 <security>

 <user-name>root</user-name>

 <password>password</password>

 </security>

 </datasource>

...

 <drivers>

 <driver name="mysql" module="com.mysql">

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 </driver>

...

 </drivers>

 </datasources>

</subsystem>

...

<subsystem xmlns="urn:jboss:domain:undertow:3.1"

default-virtual-host="default-virtual-host" default-servlet-container="myContainer"

 default-server="some-server" instance-id="some-id" statistics-enabled="true">

...

 <server name="some-server" default-host="other-host" servlet-container="myContainer">

...

 <host name="other-host" alias="www.mysite.com, ${prop.value:default-alias}"

default-web-module="something.war" disable-console-redirect="true">

 <location name="/" handler="welcome-content" />

 <filter-ref name="jdbc-access"/>

 </host>

 </server>

...

 <filters>

 <expression-filter name="jdbc-access"

expression="jdbc-access-log(datasource='java:jboss/datasources/accessLogDS')" />

...

 </filters>

</subsystem>

Please note that any custom valve won't be migrated at all and will just be removed from the configuration.

Also the authentication related valves are to be replaced by Undertow authentication mechanisms, and this

have to be done manually.

FIXME how this last “manual” replacement is done? Need whole process documented and concrete

example

WildFly 10

JBoss Community Documentation Page of 218 532

WebSockets
In AS7, to use WebSockets, you had to configure the 'http' in the subsystem of the serverconnector web

configuration file to use the NIO2 protocol. The following is an example of the Management CLI command to

configure WebSockets in the previous releases.

/subsystem=web/connector=http/:write-attribute(name=protocol,value=org.apache.coyote.http11.Http11NioProtocol)

WebSockets are a requirement of the Java EE 7 specification and the default configuration is included in

WildFly. More complex WebSocket configuration is done in the of the servlet-container undertow

 subsystem of the server configuration file.

You no longer need to configure the server for default WebSocket support.

FIXME isn’t <websockets /> required for that?

24.3.3 Messaging Subsystem

WildFly JMS support is provided by ActiveMQ Artemis, instead of HornetQ. It's possible to do a migration of

the legacy subsystem configuration, and related persisted data.

Messaging Subsystem Configuration
The extension's module is replaced by module org.jboss.as.messaging

, while the subsystem configuration namespace org.wildfly.extension.messaging-activemq

 is replaced by .urn:jboss:domain:messaging:3.0 urn:jboss:domain:messaging-activemq:1.0

Management model
In most cases, an effort was made to keep resource and attribute names as similar as possible to those

used in previous releases. The following table lists some of the changes.

HornetQ name ActiveMQ name

hornetq-server server

hornetq-serverType serverType

connectors connector

discovery-group-name discovery-group

The management operations invoked on the new messaging-subsystem starts with

 while the legacy messaging subsystem was at /subsystem=messaging-activemq/server=X

./subsystem=messaging/hornetq-server=X

In case the legacy subsystem configuration is available, such configuration may be migrated to the new

subsystem by invoking its operation, using the CLI management client:migrate

WildFly 10

JBoss Community Documentation Page of 219 532

/subsystem=messaging:migrate

There is also a operation that returns a list of all the management operations thatdescribe-migration

are performed to migrate from the legacy subsystem to the new one:

/subsystem=messaging:describe-migration

Both and will also display a list of migration-warnings if there are somemigrate describe-migration

resource or attributes that can not be migrated automatically. The following is a list of these warnings:

The migrate operation can not be performed: the server must be in admin-only mode

The operation requires starting the server in admin-only mode, which is done by addingmigrate

parameter to the server start command, e.g.--admin-only

./standalone.sh --admin-only

Can not migrate attribute local-bind-address from resource X. Use instead the socket-attribute to

configure this broadcast-group.

Can not migrate attribute local-bind-port from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Can not migrate attribute group-address from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Can not migrate attribute group-port from resource X. Use instead the socket-binding attribute to

configure this broadcast-group.

Broadcast-group resources no longer accept local-bind-address, local-bind-port, group-address,

group-port attributes. It only accepts a socket-binding. The warning notifies that resource X has an

unsupported attribute. The user will have to set the socket-binding attribute on the resource and

ensures it corresponds to a defined socket-binding resource.

Classes providing the %s are discarded during the migration. To use them in the new

messaging-activemq subsystem, you will have to extend the Artemis-based Interceptor.

Messaging interceptors support is significantly different in WildFly 10, any interceptors configured in

the legacy subsystem are discarded during migration. Please refer to the Messaging Interceptors

section to learn how to migrate legacy Messaging interceptors.

Can not migrate the HA configuration of X. Its shared-store and backup attributes holds expressions

and it is not possible to determine unambiguously how to create the corresponding ha-policy for the

messaging-activemq's server.

If the hornetq-server X’s shared-store or backup attributes hold an expression, such as ${xxx}, then

it’s not possible to determine the actual ha-policy of the migrated server. In that case, we discard it

and the user will have to add the correct ha-policy afterwards (ha-policy is a single resource

underneath the messaging-activemq's server resource).

WildFly 10

JBoss Community Documentation Page of 220 532

Can not migrate attribute local-bind-address from resource X. Use instead the socket-binding attribute

to configure this discovery-group.Can not migrate attribute local-bind-port from resource X. Use

instead the socket-binding attribute to configure this discovery-group.

Can not migrate attribute group-address from resource X. Use instead the socket-binding attribute to

configure this discovery-group.

Can not migrate attribute group-port from resource X. Use instead the socket-binding attribute to

configure this discovery-group.

discovery-group resources no longer accept local-bind-address, local-bind-port, group-address,

group-port attributes. It only accepts a socket-binding. The warning notifies that resource X has an

unsupported attribute.

The user will have to set the socket-binding attribute on the resource and ensures it corresponds to a

defined socket-binding resource.

Can not create a legacy-connection-factory based on connection-factory X. It uses a HornetQ in-vm

connector that is not compatible with Artemis in-vm connector

Legacy subsystem’s remote connection-factory resources are migrated into legacy-connection-factory

resources, to allow old EAP6 clients to connect to EAP7. However a connection-factory using in-vm

will not be migrated, because a in-vm client will be based on EAP7, not EAP 6. In other words,

legacy-connection-factory are created only when the CF is using remote connectors, and this warning

notifies about in-vm connection-factory X not migrated.

Can not migrate attribute X from resource Y. The attribute uses an expression that can be resolved

differently depending on system properties. After migration, this attribute must be added back with an

actual value instead of the expression.

This warning appears when the migration logic needs to know the concrete value of attribute X during

migration, but instead such value includes an expression that’s can’t be resolved, so the actual value

can not be determined, and the attribute is discarded. It happens in several cases, for instance:

cluster-connection forward-when-no-consumers. This boolean attribute has been replaced by

the message-load-balancing-type attribute (which is an enum of OFF, STRICT, ON_DEMAND)

broadcast-group and discovery-group’s jgroups-stack and jgroups-channel attributes. They

reference other resources and we no longer accept expressions for them.

Can not migrate attribute X from resource Y. This attribute is not supported by the new

messaging-activemq subsystem.

Some attributes are no longer supported in the new messaging-activemq subsystem and are simply

discarded:

hornetq-server’s failback-delay

http-connector’s use-nio attribute

http-acceptor’s use-nio attribute

remote-connector’s use-nio attribute

remote-acceptor’s use-nio attribute

WildFly 10

JBoss Community Documentation Page of 221 532

XML Configuration
The XML configuration has changed significantly with the new messaging-activemq subsystem to provide a

XML scheme more consistent with other WildFly subsystems.

It is not advised to change the XML configuration of the legacy messaging subsystem to conform to the new

messaging-activemq subsystem. Instead, invoke the legacy subsystem operation. This operationmigrate

will write the XML configuration of the new subsystem as a part of its execution.messaging-activemq

Messaging Interceptors
Messaging Interceptors are significantly different in EAP 7, requiring both code and configuration changes by

the user. In concrete the interceptor base Java class is now

, and the user interceptor implementationorg.apache.artemis.activemq.api.core.interceptor.Interceptor

classes may now be loaded by any server module. Note that prior to EAP 7 the interceptor classes could

only be installed by adding these to the HornetQ module, thus requiring the user to change such module

XML descriptor, its .module.xml

With respect to the server XML configuration, the user must now specify the module to load its interceptors

in the new subsystem XML config, e.g:messaging-activemq

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">

 <server name=“default”>

 ...

 <incoming-interceptors>

 <class name="org.foo.incoming.myInterceptor" module="org.foo" />

 <class name="org.bar.incoming.myOtherInterceptor" module="org.bar" />

 </incoming-interceptors>

 <outgoing-interceptors>

 <class name="org.foo.outgoing.myInterceptor" module="org.foo" />

 <class name="org.bar.outgoing.myOtherInterceptor" module="org.bar" />

 </outgoing-interceptors>

 </server>

</subsystem>

JMS Destinations
In previous releases, JMS destination queues were configured in the <jms-destinations> element under the

hornetq-server section of the subsystem.messaging

<jms-destinations>

<jms-queue name="testQueue">

<entry name="queue/test"/>

<entry name="java:jboss/exported/jms/queue/test"/>

</jms-queue>

</jms-destinations>

In WildFly, the JMS destination queue is configured in the default server of

the messaging-activemq subsystem.

<jms-queue name="testQueue" entries="queue/test java:jboss/exported/jms/queue/test"/>

WildFly 10

JBoss Community Documentation Page of 222 532

Messaging Logging
The prefix of messaging log messages in WildFly is , instead of .WFLYMSGAMQ WFLYMSG

Messaging Data
The location of the messaging data has been changed in the new messaging-activemq subsystem:

messagingbindings/ -> activemq/bindings/

messagingjournal/ -> activemq/journal/

messaginglargemessages/ -> activemq/largemessages/

messagingpaging/ -> activemq/paging/

To migrate legacy messaging data, you will have to export the directories used by the legacy messaging

subsystem and import them into the new subsystem's server by using its import-journal operation:

/subsystem=messaging-activemq/server=default:import-journal(file=<path to XML dump>)

The XML dump is a XML file generated by HornetQ util class.XmlDataExporter

24.4 Application Migration

Before you migrate your application, you should be aware that some features that were available in previous

releases are now deprecated or missing.

WildFly 10

JBoss Community Documentation Page of 223 532

24.4.1 EJBs

CMP Entity EJBs
Container-Managed Persistence entity beans support is optional in Java EE 7, and WildFly does not provide

support for these.

CMP entity beans are defined in the descriptor, in concrete an entity bean is CMP only if the ejb-jar.xml

's child element named is included and has a value of . An example:<entity/> persistence-type Container

<?xml version="1.1" encoding="UTF-8"?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

 version="3.1">

 <enterprise-beans>

 <entity>

 <ejb-name>SimpleBMP</ejb-name>

 <local-home>org.jboss.as.test.integration.ejb.entity.bmp.BMPLocalHome</local-home>

 <local>org.jboss.as.test.integration.ejb.entity.bmp.BMPLocalInterface</local>

 <ejb-class>org.jboss.as.test.integration.ejb.entity.bmp.SimpleBMPBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.Integer</prim-key-class>

 <reentrant>true</reentrant>

 </entity>

 </enterprise-beans>

</ejb-jar>

CMP entity beans should be replaced by JPA entities.

WildFly 10

JBoss Community Documentation Page of 224 532

EJB Client

Default Remote Connection Port
The default remote connection port has changed from '4447' to '8080'.

In JBoss AS7, the file looked similar to the following:jboss-ejb-client.properties

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port=4447

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

In WildFly, the properties file looks like this:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port=8080

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

Default Connector
In WildFly, the default connector has changed from "remoting" to "http-remoting". This change impacts

clients that use libraries from one release of JBoss and to connect to server in a different release.

If a client application uses the EJB client library from JBoss AS 7 and wants to connect to WildFly 10

server, the server must be configured to expose a remoting connector on a port other than "8080".

The client must then connect using that newly configured connector.

A client application that uses the EJB client library from WildFly 10 and wants to connect to a JBoss

AS 7 server must be aware that the server instance does not use the http-remoting connector and

instead uses a remoting connector. This is achieved by defining a new client-side connection

property.

remote.connection.default.protocol=remote

External applications using JNDI, to remotely lookup up EJBs in a WildFly 10 server, may also need to be

migrated, please refer to section for further information.Remote JNDI Clients

WildFly 10

JBoss Community Documentation Page of 225 532

24.4.2 JMS

Proprietary JMS Resource Definitions
The proprietary XML descriptors, previously used to setup JMS resources, are deprecated in WildFly. Java

EE 7 (section EE.5.18) standardised such functionality.

The deprecated descriptors are files bundled in the application package, which name ends with .-jms.xml

Their namespace has been changed to .urn:jboss:messaging-activemq-deployment:1.0

External JMS Clients
JMS Resources are remotely looked up using JNDI, and looking up resources in a WildFly 10 server may

require changes in the application code, please refer to section for further information.Remote JNDI Clients

WildFly 10

JBoss Community Documentation Page of 226 532

24.4.3 JPA (and Hibernate)

Applications That Plan to Use Hibernate ORM 5.0
WildFly ships with Hibernate ORM 5.0 and those libraries are implicitly added to the application classpath

when a persistence.xml is detected during deployment. If your application uses JPA, it will default to using

the Hibernate ORM 5.0 libraries.

Hibernate ORM 5.0 introduces:

Redesigned metamodel - Complete replacement for the current org.hibernate.mapping code

Query parser - Improved query parser based on Antlr 3/4

Multi-tenancy improvements - Discriminator-based multi-tenancy

Follow-on fetches - Two-phase loading via LoadPlans/EntityGraphs

Applications that currently use Hibernate ORM 4.0 - 4.3
If your application needs second-level cache enabled, you should migrate to Hibernate ORM 5.0, which is

integrated with Infinispan 8.0. Applications written with Hibernate ORM 4.x can still use Hibernate 4.x if you

define a custom JBoss module with Hibernate 4.x JARs and exclude the Hibernate 5 classes from your

application. It is recommended that you migrate your application to use Hibernate 5.

For information about the changes implemented between Hibernate 4 and Hibernate 5, see

https://github.com/hibernate/hibernate-orm/blob/master/migration-guide.adoc

Applications that currently use Hibernate 3
The integration classes that made it easier to use Hibernate 3 in AS 7 were removed from WildFly 10. If your

application still uses Hibernate 3 libraries, it is strongly recommended that you migrate your application to

use Hibernate 5 as Hibernate 3 will no longer work in WildFly without a lot of effort. If you can not migrate to

Hibernate 5, you must define a custom JBoss Module for the Hibernate 3 classes and exclude the Hibernate

5 classes from your application.

https://github.com/hibernate/hibernate-orm/blob/master/migration-guide.adoc

WildFly 10

JBoss Community Documentation Page of 227 532

24.4.4 Web Applications

JBoss Web Valves
Undertow does not support the JBoss Web Valve functionality. This can be replaced by Undertow Handlers

(see forhttp://undertow.io/undertow-docs/undertow-docs-1.3.0/index.html#undertow-handler-authors-guide

more).

List of valves that were provided with JBoss Web, together with a corresponding Undertow handler, is

provided above, in the section on the JBoss Web subsystem.

JBoss Web Valves are specified in the proprietary jboss-web.xml descriptor, through <valve /> element(s).

These can be replaced using the element(s). For example:<http-handler />

<jboss-web>

 <valve>

 <class-name>org.apache.catalina.valves.RequestDumperValve</class-name>

 <module>org.jboss.as.web</module>

 </valve>

</jboss-web>

can be replaced by

<jboss-web>

 <http-handler>

 <class-name>io.undertow.server.handlers.RequestDumpingHandler</class-name>

 <module>io.undertow.core</module>

 </http-handler>

</jboss-web>

24.4.5 Web Services

CXF Spring Webservices
The setup of web service's endpoints and clients, through a Spring XML descriptor, driving a CXF bus

creation, is no longer supported in WildFly.

Any application containing a jbossws-cxf.xml must migrate all functionality specified in such XML descriptor,

mostly already supported by the JAX-WS specification, included in Java EE 7. It is still possible to rely on

direct Apache CXF API usage, loosing the Java EE portability of the application, for instance when specific

Apache CXF functionalities are needed. Please refer to the Apache CXF Integration document for further

information.

http://undertow.io/undertow-docs/undertow-docs-1.3.0/index.html#undertow-handler-authors-guide

WildFly 10

JBoss Community Documentation Page of 228 532

RPC
JAX-RPC is an API for building Web services and clients that used remote procedure calls (RPC) and XML,

which was deprecated in Java EE 6, and is no longer supported by WildFly.

JAX-RPC Web Services may be identified by the presence of the XML descriptor named web services.xml,

containing a element that includes a child element named <webservice-description/>

. An example:<jaxrpc-mapping-file/>

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd" version="1.1">

 <webservice-description>

 <webservice-description-name>HelloService</webservice-description-name>

 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>

 <jaxrpc-mapping-file>WEB-INF/mapping.xml</jaxrpc-mapping-file>

 <port-component>

 <port-component-name>Hello</port-component-name>

 <wsdl-port>HelloPort</wsdl-port>

<service-endpoint-interface>org.jboss.chap12.hello.Hello</service-endpoint-interface>

 <service-impl-bean>

 <servlet-link>HelloWorldServlet</servlet-link>

 </service-impl-bean>

 </port-component>

 </webservice-description>

</webservices>

Applications using JAX-RPC should be migrated to use JAX-WS, the current Java EE standard web service

framework.

RS 2.0
JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services specification is located here:

https://jcp.org/en/jsr/detail?id=339

Some changes to the `MessageBodyWriter` interface may represent a backward incompatible change with

respect to JAX-RS 1.X.

Be sure to define an @Produces or @Consumes for your endpoints. Failure to do so may result in an error

similar to the following.

org.jboss.resteasy.core.NoMessageBodyWriterFoundFailure: Could not find MessageBodyWriter for

response object of type: <OBJECT> of media type: <CONTENT_TYPE>

https://jcp.org/en/jsr/detail?id=339

WildFly 10

JBoss Community Documentation Page of 229 532

REST Client API
Some REST Client API classes and methods are deprecated, for example:

org.jboss.resteasy.client.ClientRequest and org.jboss.resteasy.client.ClientResponse. Instead, use

 and javax.ws.rs.core.Response. See the `resteasy-jaxrs-clientorg.jboss.resteasy.client.jaxrs.ResteasyClient

quickstart` for an example of an external JAX-RS RestEasy client that interacts with a JAX-RS Web service.

24.4.6 Application Clustering

HA Singleton
JBoss AS7 introduced singleton services - a mechanism for installing an service such that it would only start

on one node in the cluster at a time, a HA Singleton. Such mechanism required usage of a private JBoss

EAP Clustering API, designed around the class , andorg.jboss.as.clustering.singleton.SingletonService

was documented in detail at

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html

, and while not difficult to implement, the installation process suffered from a couple shortcomings:

Installing multiple singleton services within a single deployment caused the deployer to hang.

Installing a singleton service required the user to specify several private module dependencies in

/META-INF/MANIFEST.MF

WildFly 10 introduces a new public API for building such services, which significantly simplifies the process,

and solves the issues found in the legacy solution. The JBoss EAP 7 Quickstart application named

 examples a HA Singleton implementation using the new API, and may be found at cluster-ha-singleton

 .https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.0.x-develop/cluster-ha-singleton

FIXME: community URLs instead

Stateful Session EJB Clustering
WildFly 10 no longer requires Stateful Session EJBs to use the org.jboss.ejb3.annotation.Clustered

annotation to enable clustering behaviour. By default, if the server is started using an HA profile, the state of

your SFSBs will be replicated automatically. Disabling this behaviour is achievable on a per-EJB basis, by

annotating your bean using , which is new to the EJB 3.2@Stateful(passivationCapable=false)

specification; or globally through the configuration of the EJB3 subsystem, in the server configuration.

Note that the annotation, if used by an application, is simply ignored, the application@Clustered

deployment will not fail.

Web Session Clustering
WildFly 10 introduces a new web session clustering implementation, replacing the one found in AS7, which

has been around for ages (since JBoss AS 3.2!), and was tightly coupled to the legacy JBoss Web

subsystem source code. The most relevant changes in the new implementation are:

https://docs.jboss.org/resteasy/docs/3.0-rc-1/javadocs/index.html?org/jboss/resteasy/client/jaxrs/ResteasyClient.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/Implement_an_HA_Singleton.html
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.0.x-develop/cluster-ha-singleton

WildFly 10

JBoss Community Documentation Page of 230 532

Introduction of a proper session manager SPI, and an Infinispan implementation of it, decoupled from

the web subsystem implementation

Sessions are implemented as a facade over one or more cache entries, which means that the

container’s session manager itself does not retain a separate reference to each HttpSession

Pessimistic locking of cache entries effectively ensures that only a single client on a single node ever

accesses a given session at any given time

Usage of cache entry grouping, instead of atomic maps, to ensure that multiple cache entries

belonging to the same session are co-located.

Session operations within a request only ever use a single batch/transaction. This results in fewer

RPCs per request.

Support for write-through cache stores, as well as passivation-only cache stores.

With respect to applications, the new web session clustering implementation deprecates/reinterprets much of

the related configuration, which is included in JBoss’s proprietary web application XML descriptor,

:jboss-web.xml

<max-active-sessions/>

Previously, session creation would fail if an additional session would cause the number of active

sessions to exceed the value specified by < .max-active-sessions/>

In the new implementation, is used to enable session passivation. If session<max-active-sessions/>

creation would cause the number of active sessions to exceed , then the<max-active-sessions/>

oldest session known to the session manager will passivate to make room for the new session.

<passivation-config/>

This configuration element and its sub-elements are no longer used in WildFly.

<use-session-passivation/>

Previously, passivation was enabled via this attribute, yet in the new implementation, passivation is

enabled by specifying a non-negative value for .<max-active-sessions/>

<passivation-min-idle-time/>

Previously, sessions needed to be active for at least a specific amount of time before becoming a

candidate for passivation. This could cause session creation to fail, even when passivation was

enabled.

The new implementation does not support this logic and thus avoids this DoS vulnerability.

<passivation-max-idle-time/>

Previously, a session would be passivated after it was idle for a specific amount of time.

The new implementation does not support eager passivation - only lazy passivation. Sessions are

only passivated when necessary to comply with .<max-active-sessions/>

<replication-config/>

The new implementation deprecates a number of sub-elements:

WildFly 10

JBoss Community Documentation Page of 231 532

<replication-trigger/>

Previously, session attributes could be treated as either mutable or immutable depending on the

values specified by :<replication-trigger/>

SET treated all attributes as immutable, requiring a separate HttpSession.setAttribute(...) to

indicate that the value changed.

SET_AND_GET treated all session attributes as mutable.

SET_AND_NON_PRIMITIVE_GET recognised a small set of types (i.e. strings and boxed

primitives) as immutable, and assumed that any other attribute was mutable.

The new implementation replaces this configuration option with a single, robust strategy.

Session attributes are assumed to be mutable unless one of the following is true:

The value is a known immutable value:

null

java.util.Collections.EMPTY_LIST, EMPTY_MAP, EMPTY_SET

The value type is or implements a known immutable type:

Boolean, Byte, Character, Double, Float, Integer, Long, Short

java.lang.Enum, StackTraceElement, String

java.io.File, java.nio.file.Path

java.math.BigDecimal, BigInteger, MathContext

java.net.InetAddress, InetSocketAddress, URI, URL

java.security.Permission

java.util.Currency, Locale, TimeZone, UUID

The value type is annotated with @org.wildfly.clustering.web.annotation.Immutable

<use-jk/>

Previously, the instance-id of the node handling a given request was appended to the jsessionid (for

use by load balancers such as mod_jk, mod_proxy_balancer, mod_cluster, etc.) depending on the

value specified for . In the new implementation, the instance-id, if defined, is always<use-jk/>

appended to the jsessionid.

<max-unreplicated-interval/>

Previously, this configuration option was an optimization that would prevent the replicate of a

session’s timestamp if no session attribute was changed. While this sounds nice, in practice it doesn't

prevent any RPCs, since session access requires cache transaction RPCs regardless of whether any

session attributes changed. In the new implementation, the timestamp of a session is replicated on

every request. This prevents stale session meta data following failover.

<snapshot-mode/>

Previously, one could configure as INSTANT or INTERVAL. Infinispan’s<snapshot-mode/>

replication queue renders this configuration option obsolete.

<snapshot-interval/>

Only relevant for . See above.<snapshot-mode>INTERVAL</snapshot-mode>

<session-notification-policy/>

Previously, the value defined by this attribute defined a policy for triggering session events. In the new

implementation, this behaviour is spec-driven and not configurable.

WildFly 10

JBoss Community Documentation Page of 232 532

24.4.7 Other Specifications and Frameworks

Remote JNDI Clients
WildFly 10's default JNDI Provider URL has changed, which means that external applications, using JNDI to

lookup remote resources, for instance an EJB or a JMS Queue, may need to change the value for the JNDI

 environment's property named . The default URL scheme is now InitialContext java.naming.provider.url

, and the default URL port is now .http-remoting 8080

As an example, considering the application server host is , then clients previously accessing JBosslocalhost

AS7 would use

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=remote://localhost:4447

while clients now accessing WildFly should use instead

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=http-remoting://localhost:8080

88
The specification which aimed to standardise deployment tasks got very little adoption, due to much more

"feature rich" proprietary solutions already included in every vendor application server. It was no surprise

that JSR-88 support was dropped from Java EE 7, and WildFly followed that and dropped support too.

A JSR-88 deployment plan is identified by a XML descriptor named , bundled in adeployment-plan.xml

zip/jar archive.

Module Dependencies
Applications defining dependencies to WildFly modules, through the application's package MANIFEST.MF or

jboss-deployment-structure.xml, may be referencing missing modules. When migrating an application,

relying on such functionality, the presence of the referenced modules should be validated in advance.

WildFly 10

JBoss Community Documentation Page of 233 532

25 How do I migrate my application to WildFly

from other application servers

25.1 Choose from the list below:

How do I migrate my application from WebLogic to WildFly

How do I migrate my application from WebSphere to WildFly

25.2 How do I migrate my application from WebLogic to

WildFly

The purpose of this guide is to document the application changes that are needed to successfully run and

deploy WebLogic applications on WildFly.

Feel free to add content in any way you prefer. You do not need to follow the template below. This

is a work in progress.

Introduction

About this Guide

25.2.1 Introduction

About this Guide
The purpose of this document is to guide you through the planning process and migration of fairly simple and

standard Oracle WebLogic applications to WildFly. O

WildFly 10

JBoss Community Documentation Page of 234 532

25.3 How do I migrate my application from WebSphere

to WildFly

The purpose of this guide is to document the application changes that are needed to successfully run and

deploy WebLogic applications on WildFly.

Feel free to add content in any way you prefer. You do not need to follow the template below. This

is a work in progress.

Introduction

About this Guide

25.3.1 Introduction

About this Guide
The purpose of this document is to guide you through the planning process and migration of fairly simple and

standard Oracle WebLogic applications to WildFly.

WildFly 10

JBoss Community Documentation Page of 235 532

26 Implicit module dependencies for deployments
As explained in the article, WildFly 8 is based on module classloading. A classClass Loading in WildFly

within a module B isn't visible to a class within a module A, unless module B adds a dependency on module

A. Module dependencies can be explicitly (as explained in that classloading article) or can be "implicit". This

article will explain what implicit module dependencies mean and how, when and which modules are added

as implicit dependencies.

26.1 What's an implicit module dependency?

Consider an application deployment which contains EJBs. EJBs typically need access to classes from the

javax.ejb.* package and other Java EE API packages. The jars containing these packages are already

shipped in WildFly and are available as "modules". The module which contains the javax.ejb.* classes has a

specific name and so does the module which contains all the Java EE API classes. For an application to be

able to use these classes, it has to add a dependency on the relevant modules. Forcing the application

developers to add module dependencies like these (i.e. dependencies which can be "inferred") isn't a

productive approach. Hence, whenever an application is being deployed, the deployers within the server,

which are processing this deployment "implicitly" add these module dependencies to the deployment so that

these classes are visible to the deployment at runtime. This way the application developer doesn't have to

worry about adding them explicitly. How and when these implicit dependencies are added is explained in the

next section.

https://docs.jboss.org/author/display/WFLY8/Class+Loading+in+WildFly

WildFly 10

JBoss Community Documentation Page of 236 532

26.2 How and when is an implicit module dependency

added?

When a deployment is being processed by the server, it goes through a chain of "deployment processors".

Each of these processors will have a way to check if the deployment meets a certain criteria and if it does,

the deployment processor adds a implicit module dependency to that deployment. Let's take an example -

Consider (again) an EJB3 deployment which has the following class:

MySuperDuperBean.java

@Stateless

public class MySuperDuperBean {

...

}

As can be seen, we have a simple @Stateless EJB. When the deployment containing this class is being

processed, the EJB deployment processor will see that the deployment contains a class with the @Stateless

annotation and thus identifies this as a EJB deployment. This is just one of the several ways, various

 The EJB deploymentdeployment processors can identify a deployment of some specific type.

processor will then add an implicit dependency on the Java EE API module, so that all the Java EE API

classes are visible to the deployment.

Some subsystems will always add a API classes, even if the trigger condition is not met. These are

listed separately below.

In the next section, we'll list down the implicit module dependencies that are added to a deployment, by

various deployers within WildFly.

26.3 Which are the implicit module dependencies?

Subsystem

responsible

for adding

the implicit

dependency

Dependencies that are always

added

Dependencies that are added if a trigger

condition is met

Core Server
javax.api

sun.jdk

org.jboss.vfs

WildFly 10

JBoss Community Documentation Page of 237 532

Batch

Subsystem javax.batch.api

EE

Subsystem javaee.api

EJB3

subsystem

javaee.api

JAX-RS

(Resteasy)

subsystem

javax.xml.bind.api org.jboss.resteasy.resteasy-atom-provider

org.jboss.resteasy.resteasy-cdi

org.jboss.resteasy.resteasy-jaxrs

org.jboss.resteasy.resteasy-jaxb-provider

org.jboss.resteasy.resteasy-jackson-provider

org.jboss.resteasy.resteasy-jsapi

org.jboss.resteasy.resteasy-multipart-provider

org.jboss.resteasy.async-http-servlet-30

JCA

subsystem javax.resource.api javax.jms.api

javax.validation.api

org.jboss.logging

org.jboss.ironjacamar.api

org.jboss.ironjacamar.impl

org.hibernate.validator

JPA

(Hibernate)

subsystem

javax.persistence.api javaee.api

org.jboss.as.jpa

org.hibernate

WildFly 10

JBoss Community Documentation Page of 238 532

Logging

Subsystem org.jboss.logging

org.apache.commons.logging

org.apache.log4j

org.slf4j

org.jboss.logging.jul-to-slf4j-stub

SAR

Subsystem

org.jboss.logging

org.jboss.modules

Security

Subsystem org.picketbox

Web

Subsystem

javaee.api

com.sun.jsf-impl

org.hibernate.validator

org.jboss.as.web

org.jboss.logging

Web

Services

Subsystem

org.jboss.ws.api

org.jboss.ws.spi

Weld (CDI)

Subsystem

javax.persistence.api

javaee.api

org.javassist

org.jboss.interceptor

org.jboss.as.weld

org.jboss.logging

org.jboss.weld.core

org.jboss.weld.api

org.jboss.weld.spi

WildFly 10

JBoss Community Documentation Page of 239 532

27 RS Reference Guide
This page outlines the three options you have for deploying JAX-RS applications in WildFly 8. These three

methods are specified in the JAX-RS 1.1 specification in section 2.3.2.

27.1 Subclassing javax.ws.rs.core.Application and

using @ApplicationPath

This is the easiest way and does not require any xml configuration. Simply include a subclass of

 in your application, and annotate it with the path that you want yourjavax.ws.rs.core.Application

JAX-RS classes to be available. For example:

@ApplicationPath("/mypath")

public class MyApplication extends Application {

}

This will make your JAX-RS resources available under ./mywebappcontext/mypath

Note that that the path is not /mypath /mypath/*

WildFly 10

JBoss Community Documentation Page of 240 532

27.2 Subclassing javax.ws.rs.core.Application and

using web.xml

If you do not wish to use but still need to subclass you can set up the@ApplicationPath Application

JAX-RS mapping in web.xml:

public class MyApplication extends Application {

}

<servlet-mapping>

 <servlet-name>com.acme.MyApplication</servlet-name>

 <url-pattern>/hello/*</url-pattern>

</servlet-mapping>

This will make your JAX-RS resources available under ./mywebappcontext/hello

You can also use this approach to override an application path set with the @ApplicationPath

annotation.

27.3 Using web.xml

If you don't wan't to subclass you can set the JAX-RS mapping in web.xml as follows:Application

<servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <url-pattern>/hello/*</url-pattern>

</servlet-mapping>

This will make your JAX-RS resources available under ./mywebappcontext/hello

Note that you only have to add the mapping, not the corresponding servlet. The server is

responsible for adding the corresponding servlet automatically.

WildFly 10

JBoss Community Documentation Page of 241 532

28 JNDI Reference

28.1 Overview

WildFly offers several mechanisms to retrieve components by name. Every WildFly instance has it's own

local JNDI namespace () which is unique per JVM. The layout of this namespace is primarilyjava:

governed by the Java EE specification. Applications which share the same WildFly instance can use this

namespace to intercommunicate. In addition to local JNDI, a variety of mechanisms exist to access remote

components.

Client JNDI - This is a mechanism by which remote components can be accessed using the JNDI

APIs, but . This approach is the most efficient, and without network round-trips removes a

. For this reason, it is highly recommended to use Client JNDI overpotential single point of failure

traditional remote JNDI access. However, to make this possible, it does require that all names follow a

strict layout, so user customizations are not possible. Currently only access to remote EJBs is

supported via the namespace. Future revisions will likely add a JMS client JNDI namespace.ejb:

Traditional Remote JNDI - This is a more familiar approach to EE application developers, where the

client performs a remote component name lookup against a server, and a proxy/stub to the

component is serialized as part of the name lookup and returned to the client. The client then invokes

a method on the proxy which results in another remote network call to the underlying service. In a

nutshell, traditional remote JNDI involves two calls to invoke an EE component, whereas Client JNDI

requires one. It does however allow for customized names, and for a centralised directory for multiple

application servers. This centralized directory is, however, . a single point of failure

EE Application Client / Server-To-Server Delegation - This approach is where local names are bound

as an to a remote name using one of the above mechanisms. This is useful in that it allowsalias

applications to only ever reference standard portable Java EE names in both code and deployment

descriptors. It also allows for the application to be unaware of network topology details/ This can even

work with Java SE clients by using the little known EE Application Client feature. This feature allows

you to run an extremely minimal AS server around your application, so that you can take advantage of

certain core services such as naming and injection.

28.2 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

WildFly 10

JBoss Community Documentation Page of 242 532

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

28.2.1 Binding entries to JNDI

There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

WildFly 10

JBoss Community Documentation Page of 243 532

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

WildFly 10

JBoss Community Documentation Page of 244 532

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

WildFly 10

JBoss Community Documentation Page of 245 532

28.2.2 Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

WildFly 10

JBoss Community Documentation Page of 246 532

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

28.3 Remote JNDI

WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

28.3.1 remote:

The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

WildFly 10

JBoss Community Documentation Page of 247 532

28.3.2 ejb:

The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

28.4 Local JNDI

The Java EE platform specification defines the following JNDI contexts:

 - The namespace is scoped to the current component (i.e. EJB)java:comp

 - Scoped to the current modulejava:module

 - Scoped to the current applicationjava:app

 - Scoped to the application serverjava:global

In addition to the standard namespaces, WildFly also provides the following two global namespaces:

java:jboss

java:/

Only entries within the context are accessible over remote JNDI.java:jboss/exported

WildFly 10

JBoss Community Documentation Page of 248 532

For web deployments is aliased to , so EJB's deployed in a war do notjava:comp java:module

have their own comp namespace.

28.4.1 Binding entries to JNDI

There are several methods that can be used to bind entries into JNDI in WildFly.

Using a deployment descriptor
For Java EE applications the recommended way is to use a to create the binding. Fordeployment descriptor

example the following binds the string to and theweb.xml "Hello World" java:global/mystring

string to (any non absolute JNDI name is relative to "Hello Module" java:comp/env/hello

 context).java:comp/env

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

 version="3.1">

 <env-entry>

 <env-entry-name>java:global/mystring</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello World</env-entry-value>

 </env-entry>

 <env-entry>

 <env-entry-name>hello</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>Hello Module</env-entry-value>

 </env-entry>

</web-app>

For more details, see the .Java EE Platform Specification

https://docs.jboss.org/author/display/AS71/Deployment+Descriptors+used+In+AS7.1
http://jcp.org/en/jsr/detail?id=342

WildFly 10

JBoss Community Documentation Page of 249 532

Programatically

Java EE Applications

Standard Java EE applications may use the standard JNDI API, included with Java SE, to bind entries in the

global namespaces (the standard , and namespaces are read-only,java:comp java:module java:app

as mandated by the Java EE Platform Specification).

InitialContext initialContext = new InitialContext();

 initialContext.bind("java:global/a", 100);

There is no need to unbind entries created programatically, since WildFly tracks which bindings

belong to a deployment, and the bindings are automatically removed when the deployment is

undeployed.

WildFly Modules and Extensions

With respect to code in WildFly Modules/Extensions, which is executed out of a Java EE application context,

using the standard JNDI API may result in a UnsupportedOperationException if the target namespace uses

a WritableServiceBasedNamingStore. To work around that, the bind() invocation needs to be wrapped using

WildFly proprietary APIs:

InitialContext initialContext = new InitialContext();

 WritableServiceBasedNamingStore.pushOwner(serviceTarget);

 try {

 initialContext.bind("java:global/a", 100);

 } finally {

 WritableServiceBasedNamingStore.popOwner();

 }

The ServiceTarget removes the bind when uninstalled, thus using one out of the module/extension

domain usage should be avoided, unless entries are removed using unbind().

WildFly 10

JBoss Community Documentation Page of 250 532

Naming Subsystem Configuration
It is also possible to bind to one of the three global namespaces using configuration in the naming

subsystem. This can be done by either editing the file directly, or throughstandalone.xml/domain.xml

the management API.

Four different types of bindings are supported:

Simple - A primitive or java.net.URL entry (default is).java.lang.String

Object Factory - This allows to to specify the that is used tojavax.naming.spi.ObjectFactory

create the looked up value.

External Context - An external context to federate, such as an LDAP Directory Service

Lookup - The allows to create JNDI aliases, when this entry is looked up it will lookup the target and

return the result.

An example standalone.xml might look like:

<subsystem xmlns="urn:jboss:domain:naming:2.0" >

 <bindings>

 <simple name="java:global/a" value="100" type="int" />

 <simple name="java:global/jbossDocs" value="https://docs.jboss.org" type="java.net.URL" />

 <object-factory name="java:global/b" module="com.acme" class="org.acme.MyObjectFactory" />

 <external-context name="java:global/federation/ldap/example”

class="javax.naming.directory.InitialDirContext" cache="true">

 <environment>

 <property name="java.naming.factory.initial" value=“com.sun.jndi.ldap.LdapCtxFactory” />

 <property name="java.naming.provider.url" value=“ldap://ldap.example.com:389” />

 <property name="java.naming.security.authentication" value=“simple” />

 <property name="java.naming.security.principal" value=“uid=admin,ou=system” />

 <property name="java.naming.security.credentials" value=“secret” />

 </environment>

 </external-context>

 <lookup name="java:global/c" lookup="java:global/b" />

 </bindings>

</subsystem>

The CLI may also be used to bind an entry. As an example:

/subsystem=naming/binding=java\:global\/mybinding:add(binding-type=simple, type=long,

value=1000)

WildFly's Administrator Guide includes a section describing in detail the Naming subsystem

configuration.

WildFly 10

JBoss Community Documentation Page of 251 532

28.4.2 Retrieving entries from JNDI

Resource Injection
For Java EE applications the recommended way to lookup a JNDI entry is to use injection:@Resource

@Resource(lookup = "java:global/mystring")

 private String myString;

 @Resource(name = "hello")

 private String hello;

 @Resource

 ManagedExecutorService executor;

Note that is more than a JNDI lookup, it also binds an entry in the component's JNDI@Resource

environment. The new bind JNDI name is defined by 's attribute, which value, if@Resource name

unspecified, is the Java type concatenated with and the field's name, for instance /

. More, similar to when using deployment descriptors to bind JNDI entries.java.lang.String/myString

unless the name is an absolute JNDI name, it is considered relative to . For instance, withjava:comp/env

respect to the field named above, the 's attribute instructs WildFly to lookupmyString @Resource lookup

the value in , bind it in , andjava:global/mystring java:comp/env/java.lang.String/myString

then inject such value into the field.

With respect to the field named , there is no attribute value defined, so the responsibility tohello lookup

provide the entry's value is delegated to the deployment descriptor. Considering that the deployment

descriptor was the previously shown, which defines an environment entry with same name,web.xml hello

then WildFly inject the valued defined in the deployment descriptor into the field.

The field has no attributes specified, so the bind's name would default to executor

, butjava:comp/env/javax.enterprise.concurrent.ManagedExecutorService/executor

there is no such entry in the deployment descriptor, and when that happens it's up to WildFly to provide a

default value or null, depending on the field's Java type. In this particular case WildFly would inject the

default instance of a managed executor service, the value in

, as mandated by the EE Concurrency Utilities 1.0java:comp/DefaultManagedExecutorService

Specification (JSR 236).

WildFly 10

JBoss Community Documentation Page of 252 532

Standard Java SE JNDI API
Java EE applications may use, without any additional configuration needed, the standard JNDI API to lookup

an entry from JNDI:

String myString = (String) new InitialContext().lookup("java:global/mystring");

or simply

String myString = InitialContext.doLookup("java:global/mystring");

28.5 Remote JNDI Reference

28.5.1 Remote JNDI

WildFly supports two different types of remote JNDI. The old jnp based JNDI implementation used in JBoss

AS versions prior to 7.x is no longer supported.

remote:
The protocol uses the WildFly remoting protocol to lookup items from the servers local JNDI. Toremote:

use it, you must have the appropriate jars on the class path, if you are maven user can be done simply by

adding the following to your :pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

 <scope>compile</scope>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

org.jboss.naming.remote.client.InitialContextFactory.class.getName());

env.put(Context.PROVIDER_URL, "remote://localhost:4447");

remoteContext = new InitialContext(env);

WildFly 10

JBoss Community Documentation Page of 253 532

ejb:
The ejb: namespace is provided by the jboss-ejb-client library. This protocol allows you to look up EJB's,

using their application name, module name, ejb name and interface type.

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

Some examples are:

ejb:myapp/myejbjar/MyEjbName!com.test.MyRemoteInterface

ejb:myapp/myejbjar/MyStatefulName!comp.test.MyStatefulRemoteInterface?stateful

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, please see EJB invocations from a remote

.client using JNDI

28.5.2 Remote JNDI Access

WildFly supports two different types of remote JNDI.

WildFly 10

JBoss Community Documentation Page of 254 532

http-remoting:
The protocol implementation is provided by JBoss Remote Naming project, and uses httphttp-remoting:

upgrade to lookup items from the servers local JNDI. To use it, you must have the appropriate jars on the

class path, if you are maven user can be done simply by adding the following to your pom.xml

dependencies:

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

final Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

env.put(Context.PROVIDER_URL, "http-remoting://localhost:8080");

// the property below is required ONLY if there is no ejb client configuration loaded (such as a

// jboss-ejb-client.properties in the class path) and the context will be used to lookup EJBs

env.put("jboss.naming.client.ejb.context", true);

InitialContext remoteContext = new InitialContext(env);

RemoteCalculator ejb = (RemoteCalculator)

remoteContext.lookup("wildfly-http-remoting-ejb/CalculatorBean!"

 + RemoteCalculator.class.getName());

The http-remoting client assumes JNDI names in remote lookups are relative to

java:jboss/exported namespace, a lookup of an absolute JNDI name will fail.

WildFly 10

JBoss Community Documentation Page of 255 532

ejb:
The ejb: namespace implementation is provided by the jboss-ejb-client library, and allows the lookup of

EJB's using their application name, module name, ejb name and interface type. To use it, you must have the

appropriate jars on the class path, if you are maven user can be done simply by adding the following to your

 dependencies:pom.xml

<dependency>

 <groupId>org.wildfly</groupId>

 <artifactId>wildfly-ejb-client-bom</artifactId>

 <version>8.0.0.Final</version>

 <type>pom</type>

</dependency>

If you are not using maven a shaded jar that contains all required classes

can be found in the directory of WildFly's distribution.bin/client

This is a client side JNDI implementation. Instead of looking up an EJB on the server the lookup name

contains enough information for the client side library to generate a proxy with the EJB information. When

you invoke a method on this proxy it will use the current EJB client context to perform the invocation. If the

current context does not have a connection to a server with the specified EJB deployed then an error will

occur. Using this protocol it is possible to look up EJB's that do not actually exist, and no error will be thrown

until the proxy is actually used. The exception to this is stateful session beans, which need to connect to a

server when they are created in order to create the session bean instance on the server.

final Properties env = new Properties();

env.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

InitialContext remoteContext = new InitialContext(env);

MyRemoteInterface myRemote = (MyRemoteInterface)

remoteContext.lookup("ejb:myapp/myejbjar/MyEjbName\!com.test.MyRemoteInterface");

MyStatefulRemoteInterface myStatefulRemote = (MyStatefulRemoteInterface)

remoteContext.lookup("ejb:myapp/myejbjar/MyStatefulName\!comp.test.MyStatefulRemoteInterface?stateful");

The first example is a lookup of a singleton, stateless or EJB 2.x home interface. This lookup will not hit the

server, instead a proxy will be generated for the remote interface specified in the name. The second

example is for a stateful session bean, in this case the JNDI lookup will hit the server, in order to tell the

server to create the SFSB session.

For more details on how the server connections are configured, including the jboss ejbrequired

client setup, please see .EJB invocations from a remote client using JNDI

WildFly 10

JBoss Community Documentation Page of 256 532

29 JPA Reference Guide

Introduction

Update your Persistence.xml for Hibernate 5.0

Entity manager

Application-managed entity manager

Container-managed entity manager

Persistence Context

Transaction-scoped Persistence Context

Extended Persistence Context

Extended Persistence Context Inheritance

Entities

Deployment

Troubleshooting

Using the Hibernate 5.x JPA persistence provider

Hibernate ORM 3.x integration is not included

Using the Infinispan second level cache

Replacing the current Hibernate 5.x jars with a newer version

Using Hibernate Search

Packaging the Hibernate JPA persistence provider with your application

Using OpenJPA

Using EclipseLink

Using DataNucleus

Native Hibernate use

Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory

Hibernate properties

Persistence unit properties

Determine the persistence provider module

Binding EntityManagerFactory/EntityManager to JNDI

Community

People who have contributed to the WildFly JPA layer:

WildFly 10

JBoss Community Documentation Page of 257 532

29.1 Introduction

The WildFly JPA subsystem implements the JPA 2.1 container-managed requirements. Deploys the

persistence unit definitions, the persistence unit/context annotations and persistence unit/context references

in the deployment descriptor. JPA Applications use the Hibernate (version 5) persistence provider, which is

included with WildFly. The JPA subsystem uses the standard SPI

(javax.persistence.spi.PersistenceProvider) to access the Hibernate persistence provider and some

additional extensions as well.

During application deployment, JPA use is detected (e.g. persistence.xml or @PersistenceContext/Unit

annotations) and injects Hibernate dependencies into the application deployment. This makes it easy to

deploy JPA applications.

In the remainder of this documentation, ”entity manager” refers to an instance of the

 class. and .javax.persistence.EntityManager Javadoc for the JPA interfaces JPA 2.1 specification

The index of the Hibernate documentation is at .http://hibernate.org/orm/documentation/5.0/

29.2 Update your Persistence.xml for Hibernate 5.0

The persistence provider class name in Hibernate 4.3.0 (and greater) is

.org.hibernate.jpa.HibernatePersistenceProvider

Instead of specifying:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

Switch to:

<provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>

Or remove the persistence provider class name from your persistence.xml (so the default provider will be

used).

29.3 Entity manager

The entity manager is similar to the Hibernate Session class; applications use it to create/read/update/delete

data (and related operations). Applications can use application-managed or container-managed entity

managers. Keep in mind that the entity manager is not expected to be thread safe (don't inject it into a

servlet class variable which is visible to multiple threads).

http://download.oracle.com/javaee/7/api/javax/persistence/package-summary.html
https://jcp.org/en/jsr/detail?id=338
http://hibernate.org/orm/documentation/5.0/

WildFly 10

JBoss Community Documentation Page of 258 532

29.4 Application-managed entity manager

Application-managed entity managers provide direct access to the underlying persistence provider

(org.hibernate.ejb.HibernatePersistence). The scope of the application-managed entity manager is from

when the application creates it and lasts until the app closes it. Use the annotation to@PersistenceUnit

inject a persistence unit into a . The EntityManagerFactory canjavax.persistence.EntityManagerFactory

return an application-managed entity manager.

29.5 Container-managed entity manager

Container-managed entity managers auto-magically manage the underlying persistence provider for the

application. Container-managed entity managers may use transaction-scoped persistence contexts or

extended persistence contexts. The container-managed entity manager will create instances of the

underlying persistence provider as needed. Every time that a new underlying persistence provider (

) instance is created, a new persistence context is also created (asorg.hibernate.ejb.HibernatePersistence

an implementation detail of the underlying persistence provider).

29.6 Persistence Context

The JPA persistence context contains the entities managed by the persistence provider. The persistence

context acts like a first level (transactional) cache for interacting with the datasource. Loaded entities are

placed into the persistence context before being returned to the application. Entities changes are also placed

into the persistence context (to be saved in the database when the transaction commits).

WildFly 10

JBoss Community Documentation Page of 259 532

29.7 Transaction-scoped Persistence Context

The transaction-scoped persistence context coordinates with the (active) JTA transaction. When the

transaction commits, the persistence context is flushed to the datasource (entity objects are detached but

may still be referenced by application code). All entity changes that are expected to be saved to the

datasource, must be made during a transaction. Entities read outside of a transaction will be detached when

the entity manager invocation completes. Example transaction-scoped persistence context is below.

@Stateful // will use container managed transactions

public class CustomerManager {

 @PersistenceContext(unitName = "customerPU") // default type is

PersistenceContextType.TRANSACTION

 EntityManager em;

 public customer createCustomer(String name, String address) {

 Customer customer = new Customer(name, address);

 em.persist(customer); // persist new Customer when JTA transaction completes (when method

ends).

 // internally:

 // 1. Look for existing "customerPU" persistence context in active

JTA transaction and use if found.

 // 2. Else create new "customerPU" persistence context (e.g.

instance of org.hibernate.ejb.HibernatePersistence)

 // and put in current active JTA transaction.

 return customer; // return Customer entity (will be detached from the persistence

context when caller gets control)

 } // Transaction.commit will be called, Customer entity will be persisted to the database and

"customerPU" persistence context closed

29.8 Extended Persistence Context

The (ee container managed) extended persistence context can span multiple transactions and allows data

modifications to be queued up (like a shopping cart), without an active JTA transaction (to be applied during

the next JTA TX). The Container-managed extended persistence context can only be injected into a stateful

session bean.

@PersistenceContext(type = PersistenceContextType.EXTENDED, unitName = "inventoryPU")

EntityManager em;

WildFly 10

JBoss Community Documentation Page of 260 532

29.8.1 Extended Persistence Context Inheritance

JPA 2.0 specification section 7.6.2.1

If a stateful session bean instantiates a stateful session bean (executing in the same EJB

container instance) which also has such an extended persistence context, the extended

persistence context of the first stateful session bean is inherited by the second stateful

session bean and bound to it, and this rule recursively applies—independently of whether

transactions are active or not at the point of the creation of the stateful session beans.

By default, the current stateful session bean being created, will () inherit the extended persistencedeeply

context from any stateful session bean executing in the current Java thread. The inheritance ofdeep

extended persistence context includes walking multiple levels up the stateful bean call stack (inheriting from

parent beans). The inheritance of extended persistence context includes sibling beans. For example,deep

parentA references child beans beanBwithXPC & beanCwithXPC. Even though parentA doesn't have an

extended persistence context, beanBwithXPC & beanCwithXPC will share the same extended persistence

context.

Some other EE application servers, use inheritance, where stateful session bean only inherit fromshallow

the parent stateful session bean (if there is a parent bean). Sibling beans do not share the same extended

persistence context unless their (common) parent bean also has the same extended persistence context.

Applications can include a (top-level) deployment descriptor that specifies either the (default) jboss-all.xml

 extended persistence context inheritance or .DEEP SHALLOW

The WF/docs/schema/jboss-jpa_1_0.xsd describes the deployment descriptor that may bejboss-jpa

included in the . Below is an example of using extended persistence contextjboss-all.xml SHALLOW

inheritance:

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="SHALLOW"/>

 </jboss-jpa>

</jboss>

Below is an example of using extended persistence inheritance:DEEP

<jboss>

 <jboss-jpa xmlns="http://www.jboss.com/xml/ns/javaee">

 <extended-persistence inheritance="DEEP"/>

 </jboss-jpa>

</jboss>

WildFly 10

JBoss Community Documentation Page of 261 532

The AS console/cli can change the extended persistence context setting (DEEP or SHALLOW). Thedefault

following cli commands will read the current JPA settings and enable SHALLOW extended persistence

context inheritance for applications that do not include the deployment descriptor:jboss-jpa

./jboss-cli.sh

cd subsystem=jpa

:read-resource

:write-attribute(name=default-extended-persistence-inheritance,value="SHALLOW")

29.9 Entities

JPA allows use of your (pojo) plain old Java class to represent a database table row.

@PersistenceContext EntityManager em;

Integer bomPk = getIndexKeyValue();

BillOfMaterials bom = em.find(BillOfMaterials.class, bomPk); // read existing table row into

BillOfMaterials class

BillOfMaterials createdBom = new BillOfMaterials("..."); // create new entity

em.persist(createdBom); // createdBom is now managed and will be saved to database when the

current JTA transaction completes

The entity lifecycle is managed by the underlying persistence provider.

New (transient): an entity is new if it has just been instantiated using the new operator, and it is not

associated with a persistence context. It has no persistent representation in the database and no

identifier value has been assigned.

Managed (persistent): a managed entity instance is an instance with a persistent identity that is

currently associated with a persistence context.

Detached: the entity instance is an instance with a persistent identity that is no longer associated with

a persistence context, usually because the persistence context was closed or the instance was

evicted from the context.

Removed: a removed entity instance is an instance with a persistent identity, associated with a

persistence context, but scheduled for removal from the database.

WildFly 10

JBoss Community Documentation Page of 262 532

29.10 Deployment

The persistence.xml contains the persistence unit configuration (e.g. datasource name) and as described in

the JPA 2.0 spec (section 8.2), the jar file or directory whose META-INF directory contains the

persistence.xml file is termed the root of the persistence unit. In Java EE environments, the root of a

persistence unit must be one of the following (quoted directly from the JPA 2.0 specification):

"

an EJB-JAR file

the WEB-INF/classes directory of a WAR file

a jar file in the WEB-INF/lib directory of a WAR file

a jar file in the EAR library directory

an application client jar file

The persistence.xml can specify either a JTA datasource or a non-JTA datasource. The JTA datasource is

expected to be used within the EE environment (even when reading data without an active transaction). If a

datasource is not specified, the default-datasource will instead be used (must be configured).

NOTE: Java Persistence 1.0 supported use of a jar file in the root of the EAR as the root of a persistence

unit. This use is no longer supported. Portable applications should use the EAR library directory for this case

instead.

"

Question: Can you have a EAR/META-INF/persistence.xml?

Answer: No, the above may deploy but it could include other archives also in the EAR, so you may have

deployment issues for other reasons. Better to put the persistence.xml in an EAR/lib/somePuJar.jar.

29.11 Troubleshooting

The logging can be enabled to get the following information:org.jboss.as.jpa

INFO - when persistence.xml has been parsed, starting of persistence unit service (per deployed

persistence.xml), stopping of persistence unit service

DEBUG - informs about entity managers being injected, creating/reusing transaction scoped entity

manager for active transaction

TRACE - shows how long each entity manager operation took in milliseconds, application searches

for a persistence unit, parsing of persistence.xml

To enable TRACE, open the as/standalone/configuration/standalone.xml (or

as/domain/configuration/domain.xml) file. Search for <subsystem

 and add the category. You need to changexmlns="urn:jboss:domain:logging:1.0"> org.jboss.as.jpa

the console-handler level from to . INFO TRACE

WildFly 10

JBoss Community Documentation Page of 263 532

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.jboss.as.jpa">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

To see what is going on at the JDBC level, enable TRACE and add spy="true" to thejboss.jdbc.spy

datasource.

<datasource jndi-name="java:jboss/datasources/..." pool-name="..." enabled="true" spy="true">

<logger category="jboss.jdbc.spy">

 <level name="TRACE"/>

</logger>

To troubleshoot issues with the Hibernate second level cache, try enabling trace for org.hibernate.SQL +

org.hibernate.cache.infinispan + org.infinispan:

WildFly 10

JBoss Community Documentation Page of 264 532

<subsystem xmlns="urn:jboss:domain:logging:1.0">

 <console-handler name="CONSOLE">

 <level name="TRACE" />

 ...

 </console-handler>

 </periodic-rotating-file-handler>

 <logger category="com.arjuna">

 <level name="WARN" />

 </logger>

 <logger category="org.hibernate.SQL">

 <level name="TRACE" />

 </logger>

 <logger category="org.hibernate">

 <level name="TRACE" />

 </logger>

 <logger category="org.infinispan">

 <level name="TRACE" />

 </logger>

 <logger category="org.apache.tomcat.util.modeler">

 <level name="WARN" />

 </logger>

 ...

29.12 Using the Hibernate 5.x JPA persistence provider

Hibernate 5.x is packaged with WildFly and is the default persistence provider.

29.13 Hibernate ORM 3.x integration is not included

The Hibernate 3.x integration is removed from WildFly, please use a newer version of Hibernate.

29.14 Using the Infinispan second level cache

To enable the second level cache with Hibernate 5.x, just set the

 property to true, as is done in the following example (also sethibernate.cache.use_second_level_cache

the accordingly). By default the application server uses Infinispan as the cache providershared-cache-mode

for , so you don't need specify anything on top of that. The Infinispan version that isJPA applications

included in WildFly is expected to work with the Hibernate version that is included with WildFly. Example

persistence.xml settings:

http://docs.oracle.com/javaee/6/api/javax/persistence/SharedCacheMode.html

WildFly 10

JBoss Community Documentation Page of 265 532

<?xml version="1.0" encoding="UTF-8"?><persistence

xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="2lc_example_pu">

 <description>example of enabling the second level cache.</description>

 <jta-data-source>java:jboss/datasources/mydatasource</jta-data-source>

 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

 <properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 </properties>

</persistence-unit>

</persistence>

Here is an example of enabling the second level cache for a Hibernate native API hibernate.cfg.xml file:

<property name="hibernate.cache.region.factory_class"

value="org.jboss.as.jpa.hibernate5.infinispan.InfinispanRegionFactory"/>

<property name="hibernate.cache.infinispan.cachemanager"

value="java:jboss/infinispan/container/hibernate"/>

<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<property name="hibernate.cache.use_second_level_cache" value="true"/>

The Hibernate native API application will also need a MANIFEST.MF:

Dependencies: org.infinispan,org.hibernate

 contains advanced configurationInfinispan Hibernate/JPA second level cache provider documentation

information but you should bear in mind that when Hibernate runs within WildFly 8, some of those

configuration options, such as region factory, are not needed. Moreover, the application server providers you

with option of selecting a different cache container for Infinispan via hibernate.cache.infinispan.container

persistence property. To reiterate, this property is not mandatory and a default container is already deployed

for by the application server to host the second level cache.

Here is an example of what the Hibernate cache settings may currently be in your standalone.xml:

<cache-container name="hibernate" default-cache="local-query" module="org.hibernate.infinispan">

 <local-cache name="entity">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <local-cache name="timestamps"/>

</cache-container>

http://infinispan.org/docs/8.0.x/user_guide/user_guide.html#_using_infinispan_as_jpa_hibernate_second_level_cache_provider

WildFly 10

JBoss Community Documentation Page of 266 532

Below is an example of customizing the "entity", "immutable-entity", "local-query", "pending-puts",

"timestamps" cache configuration may look like:

<cache-container name="hibernate" module="org.hibernate.infinispan"

default-cache="immutable-entity">

 <local-cache name="entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="immutable-entity">

 <transaction mode="NONE"/>

 <eviction max-entries="-1"/>

 <expiration max-idle="120000"/>

 </local-cache>

 <local-cache name="local-query">

 <eviction max-entries="-1"/>

 <expiration max-idle="300000"/>

 </local-cache>

 <local-cache name="pending-puts">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 <expiration max-idle="60000"/>

 </local-cache>

 <local-cache name="timestamps">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </local-cache>

</cache-container>

Persistence.xml to use the above custom settings:

<properties>

 <property name="hibernate.cache.use_second_level_cache" value="true"/>

 <property name="hibernate.cache.use_query_cache" value="true"/>

 <property name="hibernate.cache.infinispan.immutable-entity.cfg" value="immutable-entity"/>

 <property name="hibernate.cache.infinispan.timestamps.cfg" value="timestamps"/>

 <property name="hibernate.cache.infinispan.pending-puts.cfg" value="pending-puts"/>

</properties>

WildFly 10

JBoss Community Documentation Page of 267 532

1.

2.

3.

4.

5.

29.15 Replacing the current Hibernate 5.x jars with a

newer version

Just update the current wildfly/modules/system/layers/base/org/hibernate/main folder to contain the newer

version (after stopping your WildFly server instance).

Delete *.index files in wildfly/modules/system/layers/base/org/hibernate/main and

wildfly/modules/system/layers/base/org/hibernate/envers/main folders.

Backup the current contents of wildfly/modules/system/layers/base/org/hibernate in case you make a

mistake.

Remove the older jars and copy new Hibernate jars into

wildfly/modules/system/layers/base/org/hibernate/main +

wildfly/modules/system/layers/base/org/hibernate/envers/main.

Update the wildfly/modules/system/layers/base/org/hibernate/main/module.xml +

wildfly/modules/system/layers/base/org/hibernate/envers/main/module.xml to name the jars that you

copied in.

Also update the hibernate-infinispan jars in

wildfly/modules/system/layers/base/org/hibernate/infinispan.

29.16 Using Hibernate Search

WildFly 10 includes Hibernate Search. If you want to use the bundled version of Hibernate Search - which

requires to use the default Hibernate ORM 5 persistence provider - this will be automatically enabled.

Having this enabled means that, provided your application includes any entity which is annotated with

, the module will be madeorg.hibernate.search.annotations.Indexed org.hibernate.search.orm:main

available to your deployment; this will also include the required version of Apache Lucene.

If you do not want this module to be exposed to your deployment, set the persistence property

 to either to not automatically inject any Hibernate Searchwildfly.jpa.hibernate.search.module none

module, or to any other module identifier to inject a different module.

For example you could set wildfly.jpa.hibernate.search.module=org.hibernate.search.orm:5.4.0.Alpha1

to use the experimental version 5.4.0.Alpha1 instead of the provided module; in this case you'll have to

download and add the custom modules to the application server as other versions are not included.

When setting you might also opt to include Hibernate Searchwildfly.jpa.hibernate.search.module=none

and its dependencies within your application but we highly recommend the modules approach.

WildFly 10

JBoss Community Documentation Page of 268 532

29.17 Packaging the Hibernate JPA persistence

provider with your application

WildFly 8 allows the packaging of Hibernate 4.x (or greater) persistence provider jars with the application.

The JPA deployer will detect the presence of a persistence provider in the application and

 needs to be set to .<?xml version="1.0" encoding="UTF-8"?>jboss.as.jpa.providerModule application

<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name="myOwnORMVersion_pu">

<description>Hibernate 4 Persistence Unit.</description>

<jta-data-source>java:jboss/datasources/PlannerDS</jta-data-source>

<properties>

 <property name="jboss.as.jpa.providerModule" value="application" />

</properties>

</persistence-unit>

</persistence>

WildFly 10

JBoss Community Documentation Page of 269 532

29.18 Using OpenJPA

You need to copy the OpenJPA jars (e.g. openjpa-all.jar serp.jar) into the WildFly

modules/system/layers/base/org/apache/openjpa/main folder and update

modules/system/layers/base/org/apache/openjpa/main/module.xml to include the same jar file names that

you copied in.

<module xmlns="urn:jboss:module:1.1" name="org.apache.openjpa">

 <resources>

 <resource-root path="jipijapa-openjpa-1.0.1.Final.jar"/>

 <resource-root path="openjpa-all.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 <resource-root path="serp.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.apache.commons.lang"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 <module name="org.jboss.jandex"/>

 </dependencies>

</module>

29.19 Using EclipseLink

You need to copy the EclipseLink jar (e.g. eclipselink-2.6.0.jar or eclipselink.jar as in the example below) into

the WildFly modules/system/layers/base/org/eclipse/persistence/main folder and update

modules/system/layers/base/org/eclipse/persistence/main/module.xml to include the EclipseLink jar (take

care to use the jar name that you copied in). If you happen to leave the EclipseLink version number in the

jar name, the module.xml should reflect that.

WildFly 10

JBoss Community Documentation Page of 270 532

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">

 <resources>

 <resource-root path="jipijapa-eclipselink-10.0.0.Final.jar"/>

 <resource-root path="eclipselink.jar">

 <filter>

 <exclude path="javax/**" />

 </filter>

 </resource-root>

 </resources>

 <dependencies>

 <module name="asm.asm"/>

 <module name="javax.api"/>

 <module name="javax.annotation.api"/>

 <module name="javax.enterprise.api"/>

 <module name="javax.persistence.api"/>

 <module name="javax.transaction.api"/>

 <module name="javax.validation.api"/>

 <module name="javax.xml.bind.api"/>

 <module name="javax.ws.rs.api"/>

 <module name="org.antlr"/>

 <module name="org.apache.commons.collections"/>

 <module name="org.dom4j"/>

 <module name="org.jboss.as.jpa.spi"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

As a workaround for issue , set (WildFly) system property "eclipselink.archive.factory" to valueid=414974

"org.jipijapa.eclipselink.JBossArchiveFactoryImpl" via jboss-cli.sh command (WildFly server needs to be

running when this command is issued):

jboss-cli.sh --connect

'/system-property=eclipselink.archive.factory:add(value=org.jipijapa.eclipselink.JBossArchiveFactoryImpl)'

. The following shows what the standalone.xml (or your WildFly configuration you are using) file might look

like after updating the system properties:

<system-properties>

 ...

 <property name="eclipselink.archive.factory"

value="org.jipijapa.eclipselink.JBossArchiveFactoryImpl"/>

</system-properties>

You should then be able to deploy applications with persistence.xml that include;

<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

https://bugs.eclipse.org/bugs/show_bug.cgi?id=414974

WildFly 10

JBoss Community Documentation Page of 271 532

Also refer to page .how to use EclipseLink with WildFly guide here

29.20 Using DataNucleus

Read the .how to use DataNucleus with WildFly guide here

29.21 Native Hibernate use

Applications that use the Hibernate API directly, are referred to here as native Hibernate applications. Native

Hibernate applications, can choose to use the Hibernate jars included with WildFly or they can package their

own copy of the Hibernate jars. Applications that utilize JPA will automatically have the Hibernate classes

injected onto the application deployment classpath. Meaning that JPA applications, should expect to use the

Hibernate jars included in WildFly.

Example MANIFEST.MF entry to add dependency for Hibernate native applications:

Manifest-Version: 1.0

...

Dependencies: org.hibernate

If you use the Hibernate native api in your application and also use the JPA api to access the same entities

(from the same Hibernate session/EntityManager), you could get surprising results (e.g.

HibernateSession.saveOrUpdate(entity) is different than EntityManager.merge(entity). Each entity should be

managed by either Hibernate native API or JPA code.

29.22 Injection of Hibernate Session and

SessionFactoryInjection of Hibernate Session and

SessionFactory

You can inject a org.hibernate.Session and org.hibernate.SessionFactory directly, just as you can do with

EntityManagers and EntityManagerFactorys.

import org.hibernate.Session;

import org.hibernate.SessionFactory;

@Stateful public class MyStatefulBean ... {

 @PersistenceContext(unitName="crm") Session session1;

 @PersistenceContext(unitName="crm2", type=EXTENDED) Session extendedpc;

 @PersistenceUnit(unitName="crm") SessionFactory factory;

}

https://community.jboss.org/wiki/HowToUseEclipseLinkWithAS7
http://www.datanucleus.org/products/accessplatform_5_0/jpa/javaee.html

WildFly 10

JBoss Community Documentation Page of 272 532

29.23 Hibernate properties

WildFly automatically sets the following Hibernate (5.x) properties (if not already set in persistence unit

definition):

Property Purpose

 hibernate.id.new_generator_mappings =true New applications should let this

default to true, older applications

with existing data might need to

set to false (see note below). It

really depends on whether your

application uses the

@GeneratedValue(AUTO) which

will generates new key values for

newly created entities. The

application can override this

value (in the persistence.xml).

= instance ofhibernate.transaction.jta.platform

org.hibernate.service.jta.platform.spi.JtaPlatform interface

The transaction manager, user

transaction and transaction

synchronization registry is

passed into Hibernate via this

class.

 = instance ofhibernate.ejb.resource_scanner

org.hibernate.ejb.packaging.Scanner interface

Instance of entity scanning class

is passed in that knows how to

use the AS annotation indexer

(for faster deployment).

hibernate.transaction.manager_lookup_class This property is removed if found

in the persistence.xml (could

conflict with JtaPlatform)

 = qualified persistence unit namehibernate.session_factory_name Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

 = falsehibernate.session_factory_name_is_jndi only set if the application didn't

specify a value for

hibernate.session_factory_name.

WildFly 10

JBoss Community Documentation Page of 273 532

 qualified persistence unithibernate.ejb.entitymanager_factory_name =

name

Is set to the application name +

persistence unit name

(application can specify a

different value but it needs to be

unique across all application

deployments on the AS

instance).

=truehibernate.query.jpaql_strict_compliance

=falsehibernate.auto_quote_keyword

hibernate.implicit_naming_strategy

=org.hibernate.boot.model.naming.ImplicitNamingStrategyJpaCompliantImpl

In Hibernate 4.x (and greater), if is :new_generator_mappings true

@GeneratedValue(AUTO) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

@GeneratedValue(TABLE) maps to org.hibernate.id.enhanced.TableGenerator

@GeneratedValue(SEQUENCE) maps to org.hibernate.id.enhanced.SequenceStyleGenerator

In Hibernate 4.x (and greater), if is :new_generator_mappings false

@GeneratedValue(AUTO) maps to Hibernate "native"

@GeneratedValue(TABLE) maps to org.hibernate.id.MultipleHiLoPerTableGenerator

@GeneratedValue(SEQUENCE) to Hibernate "seqhilo"

29.24 Persistence unit properties

The following properties are supported in the persistence unit definition (in the persistence.xml file):

Property Purpose

jboss.as.jpa.providerModule name of the persistence provider module (default is

). Should be , if a persistenceorg.hibernate application

provider is packaged with the application. See note below about

some module names that are built in (based on the).provider

jboss.as.jpa.adapterModule name of the integration classes that help WildFly to work with

the persistence provider.

jboss.as.jpa.adapterClass class name of the integration adapter.

jboss.as.jpa.managed set to to disable container managed JPA access to thefalse

persistence unit. The default is , which enables containertrue

managed JPA access to the persistence unit. This is typically

set to for Seam 2.x + Spring applications.false

WildFly 10

JBoss Community Documentation Page of 274 532

jboss.as.jpa.classtransformer set to to disable class transformers for the persistencefalse

unit. The default is , which allows classtrue

enhancing/rewriting. Hibernate also needs persistence unit

property to be true, forhibernate.ejb.use_class_enhancer

class enhancing to be enabled.

wildfly.jpa.default-unit set to to choose the default persistence unit in antrue

application. This is useful if you inject a persistence context

without specifying the unitName (@PersistenceContext

EntityManager em) but have multiple persistence units specified

in your persistence.xml.

wildfly.jpa.twophasebootstrap persistence providers (like Hibernate ORM 4.3.x via

EntityManagerFactoryBuilder), allow a two phase persistence

unit bootstrap, which improves JPA integration with CDI.

Setting the hint to false,wildfly.jpa.twophasebootstrap

disables the two phase bootstrap (for the persistence unit that

contains the hint).

wildfly.jpa.allowdefaultdatasourceuse set to false to prevent persistence unit from using the default

data source. Defaults to true. This is only important for

persistence units that do not specify a datasource.

jboss.as.jpa.deferdetach Controls whether transaction scoped persistence context used

in non-JTA transaction thread, will detach loaded entities after

each EntityManager invocation or when the persistence context

is closed (e.g. business method ends). Defaults to false

(entities are cleared after EntityManager invocation) and if set to

true, the detach is deferred until the context is closed.

wildfly.jpa.hibernate.search.module Controls which version of Hibernate Search to include on

classpath. Only makes sense when using Hibernate as JPA

implementation. The default is ; other valid values are auto none

or a full module identifier to use an alternative version.

jboss.as.jpa.scopedname Specify the qualified (application scoped) persistence unit name

to be used. By default, this is internally set to the application

name + persistence unit name. The

hibernate.cache.region_prefix will default to whatever you set

jboss.as.jpa.scopedname to. Make sure you set the

jboss.as.jpa.scopedname value to a value not already in use by

other applications deployed on the same application server

instance.

WildFly 10

JBoss Community Documentation Page of 275 532

29.25 Determine the persistence provider module

As mentioned above, if the property is not specified, the provider modulejboss.as.jpa.providerModule

name is determined by the name specified in the persistence.xml. The mapping is:provider

Provider Name Module name

blank org.hibernate

org.hibernate.ejb.HibernatePersistence org.hibernate

org.hibernate.ogm.jpa.HibernateOgmPersistence org.hibernate.ogm

oracle.toplink.essentials.PersistenceProvider oracle.toplink

oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider oracle.toplink

org.eclipse.persistence.jpa.PersistenceProvider org.eclipse.persistence

org.datanucleus.api.jpa.PersistenceProviderImpl org.datanucleus

org.datanucleus.store.appengine.jpa.DatastorePersistenceProvider org.datanucleus:appengine

org.apache.openjpa.persistence.PersistenceProviderImpl org.apache.openjpa

WildFly 10

JBoss Community Documentation Page of 276 532

29.26 Binding EntityManagerFactory/EntityManager to

JNDI

By default WildFly does bind the entity manager factory to JNDI. However, you can explicitly configurenot

this in the persistence.xml of your application by setting the

 jboss.entity.manager.factory.jndi.name hint. The value of that property should

be the JNDI name to which the entity manager factory should be bound.

You can also bind a container managed (transaction scoped) entity manager to

 {JNDI as well, }}via hint jboss.entity.manager.jndi.name }{{. As a reminder, a

transaction scoped entity manager (persistence context), acts as a proxy that

always gets an unique underlying entity manager (at the persistence provider

level).

Here's an example:

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="myPU">

 <!-- If you are running in a production environment, add a managed

 data source, the example data source is just for proofs of concept! -->

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>

 <properties>

 <!-- Bind entity manager factory to JNDI at java:jboss/myEntityManagerFactory -->

 <property name="jboss.entity.manager.factory.jndi.name"

value="java:jboss/myEntityManagerFactory" />

 <property name="jboss.entity.manager.jndi.name" value="java:/myEntityManager"/>

 </properties>

 </persistence-unit>

</persistence>

@Stateful

public class ExampleSFSB {

 public void createSomeEntityWithTransactionScopedEM(String name) {

 Context context = new InitialContext();

 javax.persistence.EntityManager entityManager = (javax.persistence.EntityManager)

context.lookup("java:/myEntityManager");

 SomeEntity someEntity = new SomeEntity();

 someEntity.setName(name); entityManager.persist(name);

 }

}

WildFly 10

JBoss Community Documentation Page of 277 532

29.27 Community

Many thanks to the community, for reporting issues, solutions and code changes. A number of people have

been answering Wildfly forum questions related to JPA usage. I would like to thank them for this, as well as

those reporting issues. For those of you that haven't downloaded the AS source code and started hacking

patches together. I would like to encourage you to start by reading . You will find that itHacking on WildFly

easy very easy to find your way around the WildFly/JPA/* source tree and make changes. Also, new for

WildFly, is the JipiJapa project that contains additional integration code that makes EE JPA application

deployments work better. The following list of contributors should grow over time, I hope to see more of you

listed here.

29.27.1 People who have contributed to the WildFly JPA layer:

 (lead of the EJB3 project)Carlo de Wolf

 (lead of the Hibernate ORM project)Steve Ebersole

 (lead of the Seam Persistence project, WildFly project team member/committer)Stuart Douglas

 (Active member of JBoss forums and JBoss EJB3 project team member)Jaikiran Pai

 (leads the productization effort of Hibernate in the EAP product)Strong Liu

 (lead of the WildFly container JPA sub-project)Scott Marlow

 Antti Laisi (OpenJPA integration changes)

 (Infinispan 2lc documentation)Galder Zamarreño

 (lead of the Hibernate Search project)Sanne Grinovero

 (Infinispan 2lc integration)Paul Ferraro

https://community.jboss.org/wiki/HackingOnWildFly
https://community.jboss.org/people/wolfc
http://in.relation.to/Bloggers/Steve
https://community.jboss.org/people/swd847
https://community.jboss.org/people/jaikiran
http://relation.to/Bloggers/StrongLiu
https://community.jboss.org/people/smarlow
https://community.jboss.org/people/alaisi
https://docs.jboss.org/author/display/~galder.zamarreno
https://docs.jboss.org/author/display/~sannegrinovero
https://issues.jboss.org/secure/ViewProfile.jspa?name=pferraro

WildFly 10

JBoss Community Documentation Page of 278 532

30 OSGi
WildFly does not include support for OSGi, such functionality is now responsibility of JBoss OSGi project.

JBoss OSGi 2.5.0.Final will provide OSGi support for WildFly 10.

Release progress can be tracked via .JBOSGI-786

https://issues.jboss.org/browse/JBOSGI-786

WildFly 10

JBoss Community Documentation Page of 279 532

31 Remote EJB invocations via JNDI - EJB client

API or remote-naming project

31.1 Purpose

WildFly provides EJB client API project as well as remote-naming project for invoking on remote objects

exposed via JNDI. This article explains which approach to use when and what the differences and scope of

each of these projects is.

31.2 History

Previous versions of JBoss AS (versions < WildFly 8) used JNP project (

) as the JNDI naming implementation. Developers ofhttp://anonsvn.jboss.org/repos/jbossas/projects/naming/

client applications of previous versions of JBoss AS will be familiar with the URLjnp:// PROVIDER_URL

they used to use in their applications for communicating with the JNDI server on the JBoss server.

Starting WildFly 8, the JNP project is used. Neither on the server side nor on the client side. The clientnot

side of the JNP project has now been replaced by jboss-remote-naming project (

). There were various reasons why the JNP client washttps://github.com/jbossas/jboss-remote-naming

replaced by jboss-remote-naming project. One of them was the JNP project did not allow fine grained

security configurations while communicating with the JNDI server. The jboss-remote-naming project is

backed by the jboss-remoting project () which allows muchhttps://github.com/jboss-remoting/jboss-remoting

more and better control over security.

31.3 Overview

Now that we know that for remote client JNDI communication with WildFly 8 requires jboss-remote-naming

project, let's quickly see what the code looks like.

31.3.1 Client code relying on jndi.properties in classpath

void doLookup() {

 // Create an InitialContext using the javax.naming.* API

 Context ctx = new InitialContext();

 ctx.lookup("foo/bar");

 ...

}

http://anonsvn.jboss.org/repos/jbossas/projects/naming/
https://github.com/jbossas/jboss-remote-naming
https://github.com/jboss-remoting/jboss-remoting

WildFly 10

JBoss Community Documentation Page of 280 532

As you can see, there's not much here in terms of code. We first create a InitialContext (

) which as per the API will lookhttp://download.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html

for a jndi.properties in the classpath of the application. We'll see what our jndi.properties looks like, later.

Once the InitialContext is created, we just use it to do a lookup on a JNDI name which we know is bound on

the server side. We'll come back to the details of this lookup string in a while.

Let's now see what the jndi.properties in our client classpath looks like:

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextFactory

java.naming.provider.url=http-remoting://localhost:8080

Those 2 properties are important for jboss-remote-naming project to be used for communicating with the

WildFly server. The first property tells the JNDI API which initial context factory to use. In this case we are

pointing it to the InitailContextFactory class supplied by the jboss-remote-naming project. The other property

is the PROVIDER_URL. Developers familiar with previous JBoss AS versions would remember that they

used (just an example). In WildFly, the URI protocol scheme forjnp://localhost:1099

jboss-remote-naming project is . The rest of the PROVIDER_URL part is the server hostname orremote://

IP and the port on which the remoting connector is exposed on the server side. By default the http-remoting

connector port in WildFly 8 is 8080. That's what we have used in our example. The hostname we have used

is localhost but that should point to the server IP or hostname where the server is running.

JNP client project in previous AS versions allowed a comma separated list for PROVIDER_URL

value, so that if one of the server isn't accessible then the JNDI API would use the next available

server. The jboss-remote-naming project has similar support starting 1.0.3.Final version of that

project (which is available in a WildFly release 7.1.1.Final).after

WildFly 8 can use the PROVIDER_URL like:

java.naming.provider.url=http-remoting://server1:8080,http-remoting://server2:8080

So we saw how to setup the JNDI properties in the jndi.properties file. The JNDI API also allows you to pass

these properties to the constructor of the InitialContext class (please check the javadoc of that class for more

details). Let's quickly see what the code would look like:

void doLookup() {

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup

 ctx.lookup("foo/bar");

 ...

}

http://download.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html

WildFly 10

JBoss Community Documentation Page of 281 532

That's it! You can see that the values that we pass to those properties are the same as what we did via the

jndi.properties. It's upto the client application to decide which approach they want to follow.

31.3.2 How does remoting naming work

We have so far had an overview of how the client code looks like when using the jboss-remote-naming

(henceforth referred to as remote-naming - too tired of typing jboss-remote-naming everytime) project.

Let's now have a brief look at how the remote-naming project internally establishes the communication with

the server and allows JNDI operations from the client side.

Like previously mentioned, remote-naming internally uses jboss-remoting project. When the client code

creates an InitialContext backed by the org.jboss.naming.remote.client.InitialContextFactory class, the

 internally looks for theorg.jboss.naming.remote.client.InitialContextFactory

PROVIDER_URL (and other) properties that are applicable for that context (matter whether it comesdoesn't

from the jndi.properties file or whether passed explicitly to the constructor of the InitialContext). Once it

identifies the server and port to connect to, the remote-naming project internally sets up a connection using

the jboss-remoting APIs with the remoting connector which is exposed on that port.

We previously mentioned that remote-naming, backed by jboss-remoting project, has increased support for

security configurations. Starting WildFly 8, every service including the http remoting connector (which listens

by default on port 8080), is secured (see

 for details). This means that whenhttps://community.jboss.org/wiki/AS710Beta1-SecurityEnabledByDefault

trying to do JNDI operations like a lookup, the client has to pass appropriate user credentials. In our

examples so far we haven't passed any username/pass or any other credentials while creating the

InitialContext. That was just to keep the examples simple. But let's now take the code a step further and see

one of the ways how we pass the user credentials. Let's at the moment just assume that the remoting

connector on port 8080 is accessible to a user named " " whose password is expected to be " ".peter lois

Note: The server side configurations for the remoting connector to allow "peter" to access the

connector, is out of the scope of this documentation. The WildFly 8 documentation already has

chapters on how to set that up.

https://community.jboss.org/wiki/AS710Beta1-SecurityEnabledByDefault

WildFly 10

JBoss Community Documentation Page of 282 532

void doLookup() {

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // username

 jndiProps.put(Context.SECURITY_PRINCIPAL, "peter");

 // password

 jndiProps.put(Context.SECURITY_CREDENTIALS, "lois");

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup

 ctx.lookup("foo/bar");

 ...

}

The code is similar to our previous example, except that we now have added 2 additional properties that are

passed to the InitialContext constructor. The first is

 which passeshttp://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL

the username (peter in this case) and the second is

 whichhttp://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS

passes the password (lois in this case). Of course the same properties can be configured in the

jndi.properties file (read the javadoc of the Context class for appropriate properties to be used in the

jndi.properties). This is one way of passing the security credentials for JNDI communication with WildFly.

There are some other ways to do this too. But we won't go into those details here for two reasons. One, it's

outside the scope of this article and two (which is kind of the real reason) I haven't looked fully at the

remote-naming implementation details to see what other ways are allowed.

31.3.3 JNDI operations allowed using remote-naming project

So far we have mainly concentrated on how the naming context is created and what it internally does when

an instance is created. Let's now take this one step further and see what kind of operations are allowed for a

JNDI context backed by the remote-naming project.

The JNDI Context has various methods http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html

that are exposed for JNDI operations. One important thing to note in case of remote-naming project is that,

the project's scope is to allow a client to communicate with the JNDI backend exposed by the server. As

such, the remote-naming project does support many of the methods that are exposed by thenot

javax.naming.Context class. The remote-naming project only supports the read-only kind of methods (like

the lookup() method) and does not support any write kind of methods (like the bind() method). The client

applications are expected to use the remote-naming project mainly for lookups of JNDI objects. Neither

WildFly 8 nor remote-naming project allows writing/binding to the JNDI server from a remote application.

http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://docs.oracle.com/javase/6/docs/api/javax/naming/Context.html

WildFly 10

JBoss Community Documentation Page of 283 532

31.3.4 requisites of remotely accessible JNDI objects

On the server side, the JNDI can contain numerous objects that are bound to it. However, all of those arenot

exposed remotely. The two conditions that are to be satisfied by the objects bound to JNDI, to be remotely

accessible are:

1) Such objects should be bound under the namespace. For example, java:jboss/exported/

java:jboss/exported/foo/bar

2) Objects bound to the namespace are expected to be serializable. This allowsjava:jboss/exported/

the objects to be sent over the wire to the remote clients

Both these conditions are important and are required for the objects to be remotely accessible via JNDI.

31.3.5 JNDI lookup strings for remote clients backed by the

remote-naming project

In our examples, so far, we have been consistently using " " as the JNDI name to lookup from afoo/bar

remote client using the remote-naming project. There's a bit more to understand about the JNDI name and

how it maps to the JNDI name that's bound on the server side.

First of all, the JNDI names used while using the remote-naming project are relative to thealways

java:jboss/exported/ namespace. So in our examples, we are using " " JNDI name for the lookup,foo/bar

that actually is (internally) " ". The remote-naming project expects it to java:jboss/exported/foo/bar

 be relative to the " " namespace. Once connected with the server side, thealways java:jboss/exported/

remote-naming project will lookup for "foo/bar" JNDI name under the " "java:jboss/exported/

namespace of the server.

Note: Since the JNDI name that you use on the client side is relative to java:jboss/exportedalways

namespace, you be prefixing the java:jboss/exported/ string to the JNDI name. Forshouldn't

example, if you use the following JNDI name:

ctx.lookup("java:jboss/exported/helloworld");

then remote-naming will translate it to

ctx.lookup("java:jboss/exported/java:jboss/exported/helloworld");

and as a result, will fail during lookup.

The remote-naming implementation perhaps should be smart enough to strip off the

java:jboss/exported/ namespace prefix if supplied. But let's not go into that here.

WildFly 10

JBoss Community Documentation Page of 284 532

31.3.6 How does remote-naming project implementation

transfer the JNDI objects to the clients

When a lookup is done on a JNDI string, the remote-naming implementation internally uses the connection

to the remoting connector (which it has established based on the properties that were passed to the

InitialContext) to communicate with the server. On the server side, the implementation then looks for the

JNDI name under the namespace. Assuming that the JNDI name is available,java:jboss/exported/

under that namespace, the remote-naming implementation then passes over the object bound at that

address to the client. This is where the requirement about the JNDI object being serializable comes into

picture. remote-naming project internally uses jboss-marshalling project to marshal the JNDI object over to

the client. On the client side the remote-naming implementation then unmarshalles the object and returns it

to the client application.

So literally, each lookup backed by the remote-naming project entails a server side

communication/interaction and then marshalling/unmarshalling of the object graph. This is very important to

remember. We'll come back to this later, to see why this is important when it comes to using EJB client API

project for doing EJB lookups () as against usingEJB invocations from a remote client using JNDI

remote-naming project for doing the same thing.

31.4 Summary

That pretty much covers whatever is important to know, in the remote-naming project, for a typical client

application. Don't close the browser yet though, since we haven't yet come to the part of EJB invocations

from a remote client using the remote-naming project. In fact, the motivation behind writing this article was to

explain why to use remote-naming project (in most cases) for doing EJB invocations againstnot

WildFly server.

Those of you who don't have client applications doing remote EJB invocations, can just skip the rest of this

article if you aren't interested in those details.

31.5 Remote EJB invocations backed by the

remote-naming project

In previous sections of this article we saw that whatever is exposed in the java:jboss/exported/ namespace is

accessible remotely to the client applications under the relative JNDI name. Some of you might already have

started thinking about exposing remote views of EJBs under that namespace.

It's important to note that WildFly server side already by default exposes the remote views of a EJB under

the namespace (although it isn't logged in the server logs). So assuming yourjava:jboss/exported/

server side application has the following stateless bean:

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 285 532

package org.myapp.ejb;

@Stateless

@Remote(Foo.class)

public class FooBean implements Foo {

...

 public String sayBar() {

 return "Baaaaaaaar";

 }

}

Then the " " remote view is exposed under the namespace under theFoo java:jboss/exported/

following JNDI name scheme (which is similar to that mandated by EJB3.1 spec for java:global/

namespace):[app-name]

app-name/module-name/bean-name!bean-interface

where,

 = the name of the .ear (without the .ear suffix) or the application name configured viaapp-name

application.xml deployment descriptor. If the application isn't packaged in a .ear then there will be no

app-name part to the JNDI string.

 = the name of the .jar or .war (without the .jar/.war suffix) in which the bean is deployed ormodule-name

the module-name configured in web.xml/ejb-jar.xml of the deployment. The module name is mandatory part

in the JNDI string.

 = the name of the bean which by default is the simple name of the bean implementation class.bean-name

Of course it can be overridden either by using the "name" attribute of the bean definining annotation

(@Stateless(name="blah") in this case) or even the ejb-jar.xml deployment descriptor.

 = the fully qualified class name of the interface being exposed by the bean.bean-interface

So in our example above, let's assume the bean is packaged in a myejbmodule.jar which is within a

myapp.ear. So the JNDI name for the Foo remote view under the namespacejava:jboss/exported/

would be:

java:jboss/exported/myapp/myejbmodule/FooBean!org.myapp.ejb.Foo

That's where WildFly will expose the remote views of the EJBs under the automatically

 namespace, the java:global/ java:app/ java:module/ namespacesjava:jboss/exported/ in addition to

mandated by the EJB 3.1 spec.

Note that only the java:jboss/exported/ namespace is available to remote clients.

So the next logical question would be, are these remote views of EJBs accessible and invokable using the

remote-naming project on the client application. The answer is ! Let's quickly see the client code foryes

invoking our . Again, let's just use " " and " " as username/pass for connecting to theFooBean peter lois

remoting connector.

WildFly 10

JBoss Community Documentation Page of 286 532

void doBeanLookup() {

 ...

 Properties jndiProps = new Properties();

 jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

 jndiProps.put(Context.PROVIDER_URL,"http-remoting://localhost:8080");

 // username

 jndiProps.put(Context.SECURITY_PRINCIPAL, "peter");

 // password

 jndiProps.put(Context.SECURITY_CREDENTIALS, "lois");

 // This is an important property to set if you want to do EJB invocations via the

remote-naming project

 jndiProps.put("jboss.naming.client.ejb.context", true);

 // create a context passing these properties

 Context ctx = new InitialContext(jndiProps);

 // lookup the bean Foo

 beanRemoteInterface = (Foo) ctx.lookup("myapp/myejbmodule/FooBean!org.myapp.ejb.Foo");

 String bar = beanRemoteInterface.sayBar();

 System.out.println("Remote Foo bean returned " + bar);

 ctx.close();

 // after this point the beanRemoteInterface is not longer valid!

}

As you can see, most of the code is similar to what we have been seeing so far for setting up a JNDI context

backed by the remote-naming project. The only parts that change are:

1) An additional " " property that is added to the properties passedjboss.naming.client.ejb.context

to the InitialContext constructor.

2) The JNDI name used for the lookup

3) And subsequently the invocation on the bean interface returned by the lookup.

Let's see what the " " does. In WildFly, remote access/invocationsjboss.naming.client.ejb.context

on EJBs is facilitated by the JBoss specific EJB client API, which is a project on its own

. So no matter, what mechanism you use (remote-naming or corehttps://github.com/jbossas/jboss-ejb-client

EJB client API), the invocations are ultimately routed through the EJB client API project. In this case too, the

remote-naming internally uses EJB client API to handle EJB invocations. From a EJB client API project

perspective, for successful communication with the server, the project expects a EJBClientContext

backed by (atleast one) (s). The is responsible for handling the EJBEJBReceiver EJBReceiver

invocations. One type of a is a which internally usesEJBReceiver RemotingConnectionEJBReceiver

jboss-remoting project to communicate with the remote server to handle the EJB invocations. Such a

 expects a connection backed by the jboss-remoting project. Of course to be able to connectEJBReceiver

to the server, such a would have to know the server address, port, security credentials andEJBReceiver

other similar parameters. If you were using the core EJB client API, then you would have configured all these

properties via the jboss-ejb-client.properties or via programatic API usage as explained here EJB invocations

. But in the example above, we are using remote-naming project and are from a remote client using JNDI not

directly interacting with the EJB client API project.

https://github.com/jbossas/jboss-ejb-client
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI
https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 287 532

If you look closely at what's being passed, via the JNDI properties, to the remote-naming project and if you

remember the details that we explained in a previous section about how the remote-naming project

establishes a connection to the remote server, you'll realize that these properties are indeed the same as

what the would expect to be able to establish the connection to theRemotingConnectionEJBReceiver

server. Now this is where the " " property comes into picture. Whenjboss.naming.client.ejb.context

this is set to true and passed to the InitialContext creation (either via jndi.properties or via the constructor of

that class), the remote-naming project internally will do whatever is necessary to setup a

, containing a which is created using the EJBClientContext RemotingConnectionEJBReceiver same

remoting connection that is created by and being used by remote-naming project for its own JNDI

communication usage. So effectively, the InitialContext creation via the remote-naming project has now

internally triggered the creation of a containing a capable of handlingEJBClientContext EJBReceiver

the EJB invocations (remember, no remote EJB invocations are possible without the presence of a

 containing a which can handle the EJB).EJBClientContext EJBReceiver

So we now know the importance of the " " property and its usage.jboss.naming.client.ejb.context

Let's move on the next part in that code, the JNDI name. Notice that we have used the JNDI name relative to

the namespace while doing the lookup. And since we know that the Foo view isjava:jboss/exported/

exposed on that JNDI name, we cast the returned object back to the Foo interface. Remember that we

earlier explained how each lookup via remote-naming triggers a server side communication and a

marshalling/unmarshalling process. This applies for EJB views too. In fact, the remote-naming project has no

clue (since that's not in the scope of that project to know) whether it's an EJB or some random object.

Once the unmarshalled object is returned (which actually is a proxy to the bean), the rest is straightforward,

we just invoke on that returned object. Now since the remote-naming implementation has done the

necessary setup for the EJBClientContext (due to the presence of "

" property), the invocation on that proxy will internally use the jboss.naming.client.ejb.context

 (the proxy is smart enough to do that) to interact with the server and return back theEJBClientContext

result. We won't go into the details of how the EJB client API handles the communication/invocation.

Long story short, using the remote-naming project for doing remote EJB invocations against WildFly is

possible!

31.6 Why use the EJB client API approach then?

I can guess that some of you might already question why/when would one use the EJB client API style

lookups as explained in the article instead of just usingEJB invocations from a remote client using JNDI

(what appears to be a simpler) remote-naming style lookups.

Before we answer that, let's understand a bit about the EJB client project. The EJB client project was

implemented keeping in mind various optimizations and features that would be possible for handling remote

invocations. One such optimization was to avoid doing unnecessary server side communication(s) which

would typically involve network calls, marshalling/unmarshalling etc... The easiest place where this

optimization can be applied, is to the EJB lookup. Consider the following code (let's ignore how the context is

created):

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 288 532

ctx.lookup("foo/bar");

Now JNDI name could potentially point to type of object on the server side. The jndi namefoo/bar any

itself won't have the type/semantic information of the object bound to that name on the server side. If the

context was setup using the remote-naming project (like we have seen earlier in our examples), then the

only way for remote-naming to return an object for that lookup operation is to communicate with the server

and marshal/unmarshal the object bound on the server side. And that's exactly what it does (remember, we

explained this earlier).

The EJB client API project on the other hand optimizes this lookup. In order to do so, it expects the client

application to let it know that a EJB is being looked up. It does this, by expecting the client application to use

the JNDI name of the format " " namespace and also expecting the client application to setup the JNDIejb:

context by passing the " " value for the org.jboss.ejb.client.naming Context.URL_PKG_PREFIXES

property.

Example:

final Properties jndiProperties = new Properties();

jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");

// create the context

final Context context = new InitialContext(jndiProperties);

// lookup

Foo beanProxy = context.lookup("ejb:myapp/myejbmodule//FooBean!org.myapp.ejb.Foo");

String bar = beanProxy.sayBar();

More details about such code can be found here EJB invocations from a remote client using JNDI

When a client application looks up anything under the " " namespace, it is a clear indication (for the EJBejb:

client API project) to know that the client is looking up an EJB. That's where it steps in to do the necessary

optimizations that might be applicable. So unlike, in the case of remote-naming project (which has no clue

about the semantics of the object being looked up), the EJB client API project does trigger a server sidenot

communication or a marshal/unmarshal process when you do lookup for a remote view of a stateless bean

(it's important to note that we have specifically mentioned stateless bean here, we'll come to that later).

Instead, the EJB client API just returns a java.lang.reflect.Proxy instance of the remote view type that's being

looked up. This not just saves a network call, marshalling/unmarshalling step but it also means that you can

create an EJB proxy even when the server isn't up yet. Later on, when the invocation on the proxy happens,

the EJB client API communicate with the server to carry out the invocation.does

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 289 532

31.6.1 Is the lookup optimization applicable for all bean types?

In the previous section we (intentionally) mentioned that the lookup optimization by the EJB client API project

happens for stateless beans. This kind of optimization is possible for stateful beans because in case ofnot

stateful beans, a lookup is expected to create a session for that stateful bean and for session creation we do

have to communicate with the server since the server is responsible for creating that session.

That's exactly why the EJB client API project expects the JNDI name lookup string for stateful beans to

include the " " string at the end of the JNDI name:?stateful

context.lookup("ejb:myapp/myejbmodule//StatefulBean!org.myapp.ejb.Counter?stateful");

Notice the use of " in that JNDI name. See for"?stateful EJB invocations from a remote client using JNDI

more details about such lookup.

The presence of " " in the JNDI name lookup string is a directive to the EJB client API to let it?stateful

know that a stateful bean is being looked up and it's necessary to communicate with the server and create a

session during that lookup.

So as you can see, we have managed to optimize certain operations by using the EJB client API for EJB

lookup/invocation as against using the remote-naming project. There are other EJB client API

implementation details (and probably more might be added) which are superior when it is used for remote

EJB invocations in client applications as against remote-naming project which doesn't have the intelligence

to carry out such optimizations for EJB invocations. That's why the remote-naming project for remote EJB

 . Note that if you want to use remote-naming for looking up andinvocations is considered "deprecated"

invoking on non-EJB remote objects then you are free to do so. In fact, that's why that project has been

provided. You can even use the remote-naming project for EJB invocations (like we just saw), if you are fine

with wanting the optimizations that the EJB client API can do for you or if you have other restrictions thatnot

force you to use that project.

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 290 532

31.6.2 Restrictions for EJB's

If the remote-naming is used there are some restrictions as there is no full support of the ejb-client features.

No loadbalancing, if the URL conatains multiple "remote://" servers there is no loadbalancing, the first

available server will be used and only in case it is not longer available there will be a failover to the

next available one.

No cluster support. As a cluster needs to be defined in the jboss-ejb-client.properties this feature can

not be used and there is no cluster node added

No client side interceptor. The EJBContext.getCurrent() can not be used and it is not possible to add

a client interceptor

No UserTransaction support

All proxies become invalid if .close() for the related Initalcontext is invoked, or the InitialContext is not

longer referenced and gets garbage-collected. In this case the underlying EJBContext is destroyed

and the conections are closed.

It is not possible to use remote-naming if the client is an application deployed on another JBoss

instance

WildFly 10

JBoss Community Documentation Page of 291 532

32 Scoped EJB client contexts

32.1 Overview

WildFly 8 introduced the EJB client API for managing remote EJB invocations. The EJB client API works off

EJBClientContext(s). An EJBClientContext can potentially contain any number of EJB receivers. An EJB

receiver is a component which knows how to communicate with a server which is capable of handling the

EJB invocation. Typically EJB remote applications can be classified into:

A remote client which runs as a standalone Java application

A remote client which runs within another WildFly 8 instance

Depending on the kind of remote client, from an EJB client API point of view, there can potentially be more

than 1 EJBClientContext(s) within a JVM.

In case of standalone applications, typically a single EJBClientContext (backed by any number of EJB

receivers) exists. However this isn't mandatory. Certain standalone applications can potentially have more

than one EJBClientContext(s) and a EJB client context selector will be responsible for returning the

appropriate context.

In case of remote clients which run within another WildFly 8 instance, each deployed application will have a

corresponding EJB client context. Whenever that application invokes on another EJB, the corresponding

EJB client context will be used for finding the right EJB receiver and letting it handle the invocation.

32.2 Potential shortcomings of a single EJB client

context

In the Overview section we briefly looked at the different types of remote clients. Let's focus on the

standalone remote clients (the ones that don't run within another WildFly 8 instance) for some of the next

sections. Like mentioned earlier, typically a remote standalone client has just one EJB client context backed

by any number of EJB receivers. Consider this example:

public class MyApplication {

 public static void main(String args[]) {

 final javax.naming.Context ctxOne = new javax.naming.InitialContext();

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 }

}

WildFly 10

JBoss Community Documentation Page of 292 532

Now, we have seen in this other chapter that the JNDIEJB invocations from a remote client using JNDI

lookups are (typically) backed by jboss-ejb-client.properties file which is used to setup the EJB client context

and the EJB receivers. Let's assume we have a jboss-ejb-client.properties with the relevant receivers

configurations. These configurations include the security credentials that will be used to create a EJB

receiver which connects to the AS7 server. Now when the above code is invoked, the EJB client API looks

for the EJB client context to pick a EJB receiver, to pass on the EJB invocation request. Since we just have a

single EJB client context, that context is used by the above code to invoke the bean.

Now let's consider a case where the user application wants to invoke on the bean more than once, but wants

to connect to the WildFly 8 server using different security credentials. Let's take a look at the following code:

public class MyApplication {

 public static void main(String args[]) {

 // let's say we want to use "foo" security credential while connecting to the AS7 server

for invoking on this bean instance

 final javax.naming.Context ctxOne = new javax.naming.InitialContext();

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 // let's say we want to use "bar" security credential while connecting to the AS7 server

for invoking on this bean instance

 final javax.naming.Context ctxTwo = new javax.naming.InitialContext();

 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

 beanTwo.doSomething();

 ...

 }

}

So we have the same application, which wants to connect to the same server instance for invoking the

EJB(s) hosted on that server, but wants to use two different credentials while connecting to the server.

Remember, the client application has a single EJB client context which can have atmost 1 EJB recevier for

each server instance. Which effectively means that the above code will end up using just one credential to

connect to the server. So there was no easy way to have the above code working.

That was one of the use cases which prompted the featurehttps://issues.jboss.org/browse/EJBCLIENT-34

request. The proposal was to introduce a way, where you can have more control over the EJB client

contexts and their association with JNDI contexts which are typically used for EJB invocations.

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+client+using+JNDI
https://issues.jboss.org/browse/EJBCLIENT-34

WildFly 10

JBoss Community Documentation Page of 293 532

32.3 Scoped EJB client contexts

Developers familiar with earlier versions of JBoss AS would remember that for invoking an EJB, you would

typically create a JNDI context passing it the PROVIDER_URL which would point to the target server. That

way any invocation done on EJB proxies looked up using that JNDI context, would end up on that server. If

we look back at the example above, we'll realize that, we are ultimately aiming for a similar functionality

through . We want the user applications to have more controlhttps://issues.jboss.org/browse/EJBCLIENT-34

over which EJB receiver gets used for a specific invocation.

Before we introduced feature, the EJB client context washttps://issues.jboss.org/browse/EJBCLIENT-34

typically scoped to the client application. As part of we nowhttps://issues.jboss.org/browse/EJBCLIENT-34

allow the EJB client contexts to be scoped with the JNDI contexts. Consider the following example:

public class MyApplication {

 public static void main(String args[]) {

 // let's say we want to use "foo" security credential while connecting to the AS7 server

for invoking on this bean instance

 final Properties ejbClientContextPropsOne = getPropsForEJBClientContextOne():

 final javax.naming.Context ctxOne = new

javax.naming.InitialContext(ejbClientContextPropsOne);

 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");

 beanOne.doSomething();

 ...

 closeContext(ctxOne); // read on the entire article to understand more about closing

scoped EJB client contexts

 // let's say we want to use "bar" security credential while connecting to the AS7 server

for invoking on this bean instance

 final Properties ejbClientContextPropsTwo = getPropsForEJBClientContextTwo():

 final javax.naming.Context ctxTwo = new

javax.naming.InitialContext(ejbClientContextPropsTwo);

 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

 beanTwo.doSomething();

 ...

 closeContext(ctxTwo); // read on the entire article to understand more about closing

scoped EJB client contexts

 }

}

Notice any difference between this code and the earlier one? We now create and pass EJB client context

specific properties to the JNDI context. So what do the EJB client context properties look like? The

properties are the same that you would pass through the jboss-ejb-client.properties file, except for one

additional property which is required to scope the EJB client context to the JNDI context. The name of the

property is:

org.jboss.ejb.client.scoped.context

https://issues.jboss.org/browse/EJBCLIENT-34
https://issues.jboss.org/browse/EJBCLIENT-34
https://issues.jboss.org/browse/EJBCLIENT-34

WildFly 10

JBoss Community Documentation Page of 294 532

which is expected to have a value true. This property lets the EJB client API know that it has to created a

EJB client context (backed by EJB receiver(s)) and that created context is then scoped/visible to only that

JNDI context which created it. Lookup and invocation on any EJB proxies looked up using this JNDI context

will only know of the EJB client context associated with this JNDI context. This effectively means that the

other JNDI contexts which the application uses to lookup and invoke on EJBs will know about the othernot

scoped EJB client contexts at all.

JNDI contexts which aren't scoped to a EJB client context (for example, not passing the

org.jboss.ejb.client.scoped.context property) will fallback to the default behaviour of using the "current" EJB

client context which typically is the one tied to the entire application.

This scoping of the EJB client context helps the user applications to have more control over which JNDI

context "talks to" which server and connects to that server in "what way". This gives the user applications the

flexibility that was associated with the JNP based JNDI invocations prior to WildFly 8 versions.

 IMPORTANT: It is very important to remember that scoped EJB client contexts which are

scoped to the JNDI contexts are NOT fire and forget kind of contexts. What that means is

the application program which is using these contexts is solely responsible for managing

their lifecycle and the application itself is responsible for closing the context at the right

moment. After closing the context the proxies which are bound to this context are no longer

valid and any invocation will throw an Exception. Not closing the context will end in

resource problems as the underlying physical connection will stay open.

Read the rest of the sections in this article to understand more about the lifecycle

management of such scoped contexts.

32.4 Lifecycle management of scoped EJB client

contexts

Like you saw in the previous sections, in case of scoped EJB client contexts, the EJB client context is tied to

the JNDI context. It's very important to understand how the lifecycle of the EJB client context works in such

cases. Especially since any EJB client context is almost always backed by connections to the server. Not

managing the EJB client context lifecycle correctly can lead to connection leaks in some cases.

When you create a scoped EJB client context, the EJB client context connects to the server(s) listed in the

JNDI properties. An internal implementation detail of this logic includes the ability of the EJB client context to

cache connections based on certain internal algorithm it uses. The algorithm itself isn't publicly documented

(yet) since the chances of it changing or even removal shouldn't really affect the client application and

instead it's supposed to be transparent to the client application.

The connections thus created for a EJB client context are kept open as long as the EJB client context is

open. This allows the EJB client context to be usable for EJB invocations. The connections associated with

the EJB client context are closed when the EJB client context itself is closed.

WildFly 10

JBoss Community Documentation Page of 295 532

The connections that were manually added by the application to the EJB client context are not

managed by the EJB client context. i.e. they won't be opened (obviously) nor closed by the EJB

client API when the EJB client context is closed.

32.4.1 How to close EJB client contexts?

The answer to that is simple. Use the close() method on the appropriate EJB client context.

32.4.2 How to close scoped EJB client contexts?

The answer is the same, use the close() method on the EJB client context. But the real question is how do

you get the relevant scoped EJB client context which is associated with a JNDI context. Before we get to

that, it's important to understand how the ejb: JNDI namespace that's used for EJB lookups and how the

JNDI context (typically the InitialContext that you see in the client code) are related. The JNDI API provided

by Java language allows "URL context factory" to be registered in the JNDI framework (see this for details

). Like that documentation states, the URLhttp://docs.oracle.com/javase/jndi/tutorial/provider/url/factory.html

context factory can be used to resolve URL strings during JNDI lookup. That's what the ejb: prefix is when

you do a remote EJB lookup. The ejb: URL string is backed by a URL context factory.

Internally, when a lookup happens for a ejb: URL string, a relevant javax.naming.Context is created for that

ejb: lookup. Let's see some code for better understanding:

// JNDI context "A"

Context jndiCtx = new InitialContext(props);

// Now let's lookup a EJB

MyBean bean = jndiCtx.lookup("ejb:app/module/distinct/bean!interface");

So we first create a JNDI context and then use it to lookup an EJB. The bean lookup using the ejb: JNDI

name, although, is just one statement, involves a few more things under the hood. What's actually

happening when you lookup that string is that a separate javax.naming.Context gets created for the ejb: URL

string. This new javax.naming.Context is then used to lookup the rest of the string in that JNDI name.

Let's break up that one line into multiple statements to understand better:

// Remember, the ejb: is backed by a URL context factory which returns a Context for the ejb:

URL (that's why it's called a context factory)

final Context ejbNamingContext = (Context) jndiCtx.lookup("ejb:");

// Use the returned EJB naming context to lookup the rest of the JNDI string for EJB

final MyBean bean = ejbNamingContext.lookup("app/module/distinct/bean!interface");

http://docs.oracle.com/javase/jndi/tutorial/provider/url/factory.html

WildFly 10

JBoss Community Documentation Page of 296 532

As you see above, we split up that single statement into a couple of statements for explaining the details

better. So as you can see when the ejb: URL string is parsed in a JNDI name, it gets hold of a

javax.naming.Context instance. This instance is different from the one which was used to do the lookup

(jndiCtx in this example). This is an important detail to understand (for reasons explained later). Now this

returned instance is used to lookup the rest of the JNDI string ("app/module/distinct/bean!interface"), which

then returns the EJB proxy. Irrespective of whether the lookup is done in a single statement or multiple parts,

the code works the same. i.e. an instance of javax.naming.Context gets created for the ejb: URL string.

So why am I explaining all this when the section is titled "How to close scoped EJB client

? The reason is because client applications dealing with scoped EJB client contexts which arecontexts"

associated with a JNDI context would expect the following code to close the associated EJB client context,

but will be surprised that it won't:

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context jndiCtx = new InitialContext(props);

try {

 final MyBean bean = jndiCtx.lookup("ejb:app/module/distinct/bean!interface");

 bean.doSomething();

} finally {

 jndiCtx.close();

}

Applications expect that the call to jndiCtx.close() will effectively close the EJB client context associated with

the JNDI context. That doesn't happen because as explained previously, the javax.naming.Context backing

the ejb: URL string is a different instance than the one the code is closing. The JNDI implementation in Java,

only just closes the context on which the close was called. As a result, the other javax.naming.Context that

backs the ejb: URL string is still not closed, which effectively means that the scoped EJB client context is not

closed too which then ultimately means that the connection to the server(s) in the EJB client context are not

closed too.

So now let's see how this can be done properly. We know that the ejb: URL string lookup returns us a

javax.naming.Context. All we have to do is keep a reference to this instance and close it when we are done

with the EJB invocations. So here's how it's going to look:

WildFly 10

JBoss Community Documentation Page of 297 532

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context jndiCtx = new InitialContext(props);

Context ejbRootNamingContext = (Context) jndiCtx.lookup("ejb:");

try {

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

the rest of the EJB jndi string

 bean.doSomething();

} finally {

 try {

 // close the EJB naming JNDI context

 ejbRootNamingContext.close();

 } catch (Throwable t) {

 // log and ignore

 }

 try {

 // also close our other JNDI context since we are done with it too

 jndiCtx.close();

 } catch (Throwable t) {

 // log and ignore

 }

}

As you see, we changed the code to first do a lookup on just the "ejb:" string to get hold of the EJB naming

context and then used that ejbRootNamingContext instance to lookup the rest of the EJB JNDI name to get

hold of the EJB proxy. Then when it was time to close the context, we closed the ejbRootNamingContext (as

well as the other JNDI context). Closing the ejbRootNamingContext ensures that the scoped EJB client

context associated with that JNDI context is closed too. Effectively, this closes the connection(s) to the

server(s) within that EJB client context.

WildFly 10

JBoss Community Documentation Page of 298 532

Can that code be simplified a bit?
If you are using that JNDI context only for EJB invocations, then yes you can get rid of some instances and

code from the above code. You can change that code to:

final Properties props = new Properties();

// mark it for scoped EJB client context

props.put("org.jboss.ejb.client.scoped.context","true");

// add other properties

props.put(....);

...

Context ejbRootNamingContext = (Context) new InitialContext(props).lookup("ejb:");

try {

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

the rest of the EJB jndi string

 bean.doSomething();

} finally {

 try {

 // close the EJB naming JNDI context

 ejbRootNamingContext.close();

 } catch (Throwable t) {

 // log and ignore

 }

}

Notice that we no longer hold a reference to 2 JNDI contexts and instead just keep track of the

ejbRootNamingContext which is actually the root JNDI context for our "ejb:" URL string. Of course, this

means that you can only use this context for EJB lookups or any other EJB related JNDI lookups. So it

depends on your application and how it's coded.

WildFly 10

JBoss Community Documentation Page of 299 532

32.4.3 Can't the scoped EJB client context be automatically

closed by the EJB client API when the JNDI context is no

longer in scope (i.e. on GC)?

That's one of the common questions that gets asked. No, the EJB client API can't take that decision. i.e. it

cannot automatically go ahead and close the scoped EJB client context by itself when the associated JNDI

context is eligible for GC. The reason is simple as illustrated by the following code:

void doEJBInvocation() {

 final MyBean bean = lookupEJB();

 bean.doSomething();

 bean.doSomeOtherThing();

 ... // do some other work

 bean.keepDoingSomething();

}

MyBean lookupEJB() {

 final Properties props = new Properties();

 // mark it for scoped EJB client context

 props.put("org.jboss.ejb.client.scoped.context","true");

 // add other properties

 props.put(....);

 ...

 Context ejbRootNamingContext = (Context) new InitialContext(props).lookup("ejb:");

 final MyBean bean = ejbRootNamingContext.lookup("app/module/distinct/bean!interface"); //

rest of the EJB jndi string

 return bean;

}

As you can see, the doEJBInvocation() method first calls a lookupEJB() method which does a lookup of the

bean using a JNDI context and then returns the bean (proxy). The doEJBInvocation() then uses that

returned proxy and keeps doing the invocations on the bean. As you might have noticed, the JNDI context

that was used for lookup (i.e. the ejbRootNamingContext) is eligible for GC. If the EJB client API had closed

the scoped EJB client context associated with that JNDI context, when that JNDI context was garbage

collected, then the subsequent EJB invocations on the returned EJB (proxy) would start failing in

doEJBInvocation() since the EJB client context is no longer available.

That's the reason why the EJB client API doesn't automatically close the EJB client context.

WildFly 10

JBoss Community Documentation Page of 300 532

33 Spring applications development and migration

guide
This document details the main points that need to be considered by Spring developers that wish to develop

new applications or to migrate existing applications to be run into WildFly 8.

33.1 Dependencies and Modularity

WildFly 8 has a modular class loading strategy, different from previous versions of JBoss AS, which enforces

a better class loading isolation between deployments and the application server itself. A detailed description

can be found in the documentation dedicated to .class loading in WildFly 8

This reduces significantly the risk of running into a class loading conflict and allows applications to package

their own dependencies if they choose to do so. This makes it easier for Spring applications that package

their own dependencies - such as logging frameworks or persistence providers to run on WildFly 8.

At the same time, this does not mean that duplications and conflicts cannot exist on the classpath. Some

module dependencies are implicit, depending on the type of deployment as shown . here

33.2 Persistence usage guide

Depending on the strategy being used, Spring applications can be:

native Hibernate applications;

JPA-based applications;

native JDBC applications;

33.3 Native Spring/Hibernate applications

Applications that use the Hibernate API directly with Spring (i.e. through either one of

LocalSessionFactoryBean or AnnotationSessionFactoryBean) may use a version of Hibernate 3 packaged

inside the application. Hibernate 4 (which is provided through the 'org.hibernate' module of WildFly 8) is not

supported by Spring 3.0 and Spring 3.1 (and may be supported by Spring 3.2 as described in), soSPR-8096

adding this module as a dependency is not a solution.

33.4 based applications

Spring applications using JPA may choose between:

using a server-deployed persistence unit;

using a Spring-managed persistence unit.

https://docs.jboss.org/author/display/AS7/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS7/Implicit+module+dependencies+for+deployments
https://jira.springsource.org/browse/SPR-8096

WildFly 10

JBoss Community Documentation Page of 301 532

33.4.1 Using server-deployed persistence units

Applications that use a server-deployed persistence unit must observe the typical Java EE rules in what

concerns dependency management, i.e. the javax.persistence classes and persistence provider (Hibernate)

are contained in modules which are added automatically by the application when the persistence unit is

deployed.

In order to use the server-deployed persistence units from within Spring, either the persistence context or the

persistence unit need to be registered in JNDI via web.xml as follows:

<persistence-context-ref>

 <persistence-context-ref-name>persistence/petclinic-em</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-context-ref>

or, respectively:

<persistence-unit-ref>

 <persistence-unit-ref-name>persistence/petclinic-emf</persistence-unit-ref-name>

 <persistence-unit-name>petclinic</persistence-unit-name>

</persistence-unit-ref>

When doing so, the persistence context or persistence unit are available to be looked up in JNDI, as follows:

<jee:jndi-lookup id="entityManager" jndi-name="java:comp/env/persistence/petclinic-em"

 expected-type="javax.persistence.EntityManager"/>

or

<jee:jndi-lookup id="entityManagerFactory" jndi-name="java:comp/env/persistence/petclinic-emf"

 expected-type="javax.persistence.EntityManagerFactory"/>

JNDI binding

JNDI binding via persistence.xml properties is not supported in WildFly 8.

WildFly 10

JBoss Community Documentation Page of 302 532

33.4.2 Using Spring-managed persistence units

Spring applications running in WildFly 8 may also create persistence units on their own, using the

LocalContainerEntityManagerFactoryBean. This is what these applications need to consider:

Placement of the persistence unit definitions
When the application server encounters a deployment that has a file named META-INF/persistence.xml (or,

for that matter, WEB-INF/classes/META-INF/persistence.xml), it will attempt to create a persistence unit

based on what is provided in the file. In most cases, such definition files are not compliant with the Java EE

requirements, mostly because required elements such as the datasource of the persistence unit are

supposed to be provided by the Spring context definitions, which will fail the deployment of the persistence

unit, and consequently of the entire deployment.

Spring applications can easily avoid this type of conflict, by using a feature of the

LocalContainerEntityManagerFactoryBean which is designed for this purpose. Persistence unit definition

files can exist in other locations than META-INF/persistence.xml and the location can be indicated through

the persistenceXmlLocation property of the factory bean class.

Assuming that the persistence unit is in the META-INF/jpa-persistence.xml, the corresponding definition can

be:

<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceXmlLocation"

value="classpath*:META-INF/jpa-persistence.xml"/>

 <!-- other definitions -->

</bean>

WildFly 10

JBoss Community Documentation Page of 303 532

33.4.3 Managing dependencies

Since the LocalContainerEntityManagerFactoryBean and the corresponding HibernateJpaVendorAdapter

are based on Hibernate 3, it is required to use that version with the application. Therefore, the Hibernate 3

jars must be included in the deployment. At the same time, due the presence of @PersistenceUnit or

@PersistenceContext annotations on the application classes, the application server will automatically add

the 'org.hibernate' module as a dependency.

This can be avoided by instructing the server to exclude the module from the deployment's list of

dependencies. In order to do so, include a META-INF/jboss-deployment-structure.xml or, for web

applications, WEB-INF/jboss-deployment-structure.xml with the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.0">

 <deployment>

 <exclusions>

 <module name="org.hibernate"/>

 </exclusions>

 </deployment>

</jboss-deployment-structure>

WildFly 10

JBoss Community Documentation Page of 304 532

34 Sharing sessions between wars in an ear
Undertow allows you to share sessions between wars in an ear, if it is explicitly configured to do so. Note

that if you use this feature your applications may not be portable, as this is not a standard servlet feature.

In order to enable this you must include a element in the fileshared-session-config jboss-all.xml

in the META-INF directory of the ear:

<jboss umlns="urn:jboss:1.0">

 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">

 <session-config>

 <cookie-config>

 <path>/</path>

 </cookie-config>

 </session-config>

 </shared-session-config>

</jboss>

This element is used to configure the shared session manager that will be used by all wars in the ear. For full

details of all the options provided by this file please see the schema at

https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd

, however in general it mimics the options that are available in jboss-web.xml for configuring the session.

https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd
https://github.com/wildfly/wildfly/blob/master/undertow/src/main/resources/schema/shared-session-config_1_0.xsd

WildFly 10

JBoss Community Documentation Page of 305 532

35 Webservices reference guide
The Web Services functionalities of WildFly are provided by the JBossWS project integration.

The latest project documentation is available .here

This section covers the most relevant topics for the JBossWS version available on WildFly 9.

JAX-WS User Guide

JAX-WS Tools

wsconsume

wsprovide

Advanced User Guide

Predefined client and endpoint configurations

Authentication

Apache CXF integration

WS-Addressing

WS-Security

WS-Trust and STS

ActAs WS-Trust Scenario

OnBehalfOf WS-Trust Scenario

SAML Bearer Assertion Scenario

SAML Holder-Of-Key Assertion Scenario

WS-Reliable Messaging

SOAP over JMS

HTTP Proxy

WS-Discovery

WS-Policy

Published WSDL customization

JBoss Modules and WS applications

35.1 WS User Guide

The defines the mapping between WSDL andJava API for XML-Based Web Services (JAX-WS / JSR-224)

Java as well as the classes to be used for accessing webservices and publishing them. JBossWS

implements the latest JAX-WS specification, hence users can reference it for any vendor agnostic

webservice usage need. Below is a brief overview of the most basic functionalities.

https://docs.jboss.org/author/display/JBWS
http://www.jcp.org/en/jsr/detail?id=224

WildFly 10

JBoss Community Documentation Page of 306 532

35.1.1 Web Service Endpoints

JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an endpoint

implementation bean is annotated with JAX-WS annotations and deployed to the server. The server

automatically generates and publishes the abstract contract (i.e. wsdl+schema) for client consumption. All

marshalling/unmarshalling is delegated to .JAXB

Plain old Java Object (POJO)
Let's take a look at simple POJO endpoint implementation. All endpoint associated metadata is provided via

 annotationsJSR-181

@WebService

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class JSEBean01

{

 @WebMethod

 public String echo(String input)

 {

 ...

 }

}

The endpoint as a web application
A JAX-WS java service endpoint (JSE) is deployed as a web application. Here is a sample web.xml

descriptor:

<web-app ...>

 <servlet>

 <servlet-name>TestService</servlet-name>

 <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

http://www.jcp.org/en/jsr/summary?id=jaxb
http://www.jcp.org/en/jsr/summary?id=181

WildFly 10

JBoss Community Documentation Page of 307 532

Packaging the endpoint
A JSR-181 java service endpoint (JSE) is packaged as a web application in a file.war

<war warfile="${build.dir}/libs/jbossws-samples-jsr181pojo.war"

webxml="${build.resources.dir}/samples/jsr181pojo/WEB-INF/web.xml">

 <classes dir="${build.dir}/classes">

 <include name="org/jboss/test/ws/samples/jsr181pojo/JSEBean01.class"/>

 </classes>

</war>

Note, only the endpoint implementation bean and web.xml are required.

Accessing the generated WSDL
A successfully deployed service endpoint will show up in the WildFly managent console. You can get the

deployed endpoint wsdl address there too.

Note, it is also possible to generate the abstract contract off line using JBossWS tools. For details

of that please see Bottom-Up (Java to WSDL).

WildFly 10

JBoss Community Documentation Page of 308 532

EJB3 Stateless Session Bean (SLSB)
The JAX-WS programming model supports the same set of annotations on EJB3 stateless session beans as

on POJO endpoints.

@Stateless

@Remote(EJB3RemoteInterface.class)

@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")

@WebService

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class EJB3Bean01 implements EJB3RemoteInterface

{

 @WebMethod

 public String echo(String input)

 {

 ...

 }

}

Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote interface

and as an endpoint operation.

Packaging the endpoint
A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

<jar jarfile="${build.dir}/libs/jbossws-samples-jsr181ejb.jar">

 <fileset dir="${build.dir}/classes">

 <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3Bean01.class"/>

 <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3RemoteInterface.class"/>

 </fileset>

</jar>

Accessing the generated WSDL
A successfully deployed service endpoint will show up in the WildFly managent console. You can get the

deployed endpoint wsdl address there too.

Note, it is also possible to generate the abstract contract off line using JBossWS tools. For details

of that please see Bottom-Up (Java to WSDL).

WildFly 10

JBoss Community Documentation Page of 309 532

Endpoint Provider
JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped from a

WSDL port type, either directly or via the use of annotations.

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between Java

objects and their XML representations for use in XML-based messages. However, in some cases it is

desirable for services to be able to operate at the XML message level. The Provider interface offers an

alternative to SEIs and may be implemented by services wishing to work at the XML message level.

A Provider based service instances invoke method is called for each message received for the service.

@WebServiceProvider(wsdlLocation = "WEB-INF/wsdl/Provider.wsdl")

@ServiceMode(value = Service.Mode.PAYLOAD)

public class ProviderBeanPayload implements Provider<Source>

{

 public Source invoke(Source req)

 {

 // Access the entire request PAYLOAD and return the response PAYLOAD

 }

}

Note, is the default and does not have to be declared explicitly. You can also useService.Mode.PAYLOAD

 to access the entire SOAP message (i.e. with the Provider can alsoService.Mode.MESSAGE MESSAGE

see SOAP Headers)

The abstract contract for a provider endpoint cannot be derived/generated automatically. Therefore it is

necessary to specify the with the annotation.wsdlLocation @WebServiceProvider

35.1.2 Web Service Clients

Service
 is an abstraction that represents a WSDL service. A WSDL service is a collection of related ports,Service

each of which consists of a port type bound to a particular protocol and available at a particular endpoint

address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will be the service,

and you will create objects of that class in order to work with the service (see "static case" below).

WildFly 10

JBoss Community Documentation Page of 310 532

Service Usage

Static case
Most clients will start with a WSDL file, and generate some stubs using JBossWS tools like . wsconsume

This usually gives a mass of files, one of which is the top of the tree. This is the service implementation

class.

The generated implementation class can be recognised as it will have two public constructors, one with no

arguments and one with two arguments, representing the wsdl location (a) and the servicejava.net.URL

name (a) respectively.javax.xml.namespace.QName

Usually you will use the no-argument constructor. In this case the WSDL location and service name are

those found in the WSDL. These are set implicitly from the annotation that decorates@WebServiceClient

the generated class.

The following code snippet shows the generated constructors from the generated class:

// Generated Service Class

@WebServiceClient(name="StockQuoteService", targetNamespace="http://example.com/stocks",

wsdlLocation="http://example.com/stocks.wsdl")

public class StockQuoteService extends javax.xml.ws.Service

{

 public StockQuoteService()

 {

 super(new URL("http://example.com/stocks.wsdl"), new QName("http://example.com/stocks",

"StockQuoteService"));

 }

 public StockQuoteService(String wsdlLocation, QName serviceName)

 {

 super(wsdlLocation, serviceName);

 }

 ...

}

Section Dynamic Proxy explains how to obtain a port from the service and how to invoke an operation on the

port. If you need to work with the XML payload directly or with the XML representation of the entire SOAP

message, have a look at .Dispatch

Dynamic case
In the dynamic case, when nothing is generated, a web service client uses to createService.create

Service instances, the following code illustrates this process.

URL wsdlLocation = new URL("http://example.org/my.wsdl");

QName serviceName = new QName("http://example.org/sample", "MyService");

Service service = Service.create(wsdlLocation, serviceName);

WildFly 10

JBoss Community Documentation Page of 311 532

Handler Resolver
JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that

may be used to extend the capabilities of a JAX-WS runtime system. Handler Framework describes the

handler framework in detail. A Service instance provides access to a via a pair of HandlerResolver

 / methods that may be used to configure a set of handlersgetHandlerResolver setHandlerResolver

on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver currently

registered with the service is used to create the required handler chain. Subsequent changes to the handler

resolver configured for a Service instance do not affect the handlers on previously created proxies, or

Dispatch instances.

Executor
Service instances can be configured with a . The executor will thenjava.util.concurrent.Executor

be used to invoke any asynchronous callbacks requested by the application. The and setExecutor

 methods of can be used to modify and retrieve the executor configured for agetExecutor Service

service.

Dynamic Proxy
You can create an instance of a client proxy using one of methods on the .getPort Service

/**

 * The getPort method returns a proxy. A service client

 * uses this proxy to invoke operations on the target

 * service endpoint. The <code>serviceEndpointInterface</code>

 * specifies the service endpoint interface that is supported by

 * the created dynamic proxy instance.

 **/

public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)

{

 ...

}

/**

 * The getPort method returns a proxy. The parameter

 * <code>serviceEndpointInterface</code> specifies the service

 * endpoint interface that is supported by the returned proxy.

 * In the implementation of this method, the JAX-WS

 * runtime system takes the responsibility of selecting a protocol

 * binding (and a port) and configuring the proxy accordingly.

 * The returned proxy should not be reconfigured by the client.

 *

 **/

public <T> T getPort(Class<T> serviceEndpointInterface)

{

 ...

}

WildFly 10

JBoss Community Documentation Page of 312 532

1.

2.

The service endpoint interface (SEI) is usually generated using tools. For details see Top Down (WSDL to

Java)

A generated static Service usually also offers typed methods to get ports. These methods also return

dynamic proxies that implement the SEI.

@WebServiceClient(name = "TestEndpointService", targetNamespace = "http://org.jboss.ws/wsref",

 wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl")

public class TestEndpointService extends Service

{

 ...

 public TestEndpointService(URL wsdlLocation, QName serviceName) {

 super(wsdlLocation, serviceName);

 }

 @WebEndpoint(name = "TestEndpointPort")

 public TestEndpoint getTestEndpointPort()

 {

 return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);

 }

}

WebServiceRef
The annotation is used to declare a reference to a Web service. It follows the resource@WebServiceRef

pattern exemplified by the annotation in .javax.annotation.Resource JSR-250

There are two uses to the WebServiceRef annotation:

To define a reference whose type is a generated service class. In this case, the type and value

element will both refer to the generated service class type. Moreover, if the reference type can be

inferred by the field/method declaration the annotation is applied to, the type and value elements MAY

have the default value (Object.class, that is). If the type cannot be inferred, then at least the type

element MUST be present with a non-default value.

To define a reference whose type is a SEI. In this case, the type element MAY be present with its

default value if the type of the reference can be inferred from the annotated field/method declaration,

but the value element MUST always be present and refer to a generated service class type (a

subtype of javax.xml.ws.Service). The wsdlLocation element, if present, overrides theWSDL location

information specified in the WebService annotation of the referenced generated service class.

public class EJB3Client implements EJB3Remote

{

 @WebServiceRef

 public TestEndpointService service4;

 @WebServiceRef

 public TestEndpoint port3;

http://www.jcp.org/en/jsr/summary?id=250

WildFly 10

JBoss Community Documentation Page of 313 532

Dispatch
XMLWeb Services use XML messages for communication between services and service clients. The higher

level JAX-WS APIs are designed to hide the details of converting between Java method invocations and the

corresponding XML messages, but in some cases operating at the XML message level is desirable. The

Dispatch interface provides support for this mode of interaction.

 supports two usage modes, identified by the constants Dispatch

 and respectively:javax.xml.ws.Service.Mode.MESSAGE javax.xml.ws.Service.Mode.PAYLOAD

 In this mode, client applications work directly with protocol-specific message structures. E.g., whenMessage

used with a SOAP protocol binding, a client application would work directly with a SOAP message.

 In this mode, client applications work with the payload of messages rather than theMessage Payload

messages themselves. E.g., when used with a SOAP protocol binding, a client application would work with

the contents of the SOAP Body rather than the SOAP message as a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as XML and

requires an intimate knowledge of the desired message or payload structure. Dispatch is a generic class that

supports input and output of messages or message payloads of any type.

Service service = Service.create(wsdlURL, serviceName);

Dispatch dispatch = service.createDispatch(portName, StreamSource.class, Mode.PAYLOAD);

String payload = "<ns1:ping xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";

dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));

payload = "<ns1:feedback xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";

Source retObj = (Source)dispatch.invoke(new StreamSource(new StringReader(payload)));

WildFly 10

JBoss Community Documentation Page of 314 532

Asynchronous Invocations
The interface represents a component that provides a protocol binding for use byBindingProvider

clients, it is implemented by proxies and is extended by the interface.Dispatch

 instances may provide asynchronous operation capabilities. When used, asynchronousBindingProvider

operation invocations are decoupled from the instance at invocation time such that theBindingProvider

response context is not updated when the operation completes. Instead a separate response context is

made available using the interface.Response

public void testInvokeAsync() throws Exception

{

 URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-asynchronous?wsdl");

 QName serviceName = new QName(targetNS, "TestEndpointService");

 Service service = Service.create(wsdlURL, serviceName);

 TestEndpoint port = service.getPort(TestEndpoint.class);

 Response response = port.echoAsync("Async");

 // access future

 String retStr = (String) response.get();

 assertEquals("Async", retStr);

}

Oneway Invocations
 indicates that the given web method has only an input message and no output. Typically, a@Oneway

oneway method returns the thread of control to the calling application prior to executing the actual business

method.

@WebService (name="PingEndpoint")

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class PingEndpointImpl

{

 private static String feedback;

 @WebMethod

 @Oneway

 publicvoid ping()

 {

 log.info("ping");

 feedback = "ok";

 }

 @WebMethod

 public String feedback()

 {

 log.info("feedback");

 return feedback;

 }

}

WildFly 10

JBoss Community Documentation Page of 315 532

Timeout Configuration
There are two properties to configure the http connection timeout and client receive time out:

public void testConfigureTimeout() throws Exception

{

 //Set timeout until a connection is established

 ((BindingProvider)port).getRequestContext().put("javax.xml.ws.client.connectionTimeout",

"6000");

 //Set timeout until the response is received

 ((BindingProvider) port).getRequestContext().put("javax.xml.ws.client.receiveTimeout",

"1000");

 port.echo("testTimeout");

}

35.1.3 Common API

This sections describes concepts that apply equally to Web Service Endpoints and Web Service Clients.

Handler Framework
The handler framework is implemented by a JAX-WS protocol binding in both client and server side

runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol

bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers

within a handler chain are invoked each time a message is sent or received. Inbound messages are

processed by handlers prior to binding provider processing. Outbound messages are processed by handlers

after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound and

outbound messages and to manage a set of properties. Message context properties may be used to

facilitate communication between individual handlers and between handlers and client and service

implementations. Different types of handlers are invoked with different types of message context.

Logical Handler
Handlers that only operate on message context properties and message payloads. Logical handlers are

protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers are

handlers that implement .javax.xml.ws.handler.LogicalHandler

WildFly 10

JBoss Community Documentation Page of 316 532

Protocol Handler
Handlers that operate on message context properties and protocol specific messages. Protocol handlers are

specific to a particular protocol and may access and change protocol specific aspects of a message.

Protocol handlers are handlers that implement any interface derived from

 except .javax.xml.ws.handler.Handler javax.xml.ws.handler.LogicalHandler

Service endpoint handlers
On the service endpoint, handlers are defined using the annotation.@HandlerChain

@WebService

@HandlerChain(file = "jaxws-server-source-handlers.xml")

public class SOAPEndpointSourceImpl

{

 ...

}

The location of the handler chain file supports 2 formats

1. An absolute java.net.URL in externalForm. (ex:)http://myhandlers.foo.com/handlerfile1.xml

2. A relative path from the source file or class file. (ex: bar/handlerfile1.xml)

Service client handlers
On the client side, handler can be configured using the annotation on the SEI or@HandlerChain

dynamically using the API.

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = (Endpoint)service.getPort(Endpoint.class);

BindingProvider bindingProvider = (BindingProvider)port;

List<Handler> handlerChain = new ArrayList<Handler>();

handlerChain.add(new LogHandler());

handlerChain.add(new AuthorizationHandler());

handlerChain.add(new RoutingHandler());

bindingProvider.getBinding().setHandlerChain(handlerChain); // important!

http://myhandlers.foo.com/handlerfile1.xml

WildFly 10

JBoss Community Documentation Page of 317 532

Message Context
 is the super interface for all JAX-WS message contexts. It extends MessageContext

 with additional methods and constants to manage a set of properties that enableMap<String,Object>

handlers in a handler chain to share processing related state. For example, a handler may use the put

method to insert a property in the message context that one or more other handlers in the handler chain may

subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers for

an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a property in the message

context, that property will also be available to any protocol handlers in the chain during the execution of an

MEP instance. APPLICATION scoped properties are also made available to client applications (see section

4.2.1) and service endpoint implementations. The defaultscope for a property is HANDLER.

Logical Message Context
Logical Handlers are passed a message context of type when invoked. LogicalMessageContext

 extends with methods to obtain and modify the messageLogicalMessageContext MessageContext

payload, it does not provide access to the protocol specific aspects of amessage. A protocol binding defines

what component of a message are available via a logical message context. The SOAP binding defines that a

logical handler deployed in a SOAP binding can access the contents of the SOAP body but not the SOAP

headers whereas the XML/HTTP binding defines that a logical handler can access the entire XML payload of

a message.

SOAP Message Context
SOAP handlers are passed a when invoked. extends SOAPMessageContext SOAPMessageContext

 with methods to obtain and modify the SOAP message payload.MessageContext

WildFly 10

JBoss Community Documentation Page of 318 532

Fault Handling
An implementation may thow a SOAPFaultException

public void throwSoapFaultException()

{

 SOAPFactory factory = SOAPFactory.newInstance();

 SOAPFault fault = factory.createFault("this is a fault string!", new QName("http://foo",

"FooCode"));

 fault.setFaultActor("mr.actor");

 fault.addDetail().addChildElement("test");

 thrownew SOAPFaultException(fault);

}

or an application specific user exception

public void throwApplicationException() throws UserException

{

 thrownew UserException("validation", 123, "Some validation error");

}

In case of the latter, JBossWS generates the required fault wrapper beans at runtime if they are not

part of the deployment

35.1.4 WS Annotations

For details, see JSR-224 - Java API for XML-Based Web Services (JAX-WS) 2.2

javax.xml.ws.ServiceMode
The annotation is used to specify the mode for a provider class, i.e. whether a provider wantsServiceMode

to have access to protocol message payloads (e.g. a SOAP body) or the entire protocol messages (e.g. a

SOAP envelope).

javax.xml.ws.WebFault
The annotation is used when mapping WSDL faults to Java exceptions, see section 2.5. It isWebFault

used to capture the name of the fault element used when marshalling the JAXB type generated from the

global element referenced by the WSDL fault message. It can also be used to customize the mapping of

service specific exceptions to WSDL faults.

http://www.jcp.org/en/jsr/detail?id=224

WildFly 10

JBoss Community Documentation Page of 319 532

javax.xml.ws.RequestWrapper
The annotation is applied to the methods of an SEI. It is used to capture the JAXBRequestWrapper

generated request wrapper bean and the element name and namespace for marshalling / unmarshalling the

bean. The default value of localName element is the operationName as defined in annotationWebMethod

and the default value for the targetNamespace element is the target namespace of the SEI.When starting

from Java, this annotation is used to resolve overloading conflicts in document literal mode. Only the

className element is required in this case.

javax.xml.ws.ResponseWrapper
The annotation is applied to the methods of an SEI. It is used to capture the JAXBResponseWrapper

generated response wrapper bean and the element name and namespace for marshalling / unmarshalling

the bean. The default value of the localName element is the operationName as defined in the WebMethod

appended with ”Response” and the default value of the targetNamespace element is the target namespace

of the SEI. When starting from Java, this annotation is used to resolve overloading conflicts in document

literal mode. Only the className element is required in this case.

javax.xml.ws.WebServiceClient
The annotation is specified on a generated service class (see 2.7). It is used toWebServiceClient

associate a class with a specific Web service, identify by a URL to a WSDL document and the qualified

name of a wsdl:service element.

javax.xml.ws.WebEndpoint
The annotation is specified on the getPortName() methods of a generated service class (seeWebEndpoint

2.7). It is used to associate a get method with a specific wsdl:port, identified by its local name (a NCName).

javax.xml.ws.WebServiceProvider
The annotation is specified on classes that implement a strongly typed WebServiceProvider

. It is used to declare that a class that satisfies the requirements for a providerjavax.xml.ws.Provider

(see 5.1) does indeed define a Web service endpoint, much like the annotation does forWebService

SEI-based endpoints.

The and annotations are mutually exclusive.WebServiceProvider WebService

javax.xml.ws.BindingType
The annotation is applied to an endpoint implementation class. It specifies the binding to useBindingType

when publishing an endpoint of this type.

The default binding for an endpoint is the SOAP 1.1/HTTP one.

WildFly 10

JBoss Community Documentation Page of 320 532

javax.xml.ws.WebServiceRef
The annotation is used to declare a reference to a Web service. It follows the resourceWebServiceRef

pattern exemplified by the annotation in JSR-250 [JBWS:32]. The javax.annotation.Resource

 annotation is required to be honored when running on the Java EE 5 platform, where it isWebServiceRef

subject to the common resource injection rules described by the platform specification [JBWS:33].

javax.xml.ws.WebServiceRefs
The annotation is used to declare multiple references to Web services on a single class.WebServiceRefs

It is necessary to work around the limition against specifying repeated annotations of the same type on any

given class, which prevents listing multiple annotations one after the other.javax.ws.WebServiceRef

This annotation follows the resource pattern exemplified by the javax.annotation.Resources

annotation in JSR-250.

Since no name and type can be inferred in this case, each annotation inside aWebServiceRef

WebServiceRefs MUST contain name and type elements with non-default values. The WebServiceRef

annotation is required to be honored when running on the Java EE 5 platform, where it is subject to the

common resource injection rules described by the platform specification.

javax.xml.ws.Action
The annotation is applied to the methods of a SEI. It used to generate the wsa:Action on wsdl:inputAction

and wsdl:output of each wsdl:operation mapped from the annotated methods.

javax.xml.ws.FaultAction
The annotation is used within the annotation to generate the wsa:Action element onFaultAction Action

the wsdl:fault element of each wsdl:operation mapped from the annotated methods.

35.1.5 181 Annotations

JSR-181 defines the syntax and semantics of Java Web Service (JWS) metadata and default values.

For details, see .JSR 181 - Web Services Metadata for the Java Platform

javax.jws.WebService
Marks a Java class as implementing a Web Service, or a Java interface as defining a Web Service interface.

javax.jws.WebMethod
Customizes a method that is exposed as a Web Service operation.

http://www.jcp.org/en/jsr/detail?id=181

WildFly 10

JBoss Community Documentation Page of 321 532

javax.jws.OneWay
Indicates that the given web method has only an input message and no output. Typically, a oneway method

returns the thread of control to the calling application prior to executing the actual business method. A

JSR-181 processor is REQUIRED to report an error if an operation marked has a return value,@Oneway

declares any checked exceptions or has any INOUT or OUT parameters.

javax.jws.WebParam
Customizes the mapping of an individual parameter to a Web Service message part and XML element.

javax.jws.WebResult
Customizes the mapping of the return value to a WSDL part and XML element.

javax.jws.SOAPBinding
Specifies the mapping of the Web Service onto the SOAP message protocol.

The annotation has a target of and . The annotation may be placed on aSOAPBinding TYPE METHOD

method if and only if the is . Implementations MUST report an error if the SOAPBinding.style DOCUMENT

 annotation is placed on a method with a of . Methods that do notSOAPBinding SOAPBinding.style RPC

have a annotation accept the behavior defined on the type.SOAPBinding SOAPBinding

javax.jws.HandlerChain
The annotation associates the Web Service with an externally defined handler chain.@HandlerChain

It is an error to combine this annotation with the annotation.@SOAPMessageHandlers

The annotation MAY be present on the endpoint interface and service implementation@HandlerChain

bean. The service implementation bean's is used if is present on both.@HandlerChain @HandlerChain

The annotation MAY be specified on the type only. The annotation target includes @HandlerChain METHOD

and for use by JAX-WS-2.x.FIELD

35.2 WS Tools

The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at server-side

development strategies, and then proceed to the client.

WildFly 10

JBoss Community Documentation Page of 322 532

35.2.1 Server side

When developing a Web Service Endpoint (the server-side) you have the option of starting from Java (

), or from the abstact contract (WSDL) that defines your service (bottom-up development top-down

). If this is a new service (no existing contract), the bottom-up approach is the fastest route; youdevelopment

only need to add a few annotations to your classes to get a service up and running. However, if you are

developing a service with an already defined contract, it is far simpler to use the top-down approach, since

the provided tool will generate the annotated code for you.

Bottom-up use cases:

Exposing an already existing EJB3 bean as a Web Service

Providing a new service, and you want the contract to be generated for you

Top-down use cases:

Replacing the implementation of an existing Web Service, and you can't break compatibility with older

clients

Exposing a service that conforms to a contract specified by a third party (e.g. a vender that calls you

back using an already defined protocol).

Creating a service that adheres to the XML Schema and WSDL you developed by hand up front

The following JAX-WS command line tools are included in JBossWS:

Command Description

wsprovide Generates JAX-WS portable artifacts, and provides the abstract contract. Used for bottom-up

development.

wsconsume Consumes the abstract contract (WSDL and Schema files), and produces artifacts for both a

server and client. Used for top-down and client development

Bottom-Up (Using wsprovide)
The bottom-up strategy involves developing the Java code for your service, and then annotating it using

JAX-WS annotations. These annotations can be used to customize the contract that is generated for your

service. For example, you can change the operation name to map to anything you like. However, all of the

annotations have sensible defaults, so only the @WebService annotation is required.

This can be as simple as creating a single class:

WildFly 10

JBoss Community Documentation Page of 323 532

package echo;

@javax.jws.WebService

public class Echo

{

 public String echo(String input)

 {

 return input;

 }

}

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to deploy on

JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be generated for you at

deploy time. This actually goes beyond the JAX-WS specification, which requires that wrapper classes be

generated using an offline tool. The reason for this requirement is purely a vender implementation problem,

and since we do not believe in burdening a developer with a bunch of additional steps, we generate these as

well. However, if you want your deployment to be portable to other application servers, you will unfortunately

need to use a tool and add the generated classes to your deployment.

This is the primary purpose of the tool, to generate portable JAX-WS artifacts. Additionally, it canwsprovide

be used to "provide" the abstract contract (WSDL file) for your service. This can be obtained by invoking

 using the "-w" option:wsprovide

$ javac -d . -classpath jboss-jaxws.jar Echo.java

$ wsprovide -w echo.Echo

Generating WSDL:

EchoService.wsdl

Writing Classes:

echo/jaxws/Echo.class

echo/jaxws/EchoResponse.class

Inspecting the WSDL reveals a service called :EchoService

<service name='EchoService'>

 <port binding='tns:EchoBinding' name='EchoPort'>

 <soap:address location='REPLACE_WITH_ACTUAL_URL'/>

 </port>

</service>

As expected, this service defines one operation, " ":echo

<portType name='Echo'>

 <operation name='echo' parameterOrder='echo'>

 <input message='tns:Echo_echo'/>

 <output message='tns:Echo_echoResponse'/>

 </operation>

</portType>

WildFly 10

JBoss Community Documentation Page of 324 532

Remember that when deploying on JBossWS you do not need to run this tool. You only need it for

generating portable artifacts and/or the abstract contract for your service.

Let's create a POJO endpoint for deployment on WildFly. A simple needs to be created:web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>Echo</servlet-name>

 <servlet-class>echo.Echo</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Echo</servlet-name>

 <url-pattern>/Echo</url-pattern>

 </servlet-mapping>

</web-app>

The and the single class can now be used to create a war:web.xml

$ mkdir -p WEB-INF/classes

$ cp -rp echo WEB-INF/classes/

$ cp web.xml WEB-INF

$ jar cvf echo.war WEB-INF

added manifest

adding: WEB-INF/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/echo/(in = 0) (out= 0)(stored 0%)

adding: WEB-INF/classes/echo/Echo.class(in = 340) (out= 247)(deflated 27%)

adding: WEB-INF/web.xml(in = 576) (out= 271)(deflated 52%)

The war can then be deployed to the JBoss Application Server.The war can then be deployed to the JBoss

Application Server; this will internally invoke wsprovide, which will generate the WSDL. If deployment was

successful, and you are using the default settings, it should be available in the server management console.

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the

deployment.

Down (Using wsconsume)
The top-down development strategy begins with the abstract contract for the service, which includes the

WSDL file and zero or more schema files. The tool is then used to consume this contract, andwsconsume

produce annotated Java classes (and optionally sources) that define it.

WildFly 10

JBoss Community Documentation Page of 325 532

wsconsume may have problems with symlinks on Unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this service

can be generated. The "-k" option is passed to to preserve the Java source files that arewsconsume

generated, instead of providing just classes:

$ wsconsume -k EchoService.wsdl

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

The following table shows the purpose of each generated file:

File Purpose

Echo.java Service Endpoint Interface

Echo_Type.java Wrapper bean for request message

EchoResponse.java Wrapper bean for response message

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

EchoService.java Used only by JAX-WS clients

Examining the Service Endpoint Interface reveals annotations that are more explicit than in the class written

by hand in the bottom-up example, however, these evaluate to the same contract:

WildFly 10

JBoss Community Documentation Page of 326 532

@WebService(name = "Echo", targetNamespace = "http://echo/")

public interface Echo {

 @WebMethod

 @WebResult(targetNamespace = "")

 @RequestWrapper(localName = "echo", targetNamespace = "http://echo/", className =

"echo.Echo_Type")

 @ResponseWrapper(localName = "echoResponse", targetNamespace = "http://echo/", className =

"echo.EchoResponse")

 public String echo(

 @WebParam(name = "arg0", targetNamespace = "")

 String arg0);

}

The only missing piece (besides for packaging) is the implementation class, which can now be written, using

the above interface.

package echo;

@javax.jws.WebService(endpointInterface="echo.Echo")

public class EchoImpl implements Echo

{

 public String echo(String arg0)

 {

 return arg0;

 }

}

35.2.2 Client Side

Before going to detail on the client-side it is important to understand the decoupling concept that is central to

Web Services. Web Services are not the best fit for internal RPC, even though they can be used in this way.

There are much better technologies for this (CORBA, and RMI for example). Web Services were designed

specifically for interoperable coarse-grained correspondence. There is no expectation or guarantee that any

party participating in a Web Service interaction will be at any particular location, running on any particular

OS, or written in any particular programming language. So because of this, it is important to clearly separate

client and server implementations. The only thing they should have in common is the abstract contract

definition. If, for whatever reason, your software does not adhere to this principal, then you should not be

using Web Services. For the above reasons, the recommended methodology for developing a client is

to follow , even if the client is running on the same server.the top-down approach

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of the one

generated offline by . The reason why we do this is just to get the right value for soap:address.wsprovide

This value must be computed at deploy time, since it is based on container configuration specifics. You

could of course edit the WSDL file yourself, although you need to ensure that the path is correct.

Offline version:

WildFly 10

JBoss Community Documentation Page of 327 532

<service name='EchoService'>

 <port binding='tns:EchoBinding' name='EchoPort'>

 <soap:address location='REPLACE_WITH_ACTUAL_URL'/>

 </port>

</service>

Online version:

<service name="EchoService">

 <port binding="tns:EchoBinding" name="EchoPort">

 <soap:address location="http://localhost.localdomain:8080/echo/Echo"/>

 </port>

</service>

Using the online deployed version with :wsconsume

$ wsconsume -k http://localhost:8080/echo/Echo?wsdl

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

echo/Echo.java

echo/EchoResponse.java

echo/EchoService.java

echo/Echo_Type.java

echo/ObjectFactory.java

echo/package-info.java

The one class that was not examined in the top-down section, was . Notice how itEchoService.java

stores the location the WSDL was obtained from.

WildFly 10

JBoss Community Documentation Page of 328 532

@WebServiceClient(name = "EchoService", targetNamespace = "http://echo/", wsdlLocation =

"http://localhost:8080/echo/Echo?wsdl")

public class EchoService extends Service

{

 private final static URL ECHOSERVICE_WSDL_LOCATION;

 static {

 URL url = null;

 try

 {

 url = new URL("http://localhost:8080/echo/Echo?wsdl");

 }

 catch (MalformedURLException e)

 {

 e.printStackTrace();

 }

 ECHOSERVICE_WSDL_LOCATION = url;

 }

 public EchoService(URL wsdlLocation, QName serviceName)

 {

 super(wsdlLocation, serviceName);

 }

 public EchoService()

 {

 super(ECHOSERVICE_WSDL_LOCATION, new QName("http://echo/", "EchoService"));

 }

 @WebEndpoint(name = "EchoPort")

 public Echo getEchoPort()

 {

 return (Echo)super.getPort(new QName("http://echo/", "EchoPort"), Echo.class);

 }

}

As you can see, this generated class extends the main client entry point in JAX-WS,

. While you can use directly, this is far simpler since it provides thejavax.xml.ws.Service Service

configuration info for you. The only method we really care about is the method, whichgetEchoPort()

returns an instance of our Service Endpoint Interface. Any WS operation can then be called by just invoking

a method on the returned interface.

It's not recommended to refer to a remote WSDL URL in a production application. This causes

network I/O every time you instantiate the Service Object. Instead, use the tool on a saved local

copy, or use the URL version of the constructor to provide a new WSDL location.

All that is left to do, is write and compile the client:

WildFly 10

JBoss Community Documentation Page of 329 532

import echo.*;

public class EchoClient

{

 public static void main(String args[])

 {

 if (args.length != 1)

 {

 System.err.println("usage: EchoClient <message>");

 System.exit(1);

 }

 EchoService service = new EchoService();

 Echo echo = service.getEchoPort();

 System.out.println("Server said: " + echo.echo(args0));

 }

}

It is easy to change the endpoint address of your operation at runtime, setting the

 as shown below:ENDPOINT_ADDRESS_PROPERTY

EchoService service = new EchoService();

 Echo echo = service.getEchoPort();

 /* Set NEW Endpoint Location */

 String endpointURL = "http://NEW_ENDPOINT_URL";

 BindingProvider bp = (BindingProvider)echo;

 bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);

 System.out.println("Server said: " + echo.echo(args0));

35.2.3 wsconsume

 is a command line tool and ant task that "consumes" the abstract contract (WSDL file) andwsconsume

produces portable JAX-WS service and client artifacts.

Command Line Tool
The command line tool has the following usage:

WildFly 10

JBoss Community Documentation Page of 330 532

usage: wsconsume [options] <wsdl-url>

options:

 -h, --help Show this help message

 -b, --binding=<file> One or more JAX-WS or JAXB binding files

 -k, --keep Keep/Generate Java source

 -c --catalog=<file> Oasis XML Catalog file for entity resolution

 -j --clientjar=<name> Create a jar file of the generated artifacts for calling the

webservice

 -p --package=<name> The target package for generated source

 -w --wsdlLocation=<loc> Value to use for @WebServiceClient.wsdlLocation

 -o, --output=<directory> The directory to put generated artifacts

 -s, --source=<directory> The directory to put Java source

 -t, --target=<2.0|2.1|2.2> The JAX-WS specification target

 -q, --quiet Be somewhat more quiet

 -v, --verbose Show full exception stack traces

 -l, --load-consumer Load the consumer and exit (debug utility)

 -e, --extension Enable SOAP 1.2 binding extension

 -a, --additionalHeaders Enables processing of implicit SOAP headers

 -n, --nocompile Do not compile generated sources

The wsdlLocation is used when creating the Service to be used by clients and will be added to the

@WebServiceClient annotation, for an endpoint implementation based on the generated service

endpoint interface you will need to manually add the wsdlLocation to the @WebService annotation

on your web service implementation and not the service endpoint interface.

WildFly 10

JBoss Community Documentation Page of 331 532

Examples
Generate artifacts in Java class form only:

wsconsume Example.wsdl

Generate source and class files:

wsconsume -k Example.wsdl

Generate source and class files in a custom directory:

wsconsume -k -o custom Example.wsdl

Generate source and class files in the org.foo package:

wsconsume -k -p org.foo Example.wsdl

Generate source and class files using multiple binding files:

wsconsume -k -b wsdl-binding.xml -b schema1-binding.xml -b schema2-binding.xml

Maven Plugin
The wsconsume tools is included in the plugin. Theorg.jboss.ws.plugins:jaxws-tools-maven-plugin

plugin has two goals for running the tool, and , which basically do the samewsconsume wsconsume-test

during different maven build phases (the former triggers the sources generation during generate-sources

phase, the latter during the one).generate-test-sources

The plugin has the following parameters:wsconsume

WildFly 10

JBoss Community Documentation Page of 332 532

Attribute Description Default

bindingFiles JAXWS or JAXB binding file true

classpathElements Each classpathElement provides a

library file to be added to classpath

${project.compileClasspathElements}

or

${project.testClasspathElements}

catalog Oasis XML Catalog file for entity resolution none

targetPackage The target Java package for generated code. generated

bindingFiles One or more JAX-WS or JAXB binding file none

wsdlLocation Value to use for @WebServiceClient.wsdlLocation generated

outputDirectory The output directory for generated artifacts. ${project.build.outputDirectory}

or

${project.build.testOutputDirectory}

sourceDirectory The output directory for Java source. ${project.build.directory}/wsconsume/java

verbose Enables more informational output about command

progress.

false

wsdls The WSDL files or URLs to consume n/a

extension Enable SOAP 1.2 binding extension. false

encoding The charset encoding to use for generated sources. ${project.build.sourceEncoding}

argLine An optional additional argline to be used when running in

fork mode;

can be used to set endorse dir, enable debugging, etc.

Example

<argLine>-Djava.endorsed.dirs=...</argLine>

none

fork Whether or not to run the generation task in a separate

VM.

false

target A preference for the JAX-WS specification target Depends on the underlying stack and

endorsed dirs if any

Examples
You can use in your own project build simply referencing the in thewsconsume jaxws-tools-maven-plugin

configured plugins in your pom.xml file.

The following example makes the plugin consume the test.wsdl file and generate SEI and wrappers' java

sources. The generated sources are then compiled together with the other project classes.

WildFly 10

JBoss Community Documentation Page of 333 532

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 </wsdls>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

You can also specify multiple wsdl files, as well as force the target package, enable SOAP 1.2 binding and

turn the tool's verbose mode on:

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 <wsdl>${basedir}/test2.wsdl</wsdl>

 </wsdls>

 <targetPackage>foo.bar</targetPackage>

 <extension>true</extension>

 <verbose>true</verbose>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Finally, if the wsconsume invocation is required for consuming a wsdl to be used in your testsuite only, you

might want to use the goal as follows:wsconsume-test

WildFly 10

JBoss Community Documentation Page of 334 532

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <wsdls>

 <wsdl>${basedir}/test.wsdl</wsdl>

 </wsdls>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsconsume-test</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Plugin stack dependencyThe plugin itself does not have an explicit dependency to a JBossWS stack, as it's

meant for being used with implementations of any supported version of the . So the user isJBossWS SPI

expected to set a dependency in his own to the desired stack version. The plugin willpom.xml JBossWS

rely on the that for using the proper tooling.

<dependencies>

 <dependency>

 <groupId>org.jboss.ws.cxf</groupId>

 <artifactId>jbossws-cxf-client</artifactId>

 <version>4.0.0.GA</version>

 </dependency>

</dependencies>

Be careful when using this plugin with the Maven War Plugin as that include any project

dependency into the generated application war archive. You might want to set

 for the stack dependency to avoid that.<scope>provided</scope> JBossWS

Up to version 1.1.2.Final, the of the plugin was .artifactId maven-jaxws-tools-plugin

Ant Task
 The Ant task () has the following attributes:wsconsume org.jboss.ws.tools.ant.WSConsumeTask

WildFly 10

JBoss Community Documentation Page of 335 532

Attribute Description Default

fork Whether or not to run the generation task in a separate VM. true

keep Keep/Enable Java source code generation. false

catalog Oasis XML Catalog file for entity resolution none

package The target Java package for generated code. generated

binding A JAX-WS or JAXB binding file none

wsdlLocation Value to use for @WebServiceClient.wsdlLocation generated

encoding The charset encoding to use for generated sources n/a

destdir The output directory for generated artifacts. "output"

sourcedestdir The output directory for Java source. value of destdir

target The JAX-WS specification target. Allowed values are 2.0, 2.1 and 2.2

verbose Enables more informational output about command progress. false

wsdl The WSDL file or URL n/a

extension Enable SOAP 1.2 binding extension. false

additionalHeaders Enables processing of implicit SOAP headers false

Users also need to put streamBuffer.jar and stax-ex.jar to the classpath of the ant task to generate

the appropriate artefacts.

The wsdlLocation is used when creating the Service to be used by clients and will be added to the

@WebServiceClient annotation, for an endpoint implementation based on the generated service

endpoint interface you will need to manually add the wsdlLocation to the @WebService annotation

on your web service implementation and not the service endpoint interface.

Also, the following nested elements are supported:

Element Description Default

binding A JAXWS or JAXB binding file none

jvmarg Allows setting of custom jvm arguments

WildFly 10

JBoss Community Documentation Page of 336 532

Examples
Generate JAX-WS source and classes in a separate JVM with separate directories, a custom wsdl location

attribute, and a list of binding files from foo.wsdl:

<wsconsume

 fork="true"

 verbose="true"

 destdir="output"

 sourcedestdir="gen-src"

 keep="true"

 wsdllocation="handEdited.wsdl"

 wsdl="foo.wsdl">

 <binding dir="binding-files" includes="*.xml" excludes="bad.xml"/>

</wsconsume>

35.2.4 wsprovide

 is a command line tool, Maven plugin and Ant task that generates portable JAX-WS artifacts for awsprovide

service endpoint implementation. It also has the option to "provide" the abstract contract for offline usage.

WildFly 10

JBoss Community Documentation Page of 337 532

Command Line Tool
The command line tool has the following usage:

usage: wsprovide [options] <endpoint class name>

options:

 -h, --help Show this help message

 -k, --keep Keep/Generate Java source

 -w, --wsdl Enable WSDL file generation

 -a, --address The generated port soap:address in wsdl

 -c. --classpath=<path> The classpath that contains the endpoint

 -o, --output=<directory> The directory to put generated artifacts

 -r, --resource=<directory> The directory to put resource artifacts

 -s, --source=<directory> The directory to put Java source

 -e, --extension Enable SOAP 1.2 binding extension

 -q, --quiet Be somewhat more quiet

 -t, --show-traces Show full exception stack traces

Examples
Generating wrapper classes for portable artifacts in the "generated" directory:

wsprovide -o generated foo.Endpoint

Generating wrapper classes and WSDL in the "generated" directory

wsprovide -o generated -w foo.Endpoint

Using an endpoint that references other jars

wsprovide -o generated -c application1.jar:application2.jar foo.Endpoint

Maven Plugin
The tools is included in the plugin. The pluginwsprovide org.jboss.ws.plugins:jaxws-tools-maven-plugin

has two goals for running the tool, and , which basically do the same duringwsprovide wsprovide-test

different Maven build phases (the former triggers the sources generation during phase, theprocess-classes

latter during the one).process-test-classes

The plugin has the following parameters:wsprovide

WildFly 10

JBoss Community Documentation Page of 338 532

Attribute Description Default

testClasspathElements Each classpathElement provides

a

library file to be added to

classpath

${project.compileClasspathElements}

or

${project.testClasspathElements}

outputDirectory The output directory for generated

artifacts.

${project.build.outputDirectory}

or

${project.build.testOutputDirectory}

resourceDirectory The output directory for resource

artifacts (WSDL/XSD).

${project.build.directory}/wsprovide/resources

sourceDirectory The output directory for Java

source.

${project.build.directory}/wsprovide/java

extension Enable SOAP 1.2 binding

extension.

false

generateWsdl Whether or not to generate

WSDL.

false

verbose Enables more informational output

about command progress.

false

portSoapAddress The generated port soap:address

in the WSDL

endpointClass Service Endpoint

Implementation.

Examples
You can use in your own project build simply referencing the in thewsprovide maven-jaxws-tools-plugin

configured plugins in your file.pom.xml

The following example makes the plugin provide the wsdl file and artifact sources for the specified endpoint

class:

WildFly 10

JBoss Community Documentation Page of 339 532

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <verbose>true</verbose>

 <endpointClass>org.jboss.test.ws.plugins.tools.wsprovide.TestEndpoint</endpointClass>

 <generateWsdl>true</generateWsdl>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsprovide</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

The following example does the same, but is meant for use in your own testsuite:

<build>

 <plugins>

 <plugin>

 <groupId>org.jboss.ws.plugins</groupId>

 <artifactId>jaxws-tools-maven-plugin</artifactId>

 <version>1.2.0.Beta1</version>

 <configuration>

 <verbose>true</verbose>

 <endpointClass>org.jboss.test.ws.plugins.tools.wsprovide.TestEndpoint2</endpointClass>

 <generateWsdl>true</generateWsdl>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>wsprovide-test</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Plugin stack dependencyThe plugin itself does not have an explicit dependency to a JBossWS stack, as it's

meant for being used with implementations of any supported version of the . So the user isJBossWS SPI

expected to set a dependency in his own to the desired stack version. The plugin willpom.xml JBossWS

rely on the that for using the proper tooling.

WildFly 10

JBoss Community Documentation Page of 340 532

<dependencies>

 <dependency>

 <groupId>org.jboss.ws.cxf</groupId>

 <artifactId>jbossws-cxf-client</artifactId>

 <version>5.0.0.CR1</version>

 </dependency>

</dependencies>

Be careful when using this plugin with the Maven War Plugin as that include any project

dependency into the generated application war archive. You might want to set

 for the stack dependency to avoid that.<scope>provided</scope> JBossWS

Up to version 1.1.2.Final, the of the plugin was .artifactId maven-jaxws-tools-plugin

WildFly 10

JBoss Community Documentation Page of 341 532

Ant Task
The wsprovide ant task () has the following attributes:org.jboss.ws.tools.ant.WSProvideTask

Attribute Description Default

fork Whether or not to run the generation task in a separate VM. true

keep Keep/Enable Java source code generation. false

destdir The output directory for generated artifacts. "output"

resourcedestdir The output directory for resource artifacts (WSDL/XSD). value of destdir

sourcedestdir The output directory for Java source. value of destdir

extension Enable SOAP 1.2 binding extension. false

genwsdl Whether or not to generate WSDL. false

address The generated port soap:address in wsdl.

verbose Enables more informational output about command progress. false

sei Service Endpoint Implementation.

classpath The classpath that contains the service endpoint implementation. "."

Examples
Executing wsprovide in verbose mode with separate output directories for source, resources, and classes:

<target name="test-wsproivde" depends="init">

 <taskdef name="wsprovide" classname="org.jboss.ws.tools.ant.WSProvideTask">

 <classpath refid="core.classpath"/>

 </taskdef>

 <wsprovide

 fork="false"

 keep="true"

 destdir="out"

 resourcedestdir="out-resource"

 sourcedestdir="out-source"

 genwsdl="true"

 verbose="true"

 sei="org.jboss.test.ws.jaxws.jsr181.soapbinding.DocWrappedServiceImpl">

 <classpath>

 <pathelement path="${tests.output.dir}/classes"/>

 </classpath>

 </wsprovide>

</target>

WildFly 10

JBoss Community Documentation Page of 342 532

35.3 Advanced User Guide

Logging

JAX-WS Handler approach

Apache CXF approach

System property

Manual interceptor addition and logging feature

WS-* support

Address rewrite

Server configuration options

Dynamic rewrite

Configuration through deployment descriptor

context-root element

config-name and config-file elements

property element

port-component element

webservice-description element

Schema validation of SOAP messages

JAXB Introductions

WSDL system properties expansion

35.3.1 Logging

Logging of inbound and outbound messages is a common need. Different approaches are available for

achieving that:

WS Handler approach
A portable way of performing logging is writing a simple JAX-WS handler dumping the messages that are

passed in it; the handler can be added to the desired client/endpoints (programmatically / using

 JAX-WS annotation).@HandlerChain

The mechanism allows user to add the logging handler to anypredefined client and endpoint configuration

client/endpoint or to some of them only (in which case the annotation / JBossWS API is@EndpointConfig

required though).

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations

WildFly 10

JBoss Community Documentation Page of 343 532

Apache CXF approach
Apache CXF also comes with logging interceptors that can be easily used to log messages to the console or

configured client/server log files. Those interceptors can be added to client, endpoint and buses in multiple

ways:

System property
Setting the system property to true causes the logging interceptorsorg.apache.cxf.logging.enabled

to be added to any instance being created on the JVM.Bus

On WildFly, the system property is easily set by adding what follows to the standalone / domain

server configuration just after the extensions section:

<system-properties>

 <property name="org.apache.cxf.logging.enabled" value="true"/>

</system-properties>

Manual interceptor addition and logging feature
Logging interceptors can be selectively added to endpoints using the Apache CXF annotations

 and @org.apache.cxf.interceptor.InInterceptors

. The same is achieved on client side by@org.apache.cxf.interceptor.OutInterceptors

programmatically adding new instances of the logging interceptors to the client or the bus.

Alternatively, Apache CXF also comes with a that can beorg.apache.cxf.feature.LoggingFeature

used on clients and endpoints (either annotating them with or@org.apache.cxf.feature.Features

directly with).@org.apache.cxf.annotations.Logging

Please refer to the for more details.Apache CXF documentation

35.3.2 * support

JBossWS includes most of the WS-* specification functionalities through the integration with Apache CXF. In

particular, the whole WS-Security Policy framework is fully supported, enabling full contract driven

configuration of complex features like WS-Security.

In details information available further down in this documentation book.

http://cxf.apache.org/docs/debugging-and-logging.html#DebuggingandLogging-LoggingMessages

WildFly 10

JBoss Community Documentation Page of 344 532

35.3.3 Address rewrite

JBossWS allows users to configure the attribute in the wsdl contract of deployed services.soap:address

Server configuration options
The configuration options are part of the of the application server domainwebservices subsystem section

model.

<subsystem xmlns="urn:jboss:domain:webservices:1.1"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

 xmlns:jaxwsconfig="urn:jboss:jbossws-jaxws-config:4.0">

 <wsdl-host>localhost</wsdl-host>

 <modify-wsdl-address>true</modify-wsdl-address>

<!--

 <wsdl-port>8080</wsdl-port>

 <wsdl-secure-port>8443</wsdl-secure-port>

-->

</subsystem>

If the content of in the wsdl is a valid URL, JBossWS will not rewrite it unless <soap:address>

 is true. If the content of is not a valid URL instead, JBossWS willmodify-wsdl-address <soap:address>

always rewrite it using the attribute values given below. Please note that the variable ${jboss.bind.address}

can be used to set the address which the application is bound to at each startup.

The wsdl-secure-port and wsdl-port attributes are used to explicitly define the ports to be used for rewriting

the SOAP address. If these attributes are not set, the ports will be identified by querying the list of installed

connectors. If multiple connectors are found the port of the first connector is used.

Dynamic rewrite
When the application server is bound to multiple addresses or non-trivial real-world network architectures

cause request for different external addresses to hit the same endpoint, a static rewrite of the soap:address

may not be enough. JBossWS allows for both the soap:address in the wsdl and the wsdl address in the

console to be rewritten with the host use in the client request. This way, users always get the right wsdl

address assuming they're connecting to an instance having the endpoint they're looking for. To trigger this

behaviour, the value has to be specified for the element.jbossws.undefined.host wsdl-host

<wsdl-host>jbossws.undefined.host</wsdl-host>

<modify-wsdl-address>true</modify-wsdl-address>

Of course, when a confidential transport address is required, the addresses are always rewritten using https

protocol and the port currently configured for the https/ssl connector.

https://docs.jboss.org/author/display/WFLY8/Web+services+configuration

WildFly 10

JBoss Community Documentation Page of 345 532

35.3.4 Configuration through deployment descriptor

The deployment descriptor can be used to provide additional configuration for ajboss-webservices.xml

given deployment. The expected location of it is:

 for EJB webservice deploymentsMETA-INF/jboss-webservices.xml

 for POJO webservice deployments and EJB webserviceWEB-INF/jboss-webservices.xml

endpoints bundled in archiveswar

The structure of file is the following (schemas are available):here

<webservices>

 <context-root/>?

 <config-name/>?

 <config-file/>?

 <property>*

 <name/>

 <value/>

 </property>

 <port-component>*

 <ejb-name/>

 <port-component-name/>

 <port-component-uri/>?

 <auth-method/>?

 <transport-guarantee/>?

 <secure-wsdl-access/>?

 </port-component>

 <webservice-description>*

 <webservice-description-name/>

 <wsdl-publish-location/>?

 </webservice-description>

</webservices>

context-root element
Element can be used to customize context root of webservices deployment.<context-root>

<webservices>

 <context-root>foo</context-root>

</webservices>

http://anonsvn.jboss.org/repos/jbossws/spi/trunk/src/main/resources/schema/

WildFly 10

JBoss Community Documentation Page of 346 532

config-name and config-file elements
Elements and can be used to associate any endpoint provided in the<config-name> <config-file>

deployment with a given . Endpoint configuration are either specified in the referencedendpoint configuration

config file or in the WildFly domain model (webservices subsystem). For further details on the endpoint

configurations and their management in the domain model, please see the related .documentation

<webservices>

 <config-name>Standard WSSecurity Endpoint</config-name>

 <config-file>META-INF/custom.xml</config-file>

</webservices>

property element
 elements can be used to setup simple property values to configure the ws stack behavior.<property>

Allowed property names and values are mentioned in the guide under related topics.

<property>

 <name>prop.name</name>

 <value>prop.value</value>

</property>

port-component element
Element can be used to customize EJB endpoint target URI or to configure security<port-component>

related properties.

<webservices>

 <port-component>

 <ejb-name>TestService</ejb-name>

 <port-component-name>TestServicePort</port-component-name>

 <port-component-uri>/*</port-component-uri>

 <auth-method>BASIC</auth-method>

 <transport-guarantee>NONE</transport-guarantee>

 <secure-wsdl-access>true</secure-wsdl-access>

 </port-component>

</webservices>

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations
https://docs.jboss.org/author/display/WFLY8/Web+services+configuration

WildFly 10

JBoss Community Documentation Page of 347 532

webservice-description element
Element can be used to customize (override) webservice WSDL publish<webservice-description>

location.

<webservices>

 <webservice-description>

 <webservice-description-name>TestService</webservice-description-name>

 <wsdl-publish-location>file:///bar/foo.wsdl</wsdl-publish-location>

 </webservice-description>

</webservices>

WildFly 10

JBoss Community Documentation Page of 348 532

35.3.5 Schema validation of SOAP messages

Apache CXF has a feature for validating incoming and outgoing SOAP messages on both client and server

side. The validation is performed against the relevant schema in the endpoint wsdl contract (server side) or

the wsdl contract used for building up the service proxy (client side).

Schema validation can be turned on programmatically on client side

((BindingProvider)proxy).getRequestContext().put("schema-validation-enabled", true);

or using the annotation on server side@org.apache.cxf.annotations.SchemaValidation

import javax.jws.WebService;

import org.apache.cxf.annotations.SchemaValidation;

@WebService(...)

@SchemaValidation

public class ValidatingHelloImpl implements Hello {

 ...

}

Alternatively, any endpoint and client running in-container can be associated to a JBossWS predefined

 having the property set to in the referenced config file.configuration schema-validation-enabled true

Finally, JBossWS also allows for server-wide (default) setup of schema validation by using the

 and special configurations (which apply to any client /Standard-Endpoint-Config Standard-Client-Config

endpoint unless a different configuration is specified for them)

<subsystem xmlns="urn:jboss:domain:webservices:1.2">

 ...

 <endpoint-config name="Standard-Endpoint-Config">

 <property name="schema-validation-enabled" value="true"/>

 </endpoint-config>

 ...

 <client-config name="Standard-Client-Config">

 <property name="schema-validation-enabled" value="true"/>

 </client-config>

</subsystem>

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations
https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations

WildFly 10

JBoss Community Documentation Page of 349 532

35.3.6 JAXB Introductions

As Kohsuke Kawaguchi wrote on , one common complaint from the JAXB users is the lack ofhis blog

support for binding 3rd party classes. The scenario is this: you are trying to annotate your classes with JAXB

annotations to make it XML bindable, but some of the classes are coming from libraries and JDK, and thus

you cannot put necessary JAXB annotations on it.

To solve this JAXB has been designed to provide hooks for programmatic introduction of annotations to the

runtime.

This is currently leveraged by the JBoss JAXB Introductions project, using which users can define

annotations in XML and make JAXB see those as if those were in the class files (perhaps coming from 3rd

party libraries).

Take a look at the on the wiki and at the examples in the sources.JAXB Introductions page

35.3.7 WSDL system properties expansion

See Published WSDL customization

35.3.8 Predefined client and endpoint configurations

Overview

Assigning configurations

Endpoint configuration assignment

Endpoint Configuration Deployment Descriptor

Application server configurations

Standard configurations

Handlers classloading

Examples

EndpointConfig annotation

JAXWS Feature

Explicit setup through API

Automatic configuration from default descriptors

Automatic configuration assignment from container setup

http://weblogs.java.net/blog/kohsuke/archive/2007/07/binding_3rd_par.html
http://community.jboss.org/docs/DOC-10075
https://docs.jboss.org/author/display/WFLY9/Published+WSDL+customization

WildFly 10

JBoss Community Documentation Page of 350 532

Overview
JBossWS permits extra setup configuration data to be predefined and associated with an endpoint or a

client. Configurations can include JAX-WS handlers and key/value property declarations that control

JBossWS and Apache CXF internals. Predefined configurations can be used for JAX-WS client and JAX-WS

endpoint setup.

Configurations can be defined in the webservice subsystem and in an application's deployment descriptor

file. There can be many configuration definitions in the webservice subsystem and in an application. Each

configuration must have a name that is unique within the server. Configurations defined in an application are

local to the application. Endpoint implementations declare the use of a specific configuration through the use

of the annotation. An endpoint configurationorg.jboss.ws.api.annotation.EndpointConfig

defined in the webservices subsystem is available to all deployed applications on the server container and

can be referenced by name in the annotation. An endpoint configuration defined in an application must be

referenced by both deployment descriptor file name and configuration name by the annotation.

Handlers

Each endpoint configuration may be associated with zero or more PRE and POST handler chains. Each

handler chain may include JAXWS handlers. For outbound messages the PRE handler chains are executed

before any handler that is attached to the endpoint using the standard means, such as with annotation

@HandlerChain, and POST handler chains are executed after those objects have executed. For inbound

messages the POST handler chains are executed before any handler that is attached to the endpoint using

the standard means and the PRE handler chains are executed after those objects have executed.

* Server inbound messages

Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages

Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The same applies for client configurations.

Properties

Key/value properties are used for controlling both some Apache CXF internals and some JBossWS options.

Specific supported values are mentioned where relevant in the rest of the documentation.

Assigning configurations
Endpoints and clients are assigned configuration through different means. Users can explicitly require a

given configuration or rely on container defaults. The assignment process can be split up as follows:

Explicit assignment through annotations (for endpoints) or API programmatic usage (for clients)

Automatic assignment of configurations from default descriptors

Automatic assignment of configurations from container

WildFly 10

JBoss Community Documentation Page of 351 532

Endpoint configuration assignment
The explicit configuration assignment is meant for developer that know in advance their endpoint or client

has to be setup according to a specified configuration. The configuration is either coming from a descriptor

that is included in the application deployment, or is included in the application server webservices subsystem

management model.

Endpoint Configuration Deployment Descriptor
Java EE archives that can contain JAX-WS client and endpoint implementations can also contain predefined

client and endpoint configuration declarations. All endpoint/client configuration definitions for a given archive

must be provided in a single deployment descriptor file, which must be an implementation of schema

. Many endpoint/client configurations can be defined in the deployment descriptor file.jbossws-jaxws-config

Each configuration must have a name that is unique within the server on which the application is deployed.

The configuration name can't be referred to by endpoint/client implementations outside the application. Here

is an example of a descriptor, containing two endpoint configurations:

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>org.jboss.test.ws.jaxws.jbws3282.Endpoint4Impl</config-name>

<pre-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Log Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.LogHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</pre-handler-chains>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.RoutingHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</post-handler-chains>

</endpoint-config>

<endpoint-config>

<config-name>EP6-config</config-name>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Authorization Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.jbws3282.AuthorizationHandler</javaee:handler-class>
</javaee:handler>
</javaee:handler-chain>
</post-handler-chains>
</endpoint-config>
</jaxws-config>

Similarly, client configurations can be specified in descriptors (still implementing the schema mentioned

above):

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Final/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

WildFly 10

JBoss Community Documentation Page of 352 532

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<client-config>

<config-name>Custom Client Config</config-name>

<pre-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.RoutingHandler</javaee:handler-class>

</javaee:handler>

<javaee:handler>

<javaee:handler-name>Custom Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.CustomHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</pre-handler-chains>

</client-config>

<client-config>

<config-name>Another Client Config</config-name>

<post-handler-chains>

<javaee:handler-chain>

<javaee:handler>

<javaee:handler-name>Routing Handler</javaee:handler-name>

<javaee:handler-class>org.jboss.test.ws.jaxws.clientConfig.RoutingHandler</javaee:handler-class>

</javaee:handler>

</javaee:handler-chain>

</post-handler-chains>

</client-config>

</jaxws-config>

Application server configurations
WildFly allows declaring JBossWS client and server predefined configurations in the subsystemwebservices

section of the server model. As a consequence it is possible to declare server-wide handlers to be added to

the chain of each endpoint or client assigned to a given configuration.

Please refer to the for details on managing the subsystem such asWildFly documentation webservices

adding, removing and modifying handlers and properties.

The allowed contents in the subsystem are defined by the included in the applicationwebservices schema

server.

Standard configurations

Clients running in-container as well as endpoints are assigned standard configurations by default. The

defaults are used unless different configurations are set as described on this page. This enables

administrators to tune the default handler chains for client and endpoint configurations. The names of the

default client and endpoint configurations, used in the webservices subsystem are

 and respectively.Standard-Client-Config Standard-Endpoint-Config

https://docs.jboss.org/author/display/WFLY9/Web+services+configuration
https://github.com/jbossas/jboss-as/blob/7.2.0.Final/build/src/main/resources/docs/schema/jboss-as-webservices_1_2.xsd

WildFly 10

JBoss Community Documentation Page of 353 532

Handlers classloading

When setting a server-wide handler, please note the handler class needs to be available through each ws

deployment classloader. As a consequence proper module dependencies might need to be specified in the

deployments that are going to leverage a given predefined configuration. A shortcut is to add a dependency

to the module containing the handler class in one of the modules which are already automatically set as

dependencies to any deployment, for instance .org.jboss.ws.spi

Examples

JBoss AS 7.2 default configurations

<subsystem xmlns="urn:jboss:domain:webservices:2.0">

<!-- ... -->

<endpoint-config name="Standard-Endpoint-Config"/>

<endpoint-config name="Recording-Endpoint-Config">

<pre-handler-chain name="recording-handlers" protocol-bindings="##SOAP11_HTTP ##SOAP11_HTTP_MTOM

##SOAP12_HTTP ##SOAP12_HTTP_MTOM">

<handler name="RecordingHandler" class="org.jboss.ws.common.invocation.RecordingServerHandler"/>

</pre-handler-chain>

</endpoint-config>

<client-config name="Standard-Client-Config"/>

</subsystem>

A configuration file for a deployment specific ws-security endpoint setup

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>Custom WS-Security Endpoint</config-name>

<property>

<property-name>ws-security.signature.properties</property-name>

<property-value>bob.properties</property-value>

</property>

<property>

<property-name>ws-security.encryption.properties</property-name>

<property-value>bob.properties</property-value>

</property>

<property>

<property-name>ws-security.signature.username</property-name>

<property-value>bob</property-value>

</property>

<property>

<property-name>ws-security.encryption.username</property-name>

<property-value>alice</property-value>

</property>

<property>

<property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>
</property>
</endpoint-config>
</jaxws-config>

WildFly 10

JBoss Community Documentation Page of 354 532

JBoss AS 7.2 default configurations modified to default to SOAP messages schema-validation on

<subsystem xmlns="urn:jboss:domain:webservices:2.0">

<!-- ... -->

<endpoint-config name="Standard-Endpoint-Config">

<property name="schema-validation-enabled" value="true"/>

</endpoint-config>

<!-- ... -->

<client-config name="Standard-Client-Config">

<property name="schema-validation-enabled" value="true"/>

</client-config>

</subsystem>

EndpointConfig annotation
Once a configuration is available to a given application, the

 annotation is used to assign an endpointorg.jboss.ws.api.annotation.EndpointConfig

configuration to a JAX-WS endpoint implementation. When assigning a configuration that is defined in the

webservices subsystem only the configuration name is specified. When assigning a configuration that is

defined in the application, the relative path to the deployment descriptor and the configuration name must be

specified.

@EndpointConfig(configFile = "WEB-INF/my-endpoint-config.xml", configName = "Custom WS-Security

Endpoint")

public class ServiceImpl implements ServiceIface

{

public String sayHello()

{

return "Secure Hello World!";

}

}

WildFly 10

JBoss Community Documentation Page of 355 532

JAXWS Feature
The most practical way of setting a configuration is using

, a JAXWS extension providedorg.jboss.ws.api.configuration.ClientConfigFeature Feature

by JBossWS:

import org.jboss.ws.api.configuration.ClientConfigFeature;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class, new

ClientConfigFeature("META-INF/my-client-config.xml", "Custom Client Config"));

port.echo("Kermit");

... or

port = service.getPort(Endpoint.class, new ClientConfigFeature("META-INF/my-client-config.xml",

"Custom Client Config"), true); //setup properties too from the configuration

port.echo("Kermit");

... or ...

port = service.getPort(Endpoint.class, new ClientConfigFeature(null, testConfigName)); //reads

from current container configurations if available

port.echo("Kermit");

JBossWS parses the specified configuration file. The configuration file must be found as a resource by the

classloader of the current thread. The defines the descriptor contents and isjbossws-jaxws-config schema

included in the artifact.jbossws-spi

Explicit setup through API
Alternatively, JBossWS API comes with facility classes that can be used for assigning configurations when

building a client. JAXWS handlers read from client configurations as follows:

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Beta1/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

WildFly 10

JBoss Community Documentation Page of 356 532

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class);

BindingProvider bp = (BindingProvider)port;

ClientConfigUtil.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config

1");

port.echo("Kermit");

...

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config 2");

port.echo("Kermit");

...

configurer.setConfigHandlers(bp, "META-INF/my-client-config.xml", "Custom Client Config 3");

port.echo("Kermit");

...

configurer.setConfigHandlers(bp, null, "Container Custom Client Config"); //reads from current

container configurations if available

port.echo("Kermit");

... similarly, properties are read from client configurations as follows:

WildFly 10

JBoss Community Documentation Page of 357 532

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

...

Service service = Service.create(wsdlURL, serviceName);

Endpoint port = service.getPort(Endpoint.class);

ClientConfigUtil.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client

Config 1");

port.echo("Kermit");

...

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client Config 2");

port.echo("Kermit");

...

configurer.setConfigProperties(port, "META-INF/my-client-config.xml", "Custom Client Config 3");

port.echo("Kermit");

...

configurer.setConfigProperties(port, null, "Container Custom Client Config"); //reads from

current container configurations if available

port.echo("Kermit");

The default implementation parses the specified configuration file, if any, after havingClientConfigurer

resolved it as a resources using the current thread context classloader. The jbossws-jaxws-config schema

 defines the descriptor contents and is included in the artifact.jbossws-spi

http://anonsvn.jboss.org/repos/jbossws/spi/tags/jbossws-spi-2.1.0.Beta1/src/main/resources/schema/jbossws-jaxws-config_4_0.xsd

WildFly 10

JBoss Community Documentation Page of 358 532

Automatic configuration from default descriptors
In some cases, the application developer might not be aware of the configuration that will need to be used

for its client and endpoint implementation, perhaps because that's a concern of the application deployer. In

other cases, explicit usage (compile time dependency) of JBossWS API might not be accepted. To cope with

such scenarios, JBossWS allows including default client () and endpoint (jaxws-client-config.xml

) descriptor within the application (in its root), which are parsed for gettingjaxws-endpoint-config.xml

configurations any time a configuration file name is not specified.

If the configuration name is also not specified, JBossWS automatically looks for a configuration named the

same as

the endpoint implementation class (full qualified name), in case of JAX-WS endpoints;

the service endpoint interface (full qualified name), in case of JAX-WS clients.

No automatic configuration name is selected for clients.Dispatch

So, for instance, an endpoint implementation class for which no pre-definedorg.foo.bar.EndpointImpl

configuration is explicitly set will cause JBossWS to look for a named configurationorg.foo.bar.EndpointImpl

within a descriptor in the root of the application deployment. Similarly, on clientjaxws-endpoint-config.xml

side, a client proxy implementing interface (SEI) will have the setup read from a org.foo.bar.Endpoint

 named configuration in descriptor.org.foo.bar.Endpoint jaxws-client-config.xml

Automatic configuration assignment from container setup
JBossWS fall-backs to getting predefined configurations from the container setup whenever no explicit

configuration has been provided and the default descriptors are either not available or do not contain

relevant configurations. This gives additional control on the JAX-WS client and endpoint setup to

administrators, as the container setup can be managed independently from the deployed applications.

JBossWS hence accesses the webservices subsystem the same as explained above for explicitly named

configuration; the default configuration names used for look are

the endpoint implementation class (full qualified name), in case of JAX-WS endpoints;

the service endpoint interface (full qualified name), in case of JAX-WS clients.

 clients are not automatically configured. If no configuration is found using namesDispatch

computed as above, the and Standard-Client-Config Standard-Endpoint-Config

configurations are used for clients and endpoints respectively

35.3.9 Authentication

Authentication

Specify the security domain

Use BindingProvider to set principal/credential

Using HTTP Basic Auth for security

JASPI Authentication

WildFly 10

JBoss Community Documentation Page of 359 532

Authentication
Here the simplest way to authenticate a web service user with JBossWS is explained.

First we secure the access to the SLSB as we would do for normal (non web service) invocations: this can

be easily done through the @RolesAllowed, @PermitAll, @DenyAll annotation. The allowed user roles can

be set with these annotations both on the bean class and on any of its business methods.

@Stateless

@RolesAllowed("friend")

public class EndpointEJB implements EndpointInterface

{

 ...

}

Similarly POJO endpoints are secured the same way as we do for normal web applications in web.xml:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>All resources</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>friend</role-name>

 </auth-constraint>

</security-constraint>

<security-role>

 <role-name>friend</role-name>

</security-role>

WildFly 10

JBoss Community Documentation Page of 360 532

Specify the security domain
Next, specify the security domain for this deployment. This is performed using the @SecurityDomain

annotation for EJB3 endpoints

@Stateless

@SecurityDomain("JBossWS")

@RolesAllowed("friend")

public class EndpointEJB implements EndpointInterface

{

 ...

}

or modifying the jboss-web.xml for POJO endpoints

<jboss-web>

<security-domain>JBossWS</security-domain>

</jboss-web>

The security domain as well as its the authentication and authorization mechanisms are defined differently

depending on the application server version in use.

Use BindingProvider to set principal/credential
A web service client may use the interface to set thejavax.xml.ws.BindingProvider

username/password combination

URL wsdlURL = new

File("resources/jaxws/samples/context/WEB-INF/wsdl/TestEndpoint.wsdl").toURL();

QName qname = new QName("http://org.jboss.ws/jaxws/context", "TestEndpointService");

Service service = Service.create(wsdlURL, qname);

port = (TestEndpoint)service.getPort(TestEndpoint.class);

BindingProvider bp = (BindingProvider)port;

bp.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "kermit");

bp.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "thefrog");

WildFly 10

JBoss Community Documentation Page of 361 532

Using HTTP Basic Auth for security
To enable HTTP Basic authentication you use the annotation on the bean class@WebContext

@Stateless

@SecurityDomain("JBossWS")

@RolesAllowed("friend")

@WebContext(contextRoot="/my-cxt", urlPattern="/*", authMethod="BASIC",

transportGuarantee="NONE", secureWSDLAccess=false)

public class EndpointEJB implements EndpointInterface

{

 ...

}

For POJO endpoints, we modify the adding the auth-method element:web.xml

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Test Realm</realm-name>

</login-config>

JASPI Authentication
A Java Authentication SPI (JASPI) provider can be configured in WildFly security subsystem to authenticate

SOAP messages:

<security-domain name="jaspi">

<authentication-jaspi>

<login-module-stack name="jaas-lm-stack">

<login-module code="UsersRoles" flag="required">

<module-option name="usersProperties" value="jbossws-users.properties"/>

<module-option name="rolesProperties" value="jbossws-roles.properties"/>

</login-module>

</login-module-stack>

<auth-module code="org.jboss.wsf.stack.cxf.jaspi.module.UsernameTokenServerAuthModule"

login-module-stack-ref="jaas-lm-stack"/>

</authentication-jaspi>

</security-domain>

For further information on configuring security domains in WildFly, please refer to .here

Here is the classorg.jboss.wsf.stack.cxf.jaspi.module.UsernameTokenServerAuthModule

implementing , which delegates to thejavax.security.auth.message.module.ServerAuthModule

proper login module to perform authentication using the credentials from WS-Security UsernameToken in

the incoming SOAP message. Alternative implementations of can be implementedServerAuthModule

and configured.

https://docs.jboss.org/author/display/WFLY9/Security+subsystem+configuration

WildFly 10

JBoss Community Documentation Page of 362 532

To enable JASPI authentication, the endpoint deployment needs to specify the security domain to use; that

can be done in two different ways:

Setting the property in the descriptorjaspi.security.domain jboss-webservices.xml

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>jaspi.security.domain</name>

<value>jaspi</value>

</property>

</webservices>

Referencing (through annotation) an endpoint config that sets the @EndpointConfig

 propertyjaspi.security.domain

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName =

"jaspiSecurityDomain")

public class ServiceEndpointImpl implements ServiceIface {

The property is specified as follows in the referenced descriptor:jaspi.security.domain

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>jaspiSecurityDomain</config-name>

<property>

<property-name>jaspi.security.domain</property-name>

<property-value>jaspi</property-value>

</property>

</endpoint-config>

</jaxws-config>

If the JASPI security domain is specified in both and config filejboss-webservices.xml

referenced by annotation, the JASPI security domain specified in @EndpointConfig

 will take precedence. jboss-webservices.xml

WildFly 10

JBoss Community Documentation Page of 363 532

35.3.10 Apache CXF integration

JBossWS integration layer with Apache CXF

Building WS applications the JBoss way

Portable applications

Direct Apache CXF API usage

Bus usage

Creating a Bus instance

Using existing Bus instances

Bus selection strategies for JAXWS clients

Thread bus strategy (THREAD_BUS)

New bus strategy (NEW_BUS)

Thread context classloader bus strategy (TCCL_BUS)

Strategy configuration

Server Side Integration Customization

Deployment descriptor properties

WorkQueue configuration

Policy alternative selector

MBean management

Schema validation

Interceptors

Features

WS-Discovery enablement

Apache CXF interceptors

Apache CXF features

Properties driven bean creation

HTTPConduit configuration

WildFly 10

JBoss Community Documentation Page of 364 532

JBossWS integration layer with Apache CXF
All JAX-WS functionalities provided by JBossWS on top of WildFly are currently served through a proper

integration of the JBoss Web Services stack with most of the project modules.Apache CXF

Apache CXF is an open source services framework. It allows building and developing services using

frontend programming APIs (including JAX-WS), with services speaking a variety of protocols such as SOAP

and XML/HTTP over a variety of transports such as HTTP and JMS.

The integration layer (in short hereafter) is mainly meant for:JBossWS-CXF

allowing using standard webservices APIs (including JAX-WS) on WildFly; this is performed internally

leveraging Apache CXF without requiring the user to deal with it;

allowing using Apache CXF advanced features (including WS-*) on top of WildFly without requiring

the user to deal with / setup / care about the required integration steps for running in such a container.

In order for achieving the goals above, the JBossWS-CXF integration supports the JBoss ws endpoint

deployment mechanism and comes with many internal customizations on top of Apache CXF.

In the next sections a list of technical suggestions and notes on the integration is provided; please also refer

to the for in-depth details on the CXF architecture.Apache CXF official documentation

http://cxf.apache.org/
http://cxf.apache.org/docs/index.html

WildFly 10

JBoss Community Documentation Page of 365 532

Building WS applications the JBoss way
The Apache CXF client and endpoint configuration as explained in the isApache CXF official user guide

heavily based on Spring. Apache CXF basically parses Spring descriptors; those may contain anycxf.xml

basic bean plus specific ws client and endpoint beans which CXF has custom parsers for. Apache CXF can

be used to deploy webservice endpoints on any servlet container by including its libraries in the deployment;

in such a scenario Spring basically serves as a convenient configuration option, given direct Apache CXF

API usage won't be very handy. Similar reasoning applies on client side, where a Spring based descriptor

offers a shortcut for setting up Apache CXF internals.

This said, nowadays almost any Apache CXF functionality can be configured and used through direct API

usage, without Spring. As a consequence of that and given the considerations in the sections below, the

JBossWS integration with Apache CXF does not rely on Spring descriptors.

Portable applications
WildFly is much more then a servlet container; it actually provides users with a fully compliant target platform

for Java EE applications.

Generally speaking, by relying only on users are encouraged to write portable applications JAX-WS

 whenever possible. That would by the way ensure easy migrations to and from other compliantspecification

platforms. Being a Java EE container, WildFly already comes with a JAX-WS compliant implementation,

which is basically Apache CXF plus the JBossWS-CXF integration layer. So users just need to write their

JAX-WS application; no need for embedding any Apache CXF or any ws related dependency library in user

. Please refer to the section of the documentation for getting started.deployments JAX-WS User Guide

WS-* usage (including WS-Security, WS-Addressing, WS-ReliableMessaging, ...) should also be configured

in the most portable way; that is by on the endpoint WSDL contracts,relying on proper WS-Policy assertions

so that client and endpoint configuration is basically a matter of setting few ws context properties. The WS-*

related sections of this documentation cover all the details on configuring applications making use of WS-*

through policies.

As a consequence of the reasoning above, the JBossWS-CXF integration is currently built directly on the

Apache CXF API and aims at allowing users to configure webservice clients and endpoints without Spring

.descriptors

Direct Apache CXF API usage
Whenever users can't really meet their application requirements with JAX-WS plus WS-Policy, it is of course

still possible to rely on direct Apache CXF API usage (given that's included in the AS), loosing the Java EE

portability of the application. That could be the case of a user needing specific Apache CXF functionalities,

or having to consume WS-* enabled endpoints advertised through legacy wsdl contracts without WS-Policy

assertions.

On server side, direct Apache CXF API usage might not be always possible or end up being not very easy.

For this reason, the JBossWS integration comes with a convenient alternative through customization options

in the descriptor described below on this page. Properties can be declared in jboss-webservices.xml

 to control Apache CXF internals like , , etc.jboss-webservices.xml interceptors features

http://cxf.apache.org/docs/index.html
https://docs.jboss.org/author/display/WFLY8/JAX-WS+User+Guide

WildFly 10

JBoss Community Documentation Page of 366 532

Bus usage

Creating a Bus instance
Most of the Apache CXF features are configurable using the class. While for basicorg.apache.cxf.Bus

JAX-WS usage the user might never need to explicitly deal with Bus, using Apache CXF specific features

generally requires getting a handle to a instance. This can happen on client side asorg.apache.cxf.Bus

well as in a ws endpoint or handler business code.

New Bus instances are produced by the currently configured org.apache.cxf.BusFactory

implementation the following way:

Bus bus = BusFactory.newInstance().createBus();

The algorithm for selecting the actual implementation of to be used leverages the Service API,BusFactory

basically looking for optional configurations in location using the current threadMETA-INF/services/...

context classloader. JBossWS-CXF integration comes with its own implementation of , BusFactory

, that allows fororg.jboss.wsf.stack.cxf.client.configuration.JBossWSBusFactory

seamless setup of JBossWS customizations on top of Apache CXF. So, assuming the JBossWS-CXF

libraries are available in the current thread context classloader, the is JBossWSBusFactory automatically

retrieved by the call above.BusFactory.newInstance()

JBossWS users willing to explicitly use functionalities of get theorg.apache.cxf.bus.CXFBusFactory,

same API with JBossWS additions through :JBossWSBusFactory

Map<Class, Object> myExtensions = new HashMap<Class, Object>();

myExtensions.put(...);

Bus bus = new JBossWSBusFactory().createBus(myExtensions);

WildFly 10

JBoss Community Documentation Page of 367 532

Using existing Bus instances
Apache CXF keeps reference to a global default instance as well as to a thread default bus for eachBus

thread. That is performed through static members in which also comesorg.apache.cxf.BusFactory,

with the following methods in the public API:

public static synchronized Bus getDefaultBus()

public static synchronized Bus getDefaultBus(boolean createIfNeeded)

public static synchronized void setDefaultBus(Bus bus)

public static Bus getThreadDefaultBus()

public static Bus getThreadDefaultBus(boolean createIfNeeded)

public static void setThreadDefaultBus(Bus bus)

Please note that the default behaviour of getDefaultBus() / getDefaultBus(true) /

 is to create a new Bus instance if that's notgetThreadDefaultBus() / getThreadDefaultBus(true)

set yet. Moreover and first fallback to retrieving thegetThreadDefaultBus() getThreadDefaultBus(true)

configured global default bus before actually trying creating a new instance (and the created new instance is

set as global default bus if that was not set there yet).

The drawback of this mechanism (which is basically fine in JSE environment) is that when running in WildFly

container you need to be careful in order not to (mis)use a bus over multiple applications (assuming the

Apache CXF classes are loaded by the same classloader, which is currently the case with WildFly).

Here is a list of general suggestions to avoid problems when running in-container:

forget about the global default bus; you don't need that, so don't do getDefaultBus() /

 in your code;getDefaultBus(true) / setDefaultBus()

avoid unless you already know forgetThreadDefaultBus() / getThreadDefaultBus(true)

sure the default bus is already set;

keep in mind thread pooling whenever you customize a thread default bus instance (for instance

adding bus scope interceptors, ...), as that thread and bus might be later reused; so either shutdown

the bus when you're done or explicitly remove it from the BusFactory thread association.

Finally, remember that each time you explictly create a new Bus instance (factory.createBus()) that is set as

thread default bus and global default bus if those are not set yet. The JAXWS implementationProvider

also creates instances internally, in particular the JBossWS version of JAXWS makes sureBus Provider

the default bus is never internally used and instead a new is created if required (more details on this inBus

the next paragraph).

Bus selection strategies for JAXWS clients
JAXWS clients require an Apache CXF Bus to be available; the client is registered within the Bus and the

Bus affects the client behavior (e.g. through the configured CXF interceptors). The way a bus is internally

selected for serving a given JAXWS client is very important, especially for in-container clients; for this

reason, JBossWS users can choose the preferred Bus selection strategy. The strategy is enforced in the

 implementation from the JBossWS integration, being that called wheneverjavax.xml.ws.spi.Provider

a JAXWS (client) is requested.Service

WildFly 10

JBoss Community Documentation Page of 368 532

Thread bus strategy (THREAD_BUS)
Each time the vanilla JAXWS api is used to create a Bus, the JBossWS-CXF integration will automatically

make sure a Bus is currently associated to the current thread in the BusFactory. If that's not the case, a new

Bus is created and linked to the current thread (to prevent the user from relying on the default Bus). The

Apache CXF engine will then create the client using the current thread Bus.

This is the default strategy, and the most straightforward one in Java SE environments; it lets users

automatically reuse a previously created Bus instance and allows using customized Bus that can possibly be

created and associated to the thread before building up a JAXWS client.

The drawback of the strategy is that the link between the Bus instance and the thread needs to be eventually

cleaned up (when not needed anymore). This is really evident in a Java EE environment (hence when

running in-container), as threads from pools (e.g. serving web requests) are re-used.

When relying on this strategy, the safest approach to be sure of cleaning up the link is to surround the

JAXWS client with a block as below:try/finally

try {

Service service = Service.create(wsdlURL, serviceQName);

MyEndpoint port = service.getPort(MyEndpoint.class);

//...

} finally {

BusFactory.setThreadDefaultBus(null);

// OR (if you don't need the bus and the client anymore)

 Bus bus = BusFactory.getThreadDefaultBus(false);

bus.shutdown(true);

}

New bus strategy (NEW_BUS)
Another strategy is to have the JAXWS Provider from the JBossWS integration create a new Bus each time

a JAXWS client is built. The main benefit of this approach is that a fresh bus won't rely on any formerly

cached information (e.g. cached WSDL / schemas) which might have changed after the previous client

creation. The main drawback is of course worse performance as the Bus creation takes time.

If there's a bus already associated to the current thread before the JAXWS client creation, that is

automatically restored when returning control to the user; in other words, the newly created bus will be used

only for the created JAXWS client but won't stay associated to the current thread at the end of the process.

Similarly, if the thread was not associated to any bus before the client creation, no bus will be associated to

the thread at the end of the client creation.

WildFly 10

JBoss Community Documentation Page of 369 532

Thread context classloader bus strategy (TCCL_BUS)
The last strategy is to have the bus created for serving the client be associated to the current thread context

classloader (TCCL). That basically means the same Bus instance is shared by JAXWS clients running when

the same TCCL is set. This is particularly interesting as each web application deployment usually has its

own context classloader, so this strategy is possibly a way to keep the number of created Bus instances

bound to the application number in WildFly container.

If there's a bus already associated to the current thread before the JAXWS client creation, that is

automatically restored when returning control to the user; in other words, the bus corresponding to the

current thread context classloader will be used only for the created JAXWS client but won't stay associated

to the current thread at the end of the process. If the thread was not associated to any bus before the client

creation, a new bus will be created (and later user for any other client built with this strategy and the same

TCCL in place); no bus will be associated to the thread at the end of the client creation.

Strategy configuration
Users can request a given Bus selection strategy to be used for the client being built by specifying one of the

following JBossWS features (which extend):javax.xml.ws.WebServiceFeature

Feature Strategy

org.jboss.wsf.stack.cxf.client.UseThreadBusFeature THREAD_BUS

org.jboss.wsf.stack.cxf.client.UseNewBusFeature NEW_BUS

org.jboss.wsf.stack.cxf.client.UseTCCLBusFeature TCCL_BUS

The feature is specified as follows:

Service service = Service.create(wsdlURL, serviceQName, new UseThreadBusFeature());

If no feature is explicitly specified, the system default strategy is used, which can be modified through the

 system property when starting the JVM. The validorg.jboss.ws.cxf.jaxws-client.bus.strategy

values for the property are , and . The default is .THREAD_BUS NEW_BUS TCCL_BUS THREAD_BUS

Server Side Integration Customization
The JBossWS-CXF server side integration takes care of internally creating proper Apache CXF structures

(including a instance, of course) for the provided ws deployment. Should the deployment includeBus

multiple endpoints, those would all live within the same Apache CXF Bus, which would of course be

completely separated by the other deployments' bus instances.

While JBossWS sets sensible defaults for most of the Apache CXF configuration options on server side,

users might want to fine tune the instance that's created for their deployment; a Bus

 descriptor can be used for deployment level customizations.jboss-webservices.xml

WildFly 10

JBoss Community Documentation Page of 370 532

Deployment descriptor properties
The descriptor can be used to .jboss-webservices.xml provide property values

<webservices xmlns="http://www.jboss.com/xml/ns/javaee" version="1.2">

 ...

 <property>

 <name>...</name>

 <value>...</value>

 </property>

 ...

</webservices>

JBossWS-CXF integration comes with a set of allowed property names to control Apache CXF internals.

WorkQueue configuration
Apache CXF uses WorkQueue instances for dealing with some operations (e.g. @Oneway requests

processing). A is installed in the Bus as an extension and allows for adding / removingWorkQueueManager

queues as well as controlling the existing ones.

On server side, queues can be provided by using the properties in cxf.queue.<queue-name>.*

 (e.g. for controlling the max queuejboss-webservices.xml cxf.queue.default.maxQueueSize

size of the workqueue). At deployment time, the JBossWS integration can add new instances of default

 to the currently configured WorkQueueManager; the properties below are used toAutomaticWorkQueueImpl

fill in parameter into the :AutomaticWorkQueueImpl constructor

Property Default value

cxf.queue.<queue-name>.maxQueueSize 256

cxf.queue.<queue-name>.initialThreads 0

cxf.queue.<queue-name>.highWaterMark 25

cxf.queue.<queue-name>.lowWaterMark 5

cxf.queue.<queue-name>.dequeueTimeout 120000

Policy alternative selector
The Apache CXF policy engine supports different strategies to deal with policy alternatives. JBossWS-CXF

integration currently defaults to the , but still allows for setting different selectorMaximalAlternativeSelector

implementation using the property in .cxf.policy.alternativeSelector jboss-webservices.xml

https://docs.jboss.org/author/display/WFLY8/Advanced+User+Guide
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/WorkQueueManager.html
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/AutomaticWorkQueueImpl.html
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/workqueue/AutomaticWorkQueueImpl.html#AutomaticWorkQueueImpl(int,%20int,%20int,%20int,%20long,%20java.lang.String)
http://cxf.apache.org/javadoc/latest-2.5.x/org/apache/cxf/ws/policy/selector/MaximalAlternativeSelector.html

WildFly 10

JBoss Community Documentation Page of 371 532

MBean management
Apache CXF allows managing its MBean objects that are installed into the WildFly MBean server. The

feature is enabled on a deployment basis through the property in cxf.management.enabled

. The propertyjboss-webservices.xml cxf.management.installResponseTimeInterceptors

can also be used to control installation of CXF response time interceptors, which are added by default when

enabling MBean management, but might not be desired in some cases. Here is an example:

<webservices xmlns="http://www.jboss.com/xml/ns/javaee" version="1.2">

<property>

<name>cxf.management.enabled</name>

<value>true</value>

</property>

<property>

<name>cxf.management.installResponseTimeInterceptors</name>

<value>false</value>

</property>

</webservices>

Schema validation
Schema validation of exchanged messages can also be enabled in . Furtherjboss-webservices.xml

details available .here

Interceptors
The descriptor also allows specifying the and jboss-webservices.xml cxf.interceptors.in

 properties; those allows declaring interceptors to be attached to the Bus instancecxf.interceptors.out

that's created for serving the deployment.

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>cxf.interceptors.in</name>

<value>org.jboss.test.ws.jaxws.cxf.interceptors.BusInterceptor</value>

</property>

<property>

<name>cxf.interceptors.out</name>

<value>org.jboss.test.ws.jaxws.cxf.interceptors.BusCounterInterceptor</value>

</property>

</webservices>

https://docs.jboss.org/author/display/WFLY9/Advanced+User+Guide

WildFly 10

JBoss Community Documentation Page of 372 532

Features
The descriptor also allows specifying the property; that allowsjboss-webservices.xml cxf.features

declaring features to be attached to any endpoint belonging to the Bus instance that's created for serving the

deployment.

<?xml version="1.1" encoding="UTF-8"?>

<webservices

xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.2"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

<property>

<name>cxf.features</name>

<value>org.apache.cxf.feature.FastInfosetFeature</value>

</property>

</webservices>

Discovery enablement
WS-Discovery support can be turned on in for the current deployment. Furtherjboss-webservices

details available .here

https://docs.jboss.org/author/display/WFLY9/WS-Discovery

WildFly 10

JBoss Community Documentation Page of 373 532

Apache CXF interceptors
Apache CXF supports declaring interceptors using one of the following approaches:

Annotation usage on endpoint classes (, @org.apache.cxf.interceptor.InInterceptor

)@org.apache.cxf.interceptor.OutInterceptor

Direct API usage on client side (through the

 interface)org.apache.cxf.interceptor.InterceptorProvider

Spring descriptor usage ()cxf.xml

As the Spring descriptor usage is not supported, the JBossWS integration adds an additional descriptor

based approach to avoid requiring modifications to the actual client/endpoint code. Users can declare

interceptors within by specifying a list of interceptor classpredefined client and endpoint configurations

names for the and properties.cxf.interceptors.in cxf.interceptors.out

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointImpl</config-name>

<property>

<property-name>cxf.interceptors.in</property-name>

<property-value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointInterceptor,org.jboss.test.ws.jaxws.cxf.interceptors.FooInterceptor</property-value>
</property>
<property>
<property-name>cxf.interceptors.out</property-name>
<property-value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointCounterInterceptor</property-value>
</property>
</endpoint-config>
</jaxws-config>

A new instance of each specified interceptor class will be added to the client or endpoint the configuration is

assigned to. The interceptor classes must have a no-argument constructor.

https://docs.jboss.org/author/display/JBWS/Predefined+client+and+endpoint+configurations

WildFly 10

JBoss Community Documentation Page of 374 532

Apache CXF features
Apache CXF supports declaring features using one of the following approaches:

Annotation usage on endpoint classes ()@org.apache.cxf.feature.Features

Direct API usage on client side (through extensions of the

 class)org.apache.cxf.feature.AbstractFeature

Spring descriptor usage ()cxf.xml

As the Spring descriptor usage is not supported, the JBossWS integration adds an additional descriptor

based approach to avoid requiring modifications to the actual client/endpoint code. Users can declare

features within by specifying a list of feature class names forpredefined client and endpoint configurations

the property.cxf.features

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<endpoint-config>

<config-name>Custom FI Config</config-name>

<property>

<property-name>cxf.features</property-name>

<property-value>org.apache.cxf.feature.FastInfosetFeature</property-value>

</property>

</endpoint-config>

</jaxws-config>

A new instance of each specified feature class will be added to the client or endpoint the configuration is

assigned to. The feature classes must have a no-argument constructor.

https://docs.jboss.org/author/display/JBWS/Predefined+client+and+endpoint+configurations

WildFly 10

JBoss Community Documentation Page of 375 532

Properties driven bean creation
Sections above explain how to declare CXF interceptors and features through properties either in a

client/endpoint predefined configuration or in a descriptor. By getting thejboss-webservices.xml

feature/interceptor class name only specified, the container simply tries to create a bean instance using the

class default constructor. This sets a limitation on the feature/interceptor configuration, unless custom

extensions of vanilla CXF classes are provided, with the default constructor setting properties before

eventually using the super constructor.

To cope with this issue, JBossWS integration comes with a mechanism for configuring simple bean

hierarchies when building them up from properties. Properties can have bean reference values, that is

strings starting with . Property reference keys are used to specify the bean class name and the value for##

for each attribute. So for instance the following properties:

Key Value

cxf.features ##foo, ##bar

##foo org.jboss.Foo

##foo.par 34

##bar org.jboss.Bar

##bar.color blue

would result into the stack installing two feature instances, the same that would have been created by

import org.Bar;

import org.Foo;

...

Foo foo = new Foo();

foo.setPar(34);

Bar bar = new Bar();

bar.setColor("blue");

The mechanism assumes that the classes are valid beans with proper getter and setter methods; value

objects are cast to the correct primitive type by inspecting the class definition. Nested beans can of course

be configured.

WildFly 10

JBoss Community Documentation Page of 376 532

HTTPConduit configuration
HTTP transport setup in Apache CXF is achieved through

 . When running on top of theorg.apache.cxf.transport.http.HTTPConduit configurations

JBossWS integration, conduits can be programmatically modified using the Apache CXF API as follows:

import org.apache.cxf.frontend.ClientProxy;

import org.apache.cxf.transport.http.HTTPConduit;

import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

//set chunking threshold before using a JAX-WS port client

...

HTTPConduit conduit = (HTTPConduit)ClientProxy.getClient(port).getConduit();

HTTPClientPolicy client = conduit.getClient();

client.setChunkingThreshold(8192);

...

Users can also control the default values for the most common HTTPConduit parameters by setting specific

system properties; the provided values will override Apache CXF defaut values.

Property Description

cxf.client.allowChunking A boolean to tell Apache CXF whether to allow send messages using

chunking.

cxf.client.chunkingThreshold An integer value to tell Apache CXF the threshold at which switching from

non-chunking to chunking mode.

cxf.client.connectionTimeout A long value to tell Apache CXF how many milliseconds to set the

connection timeout to

cxf.client.receiveTimeout A long value to tell Apache CXF how many milliseconds to set the receive

timeout to

cxf.client.connection A string to tell Apache CXF to use or connection typeKeep-Alive close

cxf.tls-client.disableCNCheck A boolean to tell Apache CXF whether disabling CN host name check or

not

The vanilla Apache CXF defaults apply when the system properties above are not set.

35.3.11 Addressing

JBoss Web Services inherits full WS-Addressing capabilities from the underlying Apache CXF

implementation. Apache CXF provides support for 2004-08 and versions of WS-Addressing.1.0

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://www.w3.org/TR/ws-addr-core/

WildFly 10

JBoss Community Documentation Page of 377 532

Enabling WS-Addressing
WS-Addressing can be turned on in multiple standard ways:

consuming a WSDL contract that specifies a WS-Addressing assertion / policy

using the annotation@javax.xml.ws.soap.Addressing

using the featurejavax.xml.ws.soap.AddressingFeature

The supported addressing policy elements are:

[http://www.w3.org/2005/02/addressing/wsdl]UsingAddressing

[http://schemas.xmlsoap.org/ws/2004/08/addressing/policy]UsingAddressing

[http://www.w3.org/2006/05/addressing/wsdl]UsingAddressing

[http://www.w3.org/2007/05/addressing/metadata]Addressing

Alternatively, Apache CXF proprietary ways are also available:

specifying the feature for a given client/endpoint[http://cxf.apache.org/ws/addressing]addressing

using the feature through the APIorg.apache.cxf.ws.addressing.WSAddressingFeature

manually configuring the Apache CXF addressing interceptors (

 and org.apache.cxf.ws.addressing.MAPAggregator

)org.apache.cxf.ws.addressing.soap.MAPCodec

setting the property in the message contextorg.apache.cxf.ws.addressing.using

Please refer to the the Apache CXF documentation for further information on the proprietary WS-Addressing

 and .setup configuration details

Addressing Policy
The WS-Addressing support is also perfectly integrated with the Apache CXF WS-Policy engine.

This basically means that the WSDL contract generation for code-first endpoint deployment is policy-aware:

users can annotate endpoints with the annotation and expect the@javax.xml.ws.soap.Addressing

published WSDL contract to contain proper WS-Addressing policy (assuming no is specifiedwsdlLocation

in the endpoint's annotation).@WebService

Similarly, on client side users do not need to manually specify the

 feature, as the policy engine is able to properly process thejavax.xml.ws.soap.AddressingFeature

WS-Addressing policy in the consumed WSDL and turn on addressing as requested.

Example
Here is an example showing how to simply enable WS-Addressing through WS-Policy.

http://cxf.apache.org/docs/ws-addressing.html
http://cxf.apache.org/docs/ws-addressing.html
http://cxf.apache.org/docs/wsaconfiguration.html

WildFly 10

JBoss Community Documentation Page of 378 532

Endpoint
A simple JAX-WS endpoint is prepared using a java-first approach; WS-Addressing is enforced through

 annotation and no is provided in :@Addressing wsdlLocation @WebService

package org.jboss.test.ws.jaxws.samples.wsa;

import javax.jws.WebService;

import javax.xml.ws.soap.Addressing;

import org.jboss.logging.Logger;

@WebService

(

 portName = "AddressingServicePort",

 serviceName = "AddressingService",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsaddressing",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsa.ServiceIface"

)

@Addressing(enabled=true, required=true)

public class ServiceImpl implements ServiceIface

{

 private Logger log = Logger.getLogger(this.getClass());

 public String sayHello(String name)

 {

 return "Hello " + name + "!";

 }

}

The WSDL contract that's generated at deploy time and published looks like this:

WildFly 10

JBoss Community Documentation Page of 379 532

<wsdl:definitions>

...

 <wsdl:binding name="AddressingServiceSoapBinding" type="tns:ServiceIface">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsaw:UsingAddressing wsdl:required="true"/>

 <wsp:PolicyReference URI="#AddressingServiceSoapBinding_WSAM_Addressing_Policy"/>

 <wsdl:operation name="sayHello">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="sayHello">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="sayHelloResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="AddressingService">

 <wsdl:port binding="tns:AddressingServiceSoapBinding" name="AddressingServicePort">

 <soap:address location="http://localhost:8080/jaxws-samples-wsa"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="AddressingServiceSoapBinding_WSAM_Addressing_Policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

</wsdl:definitions>

Client
Since the WS-Policy engine is on by default, the client side code is basically a pure JAX-WS client app:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wsaddressing",

"AddressingService");

URL wsdlURL = new URL("http://localhost:8080/jaxws-samples-wsa?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

proxy.sayHello("World");

WildFly 10

JBoss Community Documentation Page of 380 532

35.3.12 Security

WS-Security overview

JBoss WS-Security support

Apache CXF WS-Security implementation

WS-Security Policy support

JBossWS configuration additions

Apache CXF annotations

Examples

Signature and encryption

Endpoint

Client

Endpoint serving multiple clients

Authentication and authorization

Endpoint

Client

Secure transport

Secure conversation

Security overview
WS-Security provides the means to secure your services beyond transport level protocols such as .HTTPS

Through a number of standards such as , and headers defined in the standard,XML-Encryption WS-Security

it allows you to:

Pass authentication tokens between services.

Encrypt messages or parts of messages.

Sign messages.

Timestamp messages.

WS-Security makes heavy use of public and private key cryptography. It is helpful to understand these

basics to really understand how to configure WS-Security. With public key cryptography, a user has a pair of

public and private keys. These are generated using a large prime number and a key function.

http://www.w3.org/TR/xmlenc-core/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WildFly 10

JBoss Community Documentation Page of 381 532

The keys are related mathematically, but cannot be derived from one another. With these keys we can

encrypt messages. For example, if Bob wants to send a message to Alice, he can encrypt a message using

her public key. Alice can then decrypt this message using her private key. Only Alice can decrypt this

message as she is the only one with the private key.

Messages can also be signed. This allows you to ensure the authenticity of the message. If Alice wants to

send a message to Bob, and Bob wants to be sure that it is from Alice, Alice can sign the message using her

private key. Bob can then verify that the message is from Alice by using her public key.

JBoss WS-Security support
JBoss Web Services supports many real world scenarios requiring WS-Security functionalities. This includes

signature and encryption support through X509 certificates, authentication and authorization through

username tokens as well as all ws-security configurations covered by WS- specification.SecurityPolicy

, the core of WS-Security functionalities is provided through the ApacheAs well as for other WS-* features

CXF engine. On top of that the JBossWS integration adds few configuration enhancements to simplify the

setup of WS-Security enabled endpoints.

Apache CXF WS-Security implementation
Apache CXF features a top class WS-Security module supporting multiple configurations and easily

extendible.

The system is based on that delegate to for the low level security operations.interceptors Apache WSS4J

Interceptors can be configured in different ways, either through Spring configuration files or directly using

Apache CXF client API. Please refer to the if you're looking for more details.Apache CXF documentation

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
https://docs.jboss.org/author/display/WFLY8/Apache+CXF+integration
http://ws.apache.org/wss4j
http://cxf.apache.org/docs/ws-security.html

WildFly 10

JBoss Community Documentation Page of 382 532

Recent versions of Apache CXF, however, introduced support for WS-Security Policy, which aims at moving

most of the security configuration into the service contract (through policies), so that clients can easily be

configured almost completely automatically from that. This way users do not need to manually deal with

configuring / installing the required interceptors; the Apache CXF WS-Policy engine internally takes care of

that instead.

Security Policy support
WS-SecurityPolicy describes the actions that are required to securely communicate with a service advertised

in a given WSDL contract. The WSDL bindings / operations reference WS-Policy fragments with the security

requirements to interact with the service. The allows for specifying thingsWS-SecurityPolicy specification

like asymmetric/symmetric keys, using transports (https) for encryption, which parts/headers to encrypt or

sign, whether to sign then encrypt or encrypt then sign, whether to include timestamps, whether to use

derived keys, etc.

However some mandatory configuration elements are not covered by WS-SecurityPolicy, basically because

they're not meant to be public / part of the published endpoint contract; those include things such as

keystore locations, usernames and passwords, etc. Apache CXF allows configuring these elements either

through Spring xml descriptors or using the client API / annotations. Below is the list of supported

configuration properties:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html

WildFly 10

JBoss Community Documentation Page of 383 532

ws-security.username The username used for UsernameToken policy assertions

ws-security.password The password used for UsernameToken policy assertions. If not

specified, the callback handler will be called.

ws-security.callback-handler The WSS4J security CallbackHandler that will be used to retrieve

passwords for keystores and UsernameTokens.

ws-security.signature.properties The properties file/object that contains the WSS4J properties for

configuring the signature keystore and crypto objects

ws-security.encryption.properties The properties file/object that contains the WSS4J properties for

configuring the encryption keystore and crypto objects

ws-security.signature.username The username or alias for the key in the signature keystore that will be

used. If not specified, it uses the the default alias set in the properties

file. If that's also not set, and the keystore only contains a single key,

that key will be used.

ws-security.encryption.username The username or alias for the key in the encryption keystore that will be

used. If not specified, it uses the the default alias set in the properties

file. If that's also not set, and the keystore only contains a single key,

that key will be used. For the web service provider, the useReqSigCert

keyword can be used to accept (encrypt to) any client whose public key

is in the service's truststore (defined in

ws-security.encryption.properties.)

ws-security.signature.crypto Instead of specifying the signature properties, this can point to the full

 object. This can allow easier "programmatic"WSS4J Crypto

configuration of the Crypto information."

ws-security.encryption.crypto Instead of specifying the encryption properties, this can point to the full

 object. This can allow easier "programmatic"WSS4J Crypto

configuration of the Crypto information."

ws-security.enable.streaming Enable (StAX based) processing of WS-Security messagesstreaming

Here is an example of configuration using the client API:

Map<String, Object> ctx = ((BindingProvider)port).getRequestContext();

ctx.put("ws-security.encryption.properties", properties);

port.echoString("hello");

Please refer to the for additional configuration details.Apache CXF documentation

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html
http://ws.apache.org/wss4j/streaming.html
http://cxf.apache.org/docs/ws-securitypolicy.html

WildFly 10

JBoss Community Documentation Page of 384 532

JBossWS configuration additions
In order for removing the need of Spring on server side for setting up WS-Security configuration properties

not covered by policies, the JBossWS integration allows for getting those pieces of information from a

defined . can include property declarations and endpointendpoint configuration Endpoint configurations

implementations can be associated with a given endpoint configuration using the @EndpointConfig

annotation.

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.signature.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.signature.username</property-name>

 <property-value>bob</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.username</property-name>

 <property-value>alice</property-value>

 </property>

 <property>

 <property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>

</property>

 </endpoint-config>

</jaxws-config>

https://docs.jboss.org/author/display/WFLY8/Predefined+client+and+endpoint+configurations

WildFly 10

JBoss Community Documentation Page of 385 532

import javax.jws.WebService;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

}

Apache CXF annotations
The JBossWS configuration additions allow for a descriptor approach to the WS-Security Policy engine

configuration. If you prefer to provide the same information through an annotation approach, you can

leverage the Apache CXF annotation:@org.apache.cxf.annotations.EndpointProperties

@WebService(

 ...

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value = "bob.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value = "bob.properties"),

 @EndpointProperty(key = "ws-security.signature.username", value = "bob"),

 @EndpointProperty(key = "ws-security.encryption.username", value = "alice"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback")

 }

)

public class ServiceImpl implements ServiceIface {

 ...

}

Examples
In this section some sample of WS-Security service endpoints and clients are provided. Please note they're

only meant as tutorials; you should really careful isolate the ws-security policies / assertion that best suite

your security needs before going to production environment.

WildFly 10

JBoss Community Documentation Page of 386 532

The following sections provide directions and examples on understanding some of the

configuration options for WS-Security engine. Please note the implementor remains responsible for

assessing the application requirements and choosing the most suitable security policy for them.

Signature and encryption

Endpoint
First of all you need to create the web service endpoint using JAX-WS. While this can generally be achieved

in different ways, it's required to use a contract-first approach when using WS-Security, as the policies

declared in the wsdl are parsed by the Apache CXF engine on both server and client sides. So, here is an

example of WSDL contract enforcing signature and encryption using X 509 certificates (the referenced

schema is omitted):

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceSignThenEncryptPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

WildFly 10

JBoss Community Documentation Page of 387 532

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wssePolicy-sign-encrypt"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="SecurityServiceSignThenEncryptPolicy"

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:AsymmetricBinding xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:InitiatorToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssX509V1Token11/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:InitiatorToken>

 <sp:RecipientToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">

 <wsp:Policy>

 <sp:WssX509V1Token11/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDesRsa15/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 <sp:SignBeforeEncrypting/>

 </wsp:Policy>

 </sp:AsymmetricBinding>

 <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <sp:Body/>

 </sp:SignedParts>

 <sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <sp:Body/>

WildFly 10

JBoss Community Documentation Page of 388 532

 </sp:EncryptedParts>

 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial/>

 </wsp:Policy>

 </sp:Wss10>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

The service endpoint can be generated using the tool and then enriched with a wsconsume

 annotation:@EndpointConfig

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import javax.jws.WebService;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

}

The referenced descriptor is used to provide a custom endpoint configuration withjaxws-endpoint-config.xml

the required server side configuration properties; this tells the engine which certificate / key to use for

signature / signature verification and for encryption / decryption:

WildFly 10

JBoss Community Documentation Page of 389 532

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.signature.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.properties</property-name>

 <property-value>bob.properties</property-value>

 </property>

 <property>

 <property-name>ws-security.signature.username</property-name>

 <property-value>bob</property-value>

 </property>

 <property>

 <property-name>ws-security.encryption.username</property-name>

 <property-value>alice</property-value>

 </property>

 <property>

 <property-name>ws-security.callback-handler</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</property-value>

</property>

 </endpoint-config>

</jaxws-config>

... the configuration file is also referenced above; it includes the WSS4J Crypto propertiesbob.properties

which in turn link to the keystore file, type and the alias/password to use for accessing it:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=password

org.apache.ws.security.crypto.merlin.keystore.alias=bob

org.apache.ws.security.crypto.merlin.keystore.file=bob.jks

A callback handler for the letting Apache CXF access the keystore is also provided:

WildFly 10

JBoss Community Documentation Page of 390 532

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class KeystorePasswordCallback implements CallbackHandler {

 private Map<String, String> passwords = new HashMap<String, String>();

 public KeystorePasswordCallback() {

 passwords.put("alice", "password");

 passwords.put("bob", "password");

 }

 /**

 * It attempts to get the password from the private

 * alias/passwords map.

 */

 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());

 if (pass != null) {

 pc.setPassword(pass);

 return;

 }

 }

 }

 /**

 * Add an alias/password pair to the callback mechanism.

 */

 public void setAliasPassword(String alias, String password) {

 passwords.put(alias, password);

 }

}

Assuming the keystore has been properly generated and contains Bob's (server) full keybob.jks

(private/certificate + public key) as well as Alice's (client) public key, we can proceed to packaging the

endpoint. Here is the expected content (the endpoint is a one in a archive, but endpoints in POJO war EJB3

 archives are of course also supported):jar

WildFly 10

JBoss Community Documentation Page of 391 532

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-sign-encrypt.war

 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/

 140 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/

 586 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/

 1687 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/KeystorePasswordCallback.class

 383 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceIface.class

 1070 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceImpl.class

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/

 705 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class

 1069 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class

 1225 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml

 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/

 4086 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

 653 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd

 1820 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.jks

 311 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.properties

As you can see, the jaxws classes generated by the tools are of course also included, as well as a basic

 referencing the endpoint bean:web.xml

WildFly 10

JBoss Community Documentation Page of 392 532

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

If you're deploying the endpoint archive on WildFly, remember to add a dependency to

 module in the MANIFEST.MF file.org.apache.ws.security

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security

WildFly 10

JBoss Community Documentation Page of 393 532

Client
You start by consuming the published WSDL contract using the tool on client side too. Then youwsconsume

simply invoke the the endpoint as a standard JAX-WS one:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER, new

KeystorePasswordCallback());

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_USERNAME, "alice");

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_USERNAME, "bob");

proxy.sayHello();

As you can see, the WS-Security properties are set in the request context. Here the

 is the same as on server side above, you might want/need differentKeystorePasswordCallback

implementation in real world scenarios, of course.

The file is the client side equivalent of the server side and references the alice.properties bob.properties

 keystore file, which has been populated with Alice's (client) full key (private/certificate + public key)alice.jks

as well as Bob's (server) public key.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=password

org.apache.ws.security.crypto.merlin.keystore.alias=alice

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/alice.jks

The Apache CXF WS-Policy engine will digest the security requirements in the contract and ensure a valid

secure communication is in place for interacting with the server endpoint.

Endpoint serving multiple clients
The server side configuration described above implies the endpoint is configured for serving a given client

which a service agreement has been established for. In some real world scenarios though, the same server

might be expected to be able to deal with (including decrypting and encrypting) messages coming from and

being sent to multiple clients. Apache CXF supports that through the value for the useReqSigCert

 configuration parameter.ws-security.encryption.username

Of course the referenced server side keystore then needs to contain the public key of all the clients that are

expected to be served.

WildFly 10

JBoss Community Documentation Page of 394 532

Authentication and authorization
The Username Token Profile can be used to provide client's credentials to a WS-Security enabled target

endpoint.

Apache CXF provides means for setting basic on both client and server sides topassword callback handlers

set/check passwords; the and properties can be usedws-security.username ws-security.callback-handler

similarly as shown in the signature and encryption example. Things become more interesting when requiring

a given user to be authenticated (and authorized) against a security domain on the target application server.

On server side, you need to install two additional interceptors that act as bridges towards the application

server authentication layer:

an interceptor for performing authentication and populating a valid SecurityContext; the provided

interceptor should extend

org.apache.cxf.ws.interceptor.security.AbstractUsernameTokenInInterceptor, in particular JBossWS

integration comes with fororg.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingInterceptor

this;

an interceptor for performing authorization; CXF requires that to extend

org.apache.cxf.interceptor.security.AbstractAuthorizingInInterceptor, for instance the

 can be used for simply mapping endpoint operations to allowed roles.SimpleAuthorizingInterceptor

So, here follows an example of WS-SecurityPolicy endpoint using Username Token Profile for authenticating

through the application server security domain system.

Endpoint
As in the other example, we start with a wsdl contract containing the proper WS-Security Policy:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <message name="greetMe">

WildFly 10

JBoss Community Documentation Page of 395 532

 <part name="parameters" element="tns:greetMe"/>

 </message>

 <message name="greetMeResponse">

 <part name="parameters" element="tns:greetMeResponse"/>

 </message>

 <portType name="ServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 <operation name="greetMe">

 <input message="tns:greetMe"/>

 <output message="tns:greetMeResponse"/>

 </operation>

 </portType>

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceUsernameUnsecureTransportPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 <operation name="greetMe">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wsse-username-jaas"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="SecurityServiceUsernameUnsecureTransportPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

WildFly 10

JBoss Community Documentation Page of 396 532

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

If you want to send hash / digest passwords, you can use a policy such as what follows:

<wsp:Policy wsu:Id="SecurityServiceUsernameHashPasswordPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:HashPassword/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

Please note the specified JBoss security domain needs to be properly configured for computing

digests.

The service endpoint can be generated using the tool and then enriched with a wsconsume

 annotation and annotation to add the two interceptors mentioned@EndpointConfig @InInterceptors

above for JAAS integration:

WildFly 10

JBoss Community Documentation Page of 397 532

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import javax.jws.WebService;

import org.apache.cxf.interceptor.InInterceptors;

import org.jboss.ws.api.annotation.EndpointConfig;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.ServiceIface"

)

@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom

WS-Security Endpoint")

@InInterceptors(interceptors = {

 "org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor",

 "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.POJOEndpointAuthorizationInterceptor"}

)

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "Secure Hello World!";

 }

 public String greetMe()

 {

 return "Greetings!";

 }

}

The is included into the deployment and deals with thePOJOEndpointAuthorizationInterceptor

roles cheks:

WildFly 10

JBoss Community Documentation Page of 398 532

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import java.util.HashMap;

import java.util.Map;

import org.apache.cxf.interceptor.security.SimpleAuthorizingInterceptor;

public class POJOEndpointAuthorizationInterceptor extends SimpleAuthorizingInterceptor

{

 public POJOEndpointAuthorizationInterceptor()

 {

 super();

 readRoles();

 }

 private void readRoles()

 {

 //just an example, this might read from a configuration file or such

 Map<String, String> roles = new HashMap<String, String>();

 roles.put("sayHello", "friend");

 roles.put("greetMe", "snoopies");

 setMethodRolesMap(roles);

 }

}

The descriptor is used to provide a custom endpoint configuration with thejaxws-endpoint-config.xml

required server side configuration properties; in particular for this Username Token case that's just a CXF

configuration option for leaving the username token validation to the configured interceptors:

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

 <endpoint-config>

 <config-name>Custom WS-Security Endpoint</config-name>

 <property>

 <property-name>ws-security.validate.token</property-name>

 <property-value>false</property-value>

 </property>

 </endpoint-config>

</jaxws-config>

In order for requiring a given JBoss security domain to be used to protect access to the endpoint (a POJO

one in this case), we declare that in a descriptor (the security domain is used):jboss-web.xml JBossWS

WildFly 10

JBoss Community Documentation Page of 399 532

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN"

"http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

<jboss-web>

 <security-domain>java:/jaas/JBossWS</security-domain>

</jboss-web

Finally, the is as simple as usual:web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

The endpoint is packaged into a war archive, including the JAXWS classes generated by wsconsume:

WildFly 10

JBoss Community Documentation Page of 400 532

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-username-jaas.war

 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/

 155 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/

 585 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/

 982 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/POJOEndpointAuthorizationInterceptor.class

412 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/ServiceIface.class

 1398 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaas/ServiceImpl.class

 0 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/

 701 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/GreetMe.class

 1065 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/GreetMeResponse.class

 705 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class

 1069 Thu Jun 16 18:50:48 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class

 556 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml

 241 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jboss-web.xml

 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/

 3183 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

 1012 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd

If you're deploying the endpoint archive on WildFly, remember to add a dependency to

 and module (due to the annotation) inorg.apache.ws.security org.apache.cxf @InInterceptor

the MANIFEST.MF file.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security,org.apache.cxf

WildFly 10

JBoss Community Documentation Page of 401 532

Client
Here too you start by consuming the published WSDL contract using the tool. Then you simplywsconsume

invoke the the endpoint as a standard JAX-WS one:

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.USERNAME, "kermit");

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER,

 "org.jboss.test.ws.jaxws.samples.wsse.policy.jaas.UsernamePasswordCallback");

proxy.sayHello();

The class is shown below and is responsible for setting the passwords onUsernamePasswordCallback

client side just before performing the invocations:

package org.jboss.test.ws.jaxws.samples.wsse.policy.jaas;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class UsernamePasswordCallback implements CallbackHandler

{

 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException

 {

 WSPasswordCallback pc = (WSPasswordCallback)callbacks[0];

 if ("kermit".equals(pc.getIdentifier()))

 pc.setPassword("thefrog");

 }

}

If everything has been done properly, you should expect to calls to fail when done with usersayHello()

"snoopy" and pass with user "kermit" (and credential "thefrog"); moreover, you should get an authorization

error when trying to call with user "kermit", as that does not have the "snoopies" role.greetMe()

Secure transport
Another quite common use case is using WS-Security Username Token Profile over a secure transport

(HTTPS). A scenario like this is implemented similarly to what's described in the previous example, except

for few differences explained below.

First of all, here is an excerpt of a wsdl wth a sample security policy for Username Token over HTTPS:

...

WildFly 10

JBoss Community Documentation Page of 402 532

<binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#SecurityServiceBindingPolicy"/>

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

</binding>

<service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address location="https://localhost:8443/jaxws-samples-wsse-policy-username"/>

 </port>

</service>

<wsp:Policy wsu:Id="SecurityServiceBindingPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <foo:unknownPolicy xmlns:foo="http://cxf.apache.org/not/a/policy"/>

 </wsp:All>

 <wsp:All>

 <wsaws:UsingAddressing xmlns:wsaws="http://www.w3.org/2006/05/addressing/wsdl"/>

 <sp:TransportBinding>

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken RequireClientCertificate="false"/>

 </wsp:Policy>

 </sp:TransportToken>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic128/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 </wsp:Policy>

 </sp:TransportBinding>

 <sp:Wss10>

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 </wsp:Policy>

 </sp:Wss10>

 <sp:SignedSupportingTokens>

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

WildFly 10

JBoss Community Documentation Page of 403 532

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

The endpoint then needs of course to be actually available on HTTPS only, so we have a settingweb.xml

the such as below:transport-guarantee

<?xml version="1.0" encoding="UTF-8"?>

<web-app

 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <servlet>

 <servlet-name>TestService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>TestService</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>TestService</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

</web-app>

WildFly 10

JBoss Community Documentation Page of 404 532

Secure conversation
Apache CXF supports specification, which is about improving performance byWS-SecureConversation

allowing client and server to negotiate initial security keys to be used for later communication

encryption/signature. This is done by having two policies in the wsdl contract, an outer one setting the

security requirements to actually communicate with the endpoint and a bootstrap one, related to the

communication for establishing the secure conversation keys. The client will be automatically sending an

initial message to the server for negotiating the keys, then the actual communication to the endpoint takes

place. As a consequence, Apache CXF needs a way to specify which WS-Security configuration properties

are intended for the bootstrap policy and which are intended for the actual service policy. To accomplish this,

properties intended for the bootstrap policy are appended with ..sct

...

((BindingProvider)proxy).getRequestContext().put("ws-security.signature.username.sct", "alice");

((BindingProvider)proxy).getRequestContext().put("ws-security.encryption.username.sct", "bob");

...

@WebService(

 ...

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.encryption.properties.sct", value =

"bob.properties"),

 @EndpointProperty(key = "ws-security.signature.properties.sct", value = "bob.properties"),

 ...

 }

)

public class ServiceImpl implements ServiceIface {

 ...

}

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html

WildFly 10

JBoss Community Documentation Page of 405 532

35.3.13 Trust and STS

WS-Trust overview

Security Token Service

Apache CXF support

A Basic WS-Trust Scenario

Web service provider

Web service provider WSDL

Web service provider Interface

Web service provider Implementation

ServerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Token Service (STS)

STS WSDL

STS Implementation

STSCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Domain

Web service requester

Web service requester Implementation

ClientCallbackHandler

Requester Crypto properties and keystore files

PicketLink STS

WildFly 10

JBoss Community Documentation Page of 406 532

Trust overview
 is a Web service specification that defines extensions to WS-Security. It is a general frameworkWS-Trust

for implementing security in a distributed system. The standard is based on a centralized Security Token

Service, STS, which is capable of authenticating clients and issuing tokens containing various kinds of

authentication and authorization data. The specification describes a protocol used for issuance, exchange,

and validation of security tokens, however the following specifications play an important role in the WS-Trust

architecture: , , , , WS-SecurityPolicy 1.2 SAML 2.0 Username Token Profile X.509 Token Profile SAML Token

, and .Profile Kerberos Token Profile

The WS-Trust extensions address the needs of applications that span multiple domains and requires the

sharing of security keys by providing a standards based trusted third party web service (STS) to broker trust

relationships between a Web service requester and a Web service provider. This architecture also alleviates

the pain of service updates that require credential changes by providing a common location for this

information. The STS is the common access point from which both the requester and provider retrieves and

verifies security tokens.

There are three main components of the WS-Trust specification.

The Security Token Service (STS), a web service that issues, renews, and validates security tokens.

The message formats for security token requests and responses.

The mechanisms for key exchange

Security Token Service
The Security Token Service, STS, is the core of the WS-Trust specification. It is a standards based

mechanism for authentication and authorization. The STS is an implementation of the WS-Trust

specification's protocol for issuing, exchanging, and validating security tokens, based on token format,

namespace, or trust boundaries. The STS is a web service that acts as a trusted third party to broker trust

relationships between a Web service requester and a Web service provider. It is a common access point

trusted by both requester and provider to provide interoperable security tokens. It removes the need for a

direct relationship between the two. Because the STS is a standards based mechanism for authentication, it

helps ensure interoperability across realms and between different platforms.

The STS's WSDL contract defines how other applications and processes interact with it. In particular the

WSDL defines the WS-Trust and WS-Security policies that a requester must fulfill in order to successfully

communicate with the STS's endpoints. A web service requester consumes the STS's WSDL and with the

aid of an STSClient utility, generates a message request compliant with the stated security policies and

submits it to the STS endpoint. The STS validates the request and returns an appropriate response.

https://www.oasis-open.org/standards#wstrustv1.4
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-x509TokenProfile-v1.1.1.html
https://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
https://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

WildFly 10

JBoss Community Documentation Page of 407 532

1.

2.

3.

4.

5.

6.

7.

Apache CXF support
Apache CXF is an open-source, fully featured Web services framework. The JBossWS open source project

integrates the JBoss Web Services (JBossWS) stack with the Apache CXF project modules thus providing

WS-Trust and other JAX-WS functionality in WildFly. This integration makes it easy to deploy CXF STS

implementations, however WildFly can run any WS-Trust compliant STS. In addition the Apache CXF API

provides a STSClient utility to facilitate web service requester communication with its STS.

Detailed information about the Apache CXF's WS-Trust implementation can be found .here

A Basic WS-Trust Scenario
Here is an example of a basic WS-Trust scenario. It is comprised of a Web service requester

(ws-requester), a Web service provider (ws-provider), and a Security Token Service (STS). The

ws-provider requires a SAML 2.0 token issued from a designed STS to be presented by the ws-requester

using asymmetric binding. These communication requirements are declared in the ws-provider's WSDL.

The STS requires ws-requester credentials be provided in a WSS UsernameToken format request using

symmetric binding. The STS's response is provided containing a SAML 2.0 token. These communication

requirements are declared in the STS's WSDL.

A ws-requester contacts the ws-provider and consumes its WSDL. Upon finding the security token

issuer requirement, it creates and configures a STSClient with the information it requires to generate

a proper request.

The STSClient contacts the STS and consumes its WSDL. The security policies are discovered. The

STSClient creates and sends an authentication request, with appropriate credentials.

The STS verifies the credentials.

In response, the STS issues a security token that provides proof that the ws-requester has

authenticated with the STS.

The STClient presents a message with the security token to the ws-provider.

The ws-provider verifies the token was issued by the STS, thus proving the ws-requester has

successfully authenticated with the STS.

The ws-provider executes the requested service and returns the results to the the ws-requester.

Web service provider
This section examines the crucial elements in providing endpoint security in the web service provider

described in the basic WS-Trust scenario. The components that will be discussed are.

web service provider's WSDL

web service provider's Interface and Implementation classes.

ServerCallbackHandler class

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-i.html

WildFly 10

JBoss Community Documentation Page of 408 532

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in the WSDL, SecurityService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0

token issued from a designed STS. The address of the STS is provided in the WSDL. An asymmetric

binding policy is used to encrypt and sign the SOAP body of messages that pass back and forth between

ws-requester and ws-provider. X.509 certificates are use for the asymmetric binding. The rules for sharing

the public and private keys in the SOAP request and response messages are declared. A detailed

explanation of the security settings are provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

name="SecurityService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

schemaLocation="SecurityService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <!--

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="#AsymmetricSAML2Policy" element is defined later in this file.

 -->

 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

WildFly 10

JBoss Community Documentation Page of 409 532

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="SecurityService">

 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust/SecurityService"/>

 </port>

 </service>

 <wsp:Policy wsu:Id="AsymmetricSAML2Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

 <!--

 The sp:AsymmetricBinding element indicates that security is provided

 at the SOAP layer. A public/private key combinations is required to

 protect the message. The initiator will use it’s private key to sign

 the message and the recipient’s public key is used to encrypt the message.

 The recipient of the message will use it’s private key to decrypt it and

 initiator’s public key to verify the signature.

 -->

 <sp:AsymmetricBinding>

 <wsp:Policy>

 <!--

 The sp:InitiatorToken element specifies the elements required in

 generating the initiator request to the ws-provider's service.

 -->

 <sp:InitiatorToken>

 <wsp:Policy>

 <!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token is

 expected from the STS using a public key type. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

 -->

 <sp:IssuedToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey</t:KeyType>

WildFly 10

JBoss Community Documentation Page of 410 532

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

 <!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

 -->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService</wsaws:Address>

<wsaws:Metadata xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService?wsdl">

<wsaw:ServiceName xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:InitiatorToken>

 <!--

 The sp:RecipientToken element asserts the type of public/private key-pair

 expected from the recipient. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 attribute indicates that the initiator's public key will never be included

 in the reply messages.

 The sp:WssX509V3Token10 element indicates that an X509 Version 3 token

 should be used in the message.

 -->

 <sp:RecipientToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:WssX509V3Token10 />

 <sp:RequireIssuerSerialReference />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:RecipientToken>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

WildFly 10

JBoss Community Documentation Page of 411 532

 <sp:IncludeTimestamp />

 <sp:OnlySignEntireHeadersAndBody />

 <!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 </wsp:Policy>

 </sp:AsymmetricBinding>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 <sp:SignedParts>

 <sp:Body />

 <sp:Header Name="To" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="ReplyTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="MessageID" Namespace="http://www.w3.org/2005/08/addressing"

WildFly 10

JBoss Community Documentation Page of 412 532

/>

 <sp:Header Name="RelatesTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="Action" Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_Policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:EncryptedParts>

 <sp:Body />

 </sp:EncryptedParts>

 <sp:SignedParts>

 <sp:Body />

 <sp:Header Name="To" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From" Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="ReplyTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="MessageID" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="RelatesTo" Namespace="http://www.w3.org/2005/08/addressing"

/>

 <sp:Header Name="Action" Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

Web service provider Interface
The web service provider interface class, ServiceIface, is a simple straight forward web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"

)

public interface ServiceIface

{

 @WebMethod

 String sayHello();

}

Web service provider Implementation

WildFly 10

JBoss Community Documentation Page of 413 532

The web service provider implementation class, ServiceImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for encryption/decryption and for signature

creation/verification. As is asserted by the WSDL, X509 keys and certificates are required for this service.

The WSS4J configuration information being provided by ServiceImpl is for Crypto's Merlin implementation.

More information will be provided about this in the keystore section.

The first EndpointProperty statement in the listing is declaring the user's name to use for the message

signature. It is used as the alias name in the keystore to get the user's cert and private key for signature.

The next two EndpointProperty statements declares the Java properties file that contains the (Merlin) crypto

configuration information. In this case both for signing and encrypting the messages. WSS4J reads this file

and extra required information for message handling. The last EndpointProperty statement declares the

ServerCallbackHandler implementation class. It is used to obtain the user's password for the certificates in

the keystore file.

https://ws.apache.org/wss4j/

WildFly 10

JBoss Community Documentation Page of 414 532

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import javax.jws.WebService;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

@WebService

(

 portName = "SecurityServicePort",

 serviceName = "SecurityService",

 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myservicekey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServerCallbackHandler")

})

public class ServiceImpl implements ServiceIface

{

 public String sayHello()

 {

 return "WS-Trust Hello World!";

 }

}

WildFly 10

JBoss Community Documentation Page of 415 532

ServerCallbackHandler
ServerCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. A certificates' password is not discoverable. The creator of the certificate must

record the password he assigns and provide it when requested through the CallbackHandler. In this

scenario skpass is the password for user myservicekey.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class ServerCallbackHandler extends PasswordCallbackHandler

{

 public ServerCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myservicekey", "skpass");

 return passwords;

 }

}

Crypto properties and keystore files
WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

WildFly 10

JBoss Community Documentation Page of 416 532

MANIFEST.MF
When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Security Token Service (STS)
This section examines the crucial elements in providing the Security Token Service functionality described in

the basic WS-Trust scenario. The components that will be discussed are.

STS's WSDL

STS's implementation class.

STSCallbackHandler class

Crypto properties and keystore files

MANIFEST.MF

Server configuration files

STS WSDL
The STS is a contract-first endpoint. All the WS-trust and security policies for it are declared in the WSDL,

ws-trust-1.4-service.wsdl. A symmetric binding policy is used to encrypt and sign the SOAP body of

messages that pass back and forth between ws-requester and the STS. The ws-requester is required to

authenticate itself by providing WSS UsernameToken credentials. The rules for sharing the public and

private keys in the SOAP request and response messages are declared. A detailed explanation of the

security settings are provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

WildFly 10

JBoss Community Documentation Page of 417 532

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType' />

 <xs:element name='RequestSecurityTokenResponse'

type='wst:AbstractRequestSecurityTokenType' />

 <xs:complexType name='AbstractRequestSecurityTokenType' >

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0' maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional' />

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

type='wst:RequestSecurityTokenCollectionType' />

 <xs:complexType name='RequestSecurityTokenCollectionType' >

 <xs:sequence>

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType'

minOccurs='2' maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

type='wst:RequestSecurityTokenResponseCollectionType' />

 <xs:complexType name='RequestSecurityTokenResponseCollectionType' >

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1' maxOccurs='unbounded'

/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

WildFly 10

JBoss Community Documentation Page of 418 532

 <!-- This portType is an example of an STS supporting full protocol -->

<!--

 The wsdl:portType and data types are XML elements defined by the

 WS_Trust specification. The wsdl:portType defines the endpoints

 supported in the STS implementation. This WSDL defines all operations

 that an STS implementation can support.

-->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

WildFly 10

JBoss Community Documentation Page of 419 532

<!--

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="UT_policy" element is later in this file.

-->

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy" />

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue" />

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy" />

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy" />

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate" />

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy" />

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy" />

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

WildFly 10

JBoss Community Documentation Page of 420 532

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"

/>

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT" />

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

<!--

 The sp:UsingAddressing element, indicates that the endpoints of this

 web service conforms to the WS-Addressing specification. More detail

 can be found here: [http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529]

-->

 <wsap10:UsingAddressing/>

<!--

 The sp:SymmetricBinding element indicates that security is provided

 at the SOAP layer and any initiator must authenticate itself by providing

 WSS UsernameToken credentials.

-->

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 In a symmetric binding, the keys used for encrypting and signing in both

 directions are derived from a single key, the one specified by the

 sp:ProtectionToken element. The sp:X509Token sub-element declares this

 key to be a X.509 certificate and the

 IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never"

 attribute adds the requirement that the token MUST NOT be included in

 any messages sent between the initiator and the recipient; rather, an

 external reference to the token should be used. Lastly the WssX509V3Token10

 sub-element declares that the Username token presented by the initiator

 should be compliant with Web Services Security UsernameToken Profile

 1.0 specification. [

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf]

WildFly 10

JBoss Community Documentation Page of 421 532

-->

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys />

 <sp:RequireThumbprintReference />

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

<!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptSignature />

 <sp:OnlySignEntireHeadersAndBody />

 </wsp:Policy>

 </sp:SymmetricBinding>

<!--

 The sp:SignedSupportingTokens element declares that the security header

 of messages must contain a sp:UsernameToken and the token must be signed.

 The attribute

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient"

on sp:UsernameToken indicates that the token MUST be included in all

 messages sent from initiator to the recipient and that the token MUST

 NOT be included in messages sent from the recipient to the initiator.

 And finally the element sp:WssUsernameToken10 is a policy assertion

 indicating the Username token should be as defined in Web Services

 Security UsernameToken Profile 1.0

-->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

WildFly 10

JBoss Community Documentation Page of 422 532

 <sp:WssUsernameToken10 />

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier />

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

WildFly 10

JBoss Community Documentation Page of 423 532

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS Implementation
The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html

WildFly 10

JBoss Community Documentation Page of 424 532

This STS implementation class, SimpleSTS, is a POJO that extends from SecurityTokenServiceProvider.

Note that the class is defined with a WebServiceProvider annotation and not a WebService annotation. This

annotation defines the service as a Provider-based endpoint, meaning it supports a more

messaging-oriented approach to Web services. In particular, it signals that the exchanged messages will be

XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the ServiceImpl class, the WSS4J annotations EndpointProperties and EndpointProperty are

providing endpoint configuration for the CXF runtime. This was previous described .here

The InInterceptors annotation is used to specify a JBossWS integration interceptor to be used for

authenticating incoming requests; JAAS integration is used here for authentication, the username/passoword

coming from the UsernameToken in the ws-requester message are used for authenticating the requester

against a security domain on the application server hosting the STS deployment.

In this implementation we are customizing the operations of token issuance, token validation and their static

properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation and TokenValidateOperation have a modular structure. This allows custom behaviors

to be injected into the processing of messages. In this case we are overriding the

SecurityTokenServiceProvider's default behavior and performing SAML token processing and validation.

CXF provides an implementation of a SAMLTokenProvider and SAMLTokenValidator which we are using

rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.apache.cxf.sts.StaticSTSProperties;

http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

WildFly 10

JBoss Community Documentation Page of 425 532

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.operation.TokenValidateOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.sts.token.validator.SAMLTokenValidator;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/ws-trust-1.4-service.wsdl")

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.STSCallbackHandler"),

 //to let the JAAS integration deal with validation through the interceptor below

 @EndpointProperty(key = "ws-security.validate.token", value = "false")

})

@InInterceptors(interceptors =

{"org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"})

public class SampleSTS extends SecurityTokenServiceProvider

{

 public SampleSTS() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignaturePropertiesFile("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSCallbackHandler.class.getName());

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.setServices(services);

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setStsProperties(props);

 TokenValidateOperation validateOperation = new TokenValidateOperation();

 validateOperation.getTokenValidators().add(new SAMLTokenValidator());

 validateOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 this.setValidateOperation(validateOperation);

 }

WildFly 10

JBoss Community Documentation Page of 426 532

}

STSCallbackHandler
STSCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class STSCallbackHandler extends PasswordCallbackHandler

{

 public STSCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 return passwords;

 }

}

Crypto properties and keystore files
WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.wss4j.common.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

WildFly 10

JBoss Community Documentation Page of 427 532

MANIFEST.MF
When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the constructor. TheSampleSTS

dependency statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Security Domain
The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties file for use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

WildFly 10

JBoss Community Documentation Page of 428 532

A sample roles.properties file for use with the UsersRolesLoginModule

alice=friend

WS-MetadataExchange and interoperability

To achieve better interoperability, you might consider allowing the STS endpoint to reply to

WS-MetadataExchange messages directed to the URL sub-path (e.g. /mex

). This can behttp://localhost:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService/mex

done by tweaking the for the underlying endpoint servlet, for instance by adding a url-pattern

 descriptor as follows to the deployment:<?xml version="1.0" encoding="UTF-8"?>web.xml

<web-app

version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

">http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

<servlet>

<servlet-name>TestSecurityTokenService</servlet-name>

<servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.trust.SampleSTS</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>TestSecurityTokenService</servlet-name>

<url-pattern>/SecurityTokenService/*</url-pattern>

</servlet-mapping>

</web-app>

As a matter of fact, at the time of writing some webservices implementations (including)Metro

assume the URL as the default choice for directing WS-MetadataExchange requests to and/mex

use that to retrieve STS wsdl contracts.

Web service requester
This section examines the crucial elements in calling a web service that implements endpoint security as

described in the basic WS-Trust scenario. The components that will be discussed are.

web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

Web service requester Implementation

http://localhost:8080/jaxws-samples-wsse-policy-trust-sts/SecurityTokenService/mex
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

WildFly 10

JBoss Community Documentation Page of 429 532

The ws-requester, the client, uses standard procedures for creating a reference to the web service in the first

four line. To address the endpoint security requirements, the web service's "Request Context" is configured

with the information needed in message generation. In addition, the STSClient that communicates with the

STS is configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these

settings as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that

is auto-generated for this service call.

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. This is used in the ActAs and

OnBehalfOf examples. When providing the STSClient in this way, the user must provide a

org.apache.cxf.Bus for it and the configuration keys must not have the ".it" suffix.

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",

"SecurityService");

URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ServiceIface proxy = (ServiceIface) service.getPort(ServiceIface.class);

// set the security related configuration information for the service "request"

Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

//-- Configuration settings that will be transfered to the STSClient

// "alice" is the name provided for the WSS Username. Her password will

// be retreived from the ClientCallbackHander by the STSClient.

ctx.put(SecurityConstants.USERNAME + ".it", "alice");

ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

// alias name in the keystore to get the user's public key to send to the STS

ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

// Crypto property configuration to use for the STS

ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

// write out an X509Certificate structure in UseKey/KeyInfo

ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

// Setting indicates the STSclient should not try using the WS-MetadataExchange

// call using STS EPR WSA address when the endpoint contract does not contain

// WS-MetadataExchange info.

ctx.put("ws-security.sts.disable-wsmex-call-using-epr-address", "true");

proxy.sayHello();

WildFly 10

JBoss Community Documentation Page of 430 532

ClientCallbackHandler
ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 }

 }

 }

 }

}

Requester Crypto properties and keystore files
WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

WildFly 10

JBoss Community Documentation Page of 431 532

PicketLink STS
 provides facilities for building up an alternative to the Apache CXF Security Token ServicePicketLink

implementation.

Similarly to the previous implementation, the STS is served through a WebServiceProvider annotated POJO:

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust;

import javax.annotation.Resource;

import javax.xml.ws.Service;

import javax.xml.ws.ServiceMode;

import javax.xml.ws.WebServiceContext;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.picketlink.identity.federation.core.wstrust.PicketLinkSTS;

@WebServiceProvider(serviceName = "PicketLinkSTS", portName = "PicketLinkSTSPort",

targetNamespace = "urn:picketlink:identity-federation:sts", wsdlLocation =

"WEB-INF/wsdl/PicketLinkSTS.wsdl")

@ServiceMode(value = Service.Mode.MESSAGE)

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

@EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

@EndpointProperty(key = "ws-security.signature.properties", value = "stsKeystore.properties"),

@EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.STSCallbackHandler"),

@EndpointProperty(key = "ws-security.validate.token", value = "false") //to let the JAAS

integration deal with validation through the interceptor below

})

@InInterceptors(interceptors =

)

public class PicketLinkSTService extends PicketLinkSTS {

@Resource

public void setWSC(WebServiceContext wctx)

Unknown macro: { this.context = wctx; }

}

The annotation references the following WS-Policy enabled wsdl contract; please@WebServiceProvider

note the wsdl operations, messages and such must match the implementation:PicketLinkSTS

<?xml version="1.0"?>

<wsdl:definitions name="PicketLinkSTS" targetNamespace="urn:picketlink:identity-federation:sts"

 xmlns:tns="urn:picketlink:identity-federation:sts"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

http://www.jboss.org/picketlink

WildFly 10

JBoss Community Documentation Page of 432 532

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType' />

 <xs:element name='RequestSecurityTokenResponse'

type='wst:AbstractRequestSecurityTokenType' />

 <xs:complexType name='AbstractRequestSecurityTokenType' >

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0' maxOccurs='unbounded' />

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional' />

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

type='wst:RequestSecurityTokenCollectionType' />

 <xs:complexType name='RequestSecurityTokenCollectionType' >

 <xs:sequence>

 <xs:element name='RequestSecurityToken' type='wst:AbstractRequestSecurityTokenType'

minOccurs='2' maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

type='wst:RequestSecurityTokenResponseCollectionType' />

 <xs:complexType name='RequestSecurityTokenResponseCollectionType' >

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1' maxOccurs='unbounded'

/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax' />

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken" />

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <wsdl:portType name="SecureTokenService">

 <wsdl:operation name="IssueToken">

 <wsdl:input wsap10:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

wsap10:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="STSBinding" type="tns:SecureTokenService">

 <wsp:PolicyReference URI="#UT_policy" />

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

WildFly 10

JBoss Community Documentation Page of 433 532

 <wsdl:operation name="IssueToken">

 <soap12:operation soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

style="document"/>

 <wsdl:input>

 <wsp:PolicyReference URI="#Input_policy" />

 <soap12:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference URI="#Output_policy" />

 <soap12:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="PicketLinkSTS">

 <wsdl:port name="PicketLinkSTSPort" binding="tns:STSBinding">

 <soap12:address location="http://localhost:8080/picketlink-sts/PicketLinkSTS"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsap10:UsingAddressing/>

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys />

 <sp:RequireThumbprintReference />

 <sp:WssX509V3Token10 />

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256 />

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 <sp:EncryptSignature />

 <sp:OnlySignEntireHeadersAndBody />

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

WildFly 10

JBoss Community Documentation Page of 434 532

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10 />

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier />

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

WildFly 10

JBoss Community Documentation Page of 435 532

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing" />

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing" />

 </sp:SignedParts>

 <sp:EncryptedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body />

 </sp:EncryptedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

Differently from the Apache CXF STS example described above, the PicketLink based STS gets its

configuration from a picketlink-sts.xml descriptor which must be added in WEB-INF into the deployment;

please refer to the PicketLink documentation for further information:

WildFly 10

JBoss Community Documentation Page of 436 532

<PicketLinkSTS xmlns="urn:picketlink:identity-federation:config:1.0"

 STSName="PicketLinkSTS" TokenTimeout="7200" EncryptToken="false">

 <KeyProvider ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager">

 <Auth Key="KeyStoreURL" Value="stsstore.jks"/>

 <Auth Key="KeyStorePass" Value="stsspass"/>

 <Auth Key="SigningKeyAlias" Value="mystskey"/>

 <Auth Key="SigningKeyPass" Value="stskpass"/>

 <ValidatingAlias

Key="http://localhost:8080/jaxws-samples-wsse-policy-trust/SecurityService"

Value="myservicekey"/>

 </KeyProvider>

 <TokenProviders>

 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.wstrust.plugins.saml.SAML11TokenProvider"

TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1"

 TokenElement="Assertion"

 TokenElementNS="urn:oasis:names:tc:SAML:1.0:assertion"/>

 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.wstrust.plugins.saml.SAML20TokenProvider"

TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"

 TokenElement="Assertion"

 TokenElementNS="urn:oasis:names:tc:SAML:2.0:assertion"/>

 </TokenProviders>

</PicketLinkSTS>

Finally, the PicketLink alternative approach of course requires different WildFly module dependencies to be

declared in the MANIFEST.MF:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.6.0_26-b03 (Sun Microsystems Inc.)

Dependencies: org.apache.ws.security,org.apache.cxf,org.picketlink

Here is how the PicketLink STS endpoint is packaged:

WildFly 10

JBoss Community Documentation Page of 437 532

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-samples-wsse-policy-trustPicketLink-sts.war

 0 Mon Sep 03 17:38:38 CEST 2012 META-INF/

 174 Mon Sep 03 17:38:36 CEST 2012 META-INF/MANIFEST.MF

 0 Mon Sep 03 17:38:38 CEST 2012 WEB-INF/

 0 Mon Sep 03 17:38:38 CEST 2012 WEB-INF/classes/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/

 0 Mon Sep 03 16:35:52 CEST 2012 WEB-INF/classes/org/jboss/test/ws/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Mon Sep 03 16:35:52 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/

 0 Mon Sep 03 16:35:50 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/

 0 Mon Sep 03 16:35:52 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/

 1686 Mon Sep 03 16:35:50 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/PicketLinkSTService.class

 1148 Mon Sep 03 16:35:52 CEST 2012

WEB-INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/trust/STSCallbackHandler.class

 251 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/jboss-web.xml

 0 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/wsdl/

 9070 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/wsdl/PicketLinkSTS.wsdl

 1267 Mon Sep 03 17:38:34 CEST 2012 WEB-INF/classes/picketlink-sts.xml

 1054 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/stsKeystore.properties

 3978 Mon Sep 03 16:35:50 CEST 2012 WEB-INF/classes/stsstore.jks

ActAs WS-Trust Scenario

ActAs WS-Trust Scenario

Web service provider

Web service provider WSDL

Web Service Interface

Web Service Implementation

ActAsCallbackHandler

UsernameTokenCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Security Token Service

STS Implementation class

STSCallbackHandler

Web service requester

Web service requester Implementation

WildFly 10

JBoss Community Documentation Page of 438 532

ActAs WS-Trust Scenario
The ActAs feature is used in scenarios that require composite delegation. It is commonly used in multi-tiered

systems where an application calls a service on behalf of a logged in user or a service calls another service

on behalf of the original caller.

ActAs is nothing more than a new sub-element in the RequestSecurityToken (RST). It provides additional

information about the original caller when a token is negotiated with the STS. The ActAs element usually

takes the form of a token with identity claims such as name, role, and authorization code, for the client to

access the service.

The ActAs scenario is an extension of . In this example the ActAs service callsthe basic WS-Trust scenario

the ws-service on behalf of a user. There are only a couple of additions to the basic scenario's code. An

ActAs web service provider and callback handler have been added. The ActAs web services' WSDL

imposes the same security policies as the ws-provider. UsernameTokenCallbackHandler is new. It is a utility

that generates the content for the ActAs element. And lastly there are a couple of code additions in the STS

to support the ActAs request.

Web service provider
This section examines the web service elements from the basic WS-Trust scenario that have been changed

to address the needs of the ActAs example. The components are

ActAs web service provider's WSDL

ActAs web service provider's Interface and Implementation classes.

ActAsCallbackHandler class

UsernameTokenCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

The ActAs web service provider's WSDL is a clone of the ws-provider's WSDL. The wsp:Policy section is

the same. There are changes to the service endpoint, targetNamespace, portType, binding name, and

service.

WildFly 10

JBoss Community Documentation Page of 439 532

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

name="ActAsService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

 schemaLocation="ActAsService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="ActAsServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="ActAsServicePortBinding" type="tns:ActAsServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="ActAsService">

 <port name="ActAsServicePort" binding="tns:ActAsServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-actas/ActAsService"/>

 </port>

 </service>

</definitions>

WildFly 10

JBoss Community Documentation Page of 440 532

Web Service Interface

The web service provider interface class, ActAsServiceIface, is a simple web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy"

)

public interface ActAsServiceIface

{

 @WebMethod

 String sayHello();

}

Web Service Implementation

The web service provider implementation class, ActAsServiceImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint and two Apache WSS4J annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. The

WSS4J configuration information provided is for WSS4J's Crypto Merlin implementation.

ActAsServiceImpl is calling ServiceImpl acting on behalf of the user. Method setupService performs the

requisite configuration setup.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.STSClient;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared.WSTrustAppUtils;

import javax.jws.WebService;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.Service;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.Map;

@WebService

(

 portName = "ActAsServicePort",

 serviceName = "ActAsService",

 wsdlLocation = "WEB-INF/wsdl/ActAsService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy",

WildFly 10

JBoss Community Documentation Page of 441 532

 endpointInterface =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas.ActAsServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myactaskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas.ActAsCallbackHandler")

})

public class ActAsServiceImpl implements ActAsServiceIface

{

 public String sayHello() {

 try {

 ServiceIface proxy = setupService();

 return "ActAs " + proxy.sayHello();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return null;

 }

 private ServiceIface setupService()throws MalformedURLException {

 ServiceIface proxy = null;

 Bus bus = BusFactory.newInstance().createBus();

 try {

 BusFactory.setThreadDefaultBus(bus);

 final String serviceURL = "http://" + WSTrustAppUtils.getServerHost() +

":8080/jaxws-samples-wsse-policy-trust/SecurityService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy", "SecurityService");

 final URL wsdlURL = new URL(serviceURL + "?wsdl");

 Service service = Service.create(wsdlURL, serviceName);

 proxy = (ServiceIface) service.getPort(ServiceIface.class);

 Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ActAsCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("actasKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("../../META-INF/clientKeystore.properties"

));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "alice");

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

WildFly 10

JBoss Community Documentation Page of 442 532

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myactaskey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

Thread.currentThread().getContextClassLoader().getResource("actasKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

 } finally {

 bus.shutdown(true);

 }

 return proxy;

 }

}

ActAsCallbackHandler

ActAsCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. This class has been revised to return the passwords for this service, myactaskey

and the "actas" user, alice.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.actas;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class ActAsCallbackHandler extends PasswordCallbackHandler {

 public ActAsCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myactaskey", "aspass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

UsernameTokenCallbackHandler

The ActAs and OnBeholdOf sub-elements of the RequestSecurityToken are required to be defined as WSSE

Username Tokens. This utility generates the properly formated element.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import org.apache.cxf.helpers.DOMUtils;

WildFly 10

JBoss Community Documentation Page of 443 532

import org.apache.cxf.message.Message;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.delegation.DelegationCallback;

import org.apache.ws.security.WSConstants;

import org.apache.ws.security.message.token.UsernameToken;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.Element;

import org.w3c.dom.ls.DOMImplementationLS;

import org.w3c.dom.ls.LSSerializer;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import java.io.IOException;

import java.util.Map;

/**

* A utility to provide the 3 different input parameter types for jaxws property

* "ws-security.sts.token.act-as" and "ws-security.sts.token.on-behalf-of".

* This implementation obtains a username and password via the jaxws property

* "ws-security.username" and "ws-security.password" respectively, as defined

* in SecurityConstants. It creates a wss UsernameToken to be used as the

* delegation token.

*/

public class UsernameTokenCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks)

 throws IOException, UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof DelegationCallback) {

 DelegationCallback callback = (DelegationCallback) callbacks[i];

 Message message = callback.getCurrentMessage();

 String username =

 (String)message.getContextualProperty(SecurityConstants.USERNAME);

 String password =

 (String)message.getContextualProperty(SecurityConstants.PASSWORD);

 if (username != null) {

 Node contentNode = message.getContent(Node.class);

 Document doc = null;

 if (contentNode != null) {

 doc = contentNode.getOwnerDocument();

 } else {

 doc = DOMUtils.createDocument();

 }

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 callback.setToken(usernameToken.getElement());

 }

 } else {

 throw new UnsupportedCallbackException(callbacks[i], "Unrecognized Callback");

 }

 }

 }

 /**

 * Provide UsernameToken as a string.

WildFly 10

JBoss Community Documentation Page of 444 532

 * @param ctx

 * @return

 */

 public String getUsernameTokenString(Map<String, Object> ctx){

 Document doc = DOMUtils.createDocument();

 String result = null;

 String username = (String)ctx.get(SecurityConstants.USERNAME);

 String password = (String)ctx.get(SecurityConstants.PASSWORD);

 if (username != null) {

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 result = toString(usernameToken.getElement().getFirstChild().getParentNode());

 }

 return result;

 }

 /**

 *

 * @param username

 * @param password

 * @return

 */

 public String getUsernameTokenString(String username, String password){

 Document doc = DOMUtils.createDocument();

 String result = null;

 if (username != null) {

 UsernameToken usernameToken = createWSSEUsernameToken(username,password, doc);

 result = toString(usernameToken.getElement().getFirstChild().getParentNode());

 }

 return result;

 }

 /**

 * Provide UsernameToken as a DOM Element.

 * @param ctx

 * @return

 */

 public Element getUsernameTokenElement(Map<String, Object> ctx){

 Document doc = DOMUtils.createDocument();

 Element result = null;

 UsernameToken usernameToken = null;

 String username = (String)ctx.get(SecurityConstants.USERNAME);

 String password = (String)ctx.get(SecurityConstants.PASSWORD);

 if (username != null) {

 usernameToken = createWSSEUsernameToken(username,password, doc);

 result = usernameToken.getElement();

 }

 return result;

 }

 /**

 *

 * @param username

 * @param password

 * @return

 */

 public Element getUsernameTokenElement(String username, String password){

 Document doc = DOMUtils.createDocument();

 Element result = null;

WildFly 10

JBoss Community Documentation Page of 445 532

 UsernameToken usernameToken = null;

 if (username != null) {

 usernameToken = createWSSEUsernameToken(username,password, doc);

 result = usernameToken.getElement();

 }

 return result;

 }

 private UsernameToken createWSSEUsernameToken(String username, String password, Document doc)

{

 UsernameToken usernameToken = new UsernameToken(true, doc,

 (password == null)? null: WSConstants.PASSWORD_TEXT);

 usernameToken.setName(username);

 usernameToken.addWSUNamespace();

 usernameToken.addWSSENamespace();

 usernameToken.setID("id-" + username);

 if (password != null){

 usernameToken.setPassword(password);

 }

 return usernameToken;

 }

 private String toString(Node node) {

 String str = null;

 if (node != null) {

 DOMImplementationLS lsImpl = (DOMImplementationLS)

 node.getOwnerDocument().getImplementation().getFeature("LS", "3.0");

 LSSerializer serializer = lsImpl.createLSSerializer();

 serializer.getDomConfig().setParameter("xml-declaration", false); //by default its

true, so set it to false to get String without xml-declaration

 str = serializer.writeToString(node);

 }

 return str;

 }

}

Crypto properties and keystore files

The ActAs service must provide its own credentials. The requisite properties file, actasKeystore.properties,

and keystore, actasstore.jks, were created.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=aapass

org.apache.ws.security.crypto.merlin.keystore.alias=myactaskey

org.apache.ws.security.crypto.merlin.keystore.file=actasstore.jks

WildFly 10

JBoss Community Documentation Page of 446 532

MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed in handling the ActAs and OnBehalfOf extensions. The dependency

statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client, org.apache.cxf.impl

Security Token Service
This section examines the STS elements from the basic WS-Trust scenario that have been changed to

address the needs of the ActAs example. The components are.

STS's implementation class.

STSCallbackHandler class

STS Implementation class

The initial description of SampleSTS can be found .here

The declaration of the set of allowed token recipients by address has been extended to accept ActAs

addresses and OnBehalfOf addresses. The addresses are specified as reg-ex patterns.

The TokenIssueOperation requires class, UsernameTokenValidator be provided in order to validate the

contents of the OnBehalfOf claims and class, UsernameTokenDelegationHandler to be provided in order to

process the token delegation request of the ActAs on OnBehalfOf user.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

import javax.xml.ws.WebServiceProvider;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.interceptor.InInterceptors;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.operation.TokenValidateOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.delegation.UsernameTokenDelegationHandler;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.sts.token.validator.SAMLTokenValidator;

import org.apache.cxf.sts.token.validator.UsernameTokenValidator;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

WildFly 10

JBoss Community Documentation Page of 447 532

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts.STSCallbackHandler"),

 @EndpointProperty(key = "ws-security.validate.token", value = "false") //to let the JAAS

integration deal with validation through the interceptor below

})

@InInterceptors(interceptors =

{"org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"})

public class SampleSTS extends SecurityTokenServiceProvider

{

 public SampleSTS() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSCallbackHandler.class.getName());

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust/SecurityService",

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-actas/ActAsService",

 "http://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService",

 "http://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService",

"http://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.setServices(services);

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 // required for OnBehalfOf

 issueOperation.getTokenValidators().add(new UsernameTokenValidator());

 // added for OnBehalfOf and ActAs

 issueOperation.getDelegationHandlers().add(new UsernameTokenDelegationHandler());

 issueOperation.setStsProperties(props);

 TokenValidateOperation validateOperation = new TokenValidateOperation();

WildFly 10

JBoss Community Documentation Page of 448 532

 validateOperation.getTokenValidators().add(new SAMLTokenValidator());

 validateOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 this.setValidateOperation(validateOperation);

 }

}

STSCallbackHandler

The user, alice, and corresponding password was required to be added for the ActAs example.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.sts;

import java.util.HashMap;

import java.util.Map;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

public class STSCallbackHandler extends PasswordCallbackHandler

{

 public STSCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Web service requester
This section examines the ws-requester elements from the basic WS-Trust scenario that have been changed

to address the needs of the ActAs example. The component is

ActAs web service requester implementation class

Web service requester Implementation

The ActAs ws-requester, the client, uses standard procedures for creating a reference to the web service in

the first four lines. To address the endpoint security requirements, the web service's "Request Context" is

configured via the BindingProvider. Information needed in the message generation is provided through it.

The ActAs user, myactaskey, is declared in this section and UsernameTokenCallbackHandler is used to

provide the contents of the ActAs element to the STSClient. In this example a STSClient object is created

and provided to the proxy's request context. The alternative is to provide keys tagged with the ".it" suffix as

was done in . The use of ActAs is configured through the props map using thethe Basic Scenario client

SecurityConstants.STS_TOKEN_ACT_AS key. The alternative is to use the STSClient.setActAs method.

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-WebservicerequesterImplementation

WildFly 10

JBoss Community Documentation Page of 449 532

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/actaswssecuritypolicy", "ActAsService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

ActAsServiceIface proxy = (ActAsServiceIface) service.getPort(ActAsServiceIface.class);

Bus bus = BusFactory.newInstance().createBus();

try {

 BusFactory.setThreadDefaultBus(bus);

 Map<String, Object> ctx = proxy.getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 // Generate the ActAs element contents and pass to the STSClient as a string

 UsernameTokenCallbackHandler ch = new UsernameTokenCallbackHandler();

 String str = ch.getUsernameTokenString("alice","clarinet");

 ctx.put(SecurityConstants.STS_TOKEN_ACT_AS, str);

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "bob");

 props.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 props.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myclientkey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

} finally {

 bus.shutdown(true);

}

proxy.sayHello();

WildFly 10

JBoss Community Documentation Page of 450 532

OnBehalfOf WS-Trust Scenario

OnBehalfOf WS-Trust Scenario

Web service provider

Web service provider WSDL

Web Service Interface

Web Service Implementation

OnBehalfOfCallbackHandler

Web service requester

Web service requester Implementation

OnBehalfOf WS-Trust Scenario
The OnBehalfOf feature is used in scenarios that use the proxy pattern. In such scenarios, the client cannot

access the STS directly, instead it communicates through a proxy gateway. The proxy gateway

authenticates the caller and puts information about the caller into the OnBehalfOf element of the

RequestSecurityToken (RST) sent to the real STS for processing. The resulting token contains only claims

related to the client of the proxy, making the proxy completely transparent to the receiver of the issued token.

OnBehalfOf is nothing more than a new sub-element in the RST. It provides additional information about the

original caller when a token is negotiated with the STS. The OnBehalfOf element usually takes the form of a

token with identity claims such as name, role, and authorization code, for the client to access the service.

The OnBehalfOf scenario is an extension of . In this example the OnBehalfOfthe basic WS-Trust scenario

service calls the ws-service on behalf of a user. There are only a couple of additions to the basic scenario's

code. An OnBehalfOf web service provider and callback handler have been added. The OnBehalfOf web

services' WSDL imposes the same security policies as the ws-provider. UsernameTokenCallbackHandler is

a utility shared with ActAs. It generates the content for the OnBehalfOf element. And lastly there are code

additions in the STS that both OnBehalfOf and ActAs share in common.

Infor here []Open Source Security: Apache CXF 2.5.1 STS updates

Web service provider
This section examines the web service elements from the basic WS-Trust scenario that have been changed

to address the needs of the OnBehalfOf example. The components are.

web service provider's WSDL

web service provider's Interface and Implementation classes.

OnBehalfOfCallbackHandler class

Web service provider WSDL

The OnBehalfOf web service provider's WSDL is a clone of the ws-provider's WSDL. The wsp:Policy

section is the same. There are changes to the service endpoint, targetNamespace, portType, binding

name, and service.

http://coheigea.blogspot.it/2012/01/apache-cxf-251-sts-updates.html

WildFly 10

JBoss Community Documentation Page of 451 532

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

name="OnBehalfOfService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

 schemaLocation="OnBehalfOfService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="OnBehalfOfServiceIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

 <binding name="OnBehalfOfServicePortBinding" type="tns:OnBehalfOfServiceIface">

 <wsp:PolicyReference URI="#AsymmetricSAML2Policy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Input_Policy" />

 </input>

 <output>

 <soap:body use="literal"/>

 <wsp:PolicyReference URI="#Output_Policy" />

 </output>

 </operation>

 </binding>

 <service name="OnBehalfOfService">

 <port name="OnBehalfOfServicePort" binding="tns:OnBehalfOfServicePortBinding">

 <soap:address

location="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-onbehalfof/OnBehalfOfService"/>

</port>

 </service>

</definitions>

WildFly 10

JBoss Community Documentation Page of 452 532

Web Service Interface

The web service provider interface class, OnBehalfOfServiceIface, is a simple web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy"

)

public interface OnBehalfOfServiceIface

{

 @WebMethod

 String sayHello();

}

Web Service Implementation

The web service provider implementation class, OnBehalfOfServiceImpl, is a simple POJO. It uses the

standard WebService annotation to define the service endpoint and two Apache WSS4J annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. The

WSS4J configuration information provided is for WSS4J's Crypto Merlin implementation.

OnBehalfOfServiceImpl is calling the ServiceImpl acting on behalf of the user. Method setupService

performs the requisite configuration setup.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.ws.security.SecurityConstants;

import org.apache.cxf.ws.security.trust.STSClient;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.service.ServiceIface;

import org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared.WSTrustAppUtils;

import javax.jws.WebService;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.Service;

import java.net.*;

import java.util.Map;

@WebService

(

 portName = "OnBehalfOfServicePort",

 serviceName = "OnBehalfOfService",

 wsdlLocation = "WEB-INF/wsdl/OnBehalfOfService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy",

 endpointInterface =

WildFly 10

JBoss Community Documentation Page of 453 532

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof.OnBehalfOfServiceIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "myactaskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.encryption.properties", value =

"actasKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof.OnBehalfOfCallbackHandler")

})

public class OnBehalfOfServiceImpl implements OnBehalfOfServiceIface

{

 public String sayHello() {

 try {

 ServiceIface proxy = setupService();

 return "OnBehalfOf " + proxy.sayHello();

 } catch (MalformedURLException e) {

 e.printStackTrace();

 }

 return null;

 }

 /**

 *

 * @return

 * @throws MalformedURLException

 */

 private ServiceIface setupService()throws MalformedURLException {

 ServiceIface proxy = null;

 Bus bus = BusFactory.newInstance().createBus();

 try {

 BusFactory.setThreadDefaultBus(bus);

 final String serviceURL = "http://" + WSTrustAppUtils.getServerHost() +

":8080/jaxws-samples-wsse-policy-trust/SecurityService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy", "SecurityService");

 final URL wsdlURL = new URL(serviceURL + "?wsdl");

 Service service = Service.create(wsdlURL, serviceName);

 proxy = (ServiceIface) service.getPort(ServiceIface.class);

 Map<String, Object> ctx = ((BindingProvider) proxy).getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new OnBehalfOfCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "actasKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "../../META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

WildFly 10

JBoss Community Documentation Page of 454 532

 STSClient stsClient = new STSClient(bus);

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.USERNAME, "bob");

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myactaskey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "actasKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

 } finally {

 bus.shutdown(true);

 }

 return proxy;

 }

}

WildFly 10

JBoss Community Documentation Page of 455 532

OnBehalfOfCallbackHandler

OnBehalfOfCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature. This class has been revised to return the passwords for this

service, myactaskey and the "OnBehalfOf" user, alice.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.onbehalfof;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class OnBehalfOfCallbackHandler extends PasswordCallbackHandler {

 public OnBehalfOfCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("myactaskey", "aspass");

 passwords.put("alice", "clarinet");

 passwords.put("bob", "trombone");

 return passwords;

 }

}

Web service requester
This section examines the ws-requester elements from the basic WS-Trust scenario that have been changed

to address the needs of the OnBehalfOf example. The component is

OnBehalfOf web service requester implementation class

Web service requester Implementation

The OnBehalfOf ws-requester, the client, uses standard procedures for creating a reference to the web

service in the first four lines. To address the endpoint security requirements, the web service's "Request

Context" is configured via the BindingProvider. Information needed in the message generation is provided

through it. The OnBehalfOf user, alice, is declared in this section and the callbackHandler,

UsernameTokenCallbackHandler is provided to the STSClient for generation of the contents for the

OnBehalfOf message element. In this example a STSClient object is created and provided to the proxy's

request context. The alternative is to provide keys tagged with the ".it" suffix as was done in the Basic

. The use of OnBehalfOf is configured by the method call stsClient.setOnBehalfOf. TheScenario client

alternative is to use the key SecurityConstants.STS_TOKEN_ON_BEHALF_OF and a value in the props

map.

WildFly 10

JBoss Community Documentation Page of 456 532

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/onbehalfofwssecuritypolicy",

"OnBehalfOfService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

OnBehalfOfServiceIface proxy = (OnBehalfOfServiceIface)

service.getPort(OnBehalfOfServiceIface.class);

Bus bus = BusFactory.newInstance().createBus();

try {

 BusFactory.setThreadDefaultBus(bus);

 Map<String, Object> ctx = proxy.getRequestContext();

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myactaskey");

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 // user and password OnBehalfOf user

 // UsernameTokenCallbackHandler will extract this information when called

 ctx.put(SecurityConstants.USERNAME,"alice");

 ctx.put(SecurityConstants.PASSWORD, "clarinet");

 STSClient stsClient = new STSClient(bus);

 // Providing the STSClient the mechanism to create the claims contents for OnBehalfOf

 stsClient.setOnBehalfOf(new UsernameTokenCallbackHandler());

 Map<String, Object> props = stsClient.getProperties();

 props.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 props.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.ENCRYPT_USERNAME, "mystskey");

 props.put(SecurityConstants.STS_TOKEN_USERNAME, "myclientkey");

 props.put(SecurityConstants.STS_TOKEN_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 props.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO, "true");

 ctx.put(SecurityConstants.STS_CLIENT, stsClient);

} finally {

 bus.shutdown(true);

}

proxy.sayHello();

WildFly 10

JBoss Community Documentation Page of 457 532

SAML Bearer Assertion Scenario

SAML Bearer Assertion Scenario

Web service Provider

Web service provider WSDL

SSL configuration

Web service Interface

Web service Implementation

Crypto properties and keystore files

MANIFEST.MF

Bearer Security Token Service

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service requester

Web service requester Implementation

ClientCallbackHandler

Crypto properties and keystore files

SAML Bearer Assertion Scenario
WS-Trust deals with managing software security tokens. A SAML assertion is a type of security token. In

the SAML Bearer scenario, the service provider automatically trusts that the incoming SOAP request came

from the subject defined in the SAML token after the service verifies the tokens signature.

Implementation of this scenario has the following requirements.

SAML tokens with a Bearer subject confirmation method must be protected so the token can not be

snooped. In most cases, a bearer token combined with HTTPS is sufficient to prevent "a man in the

middle" getting possession of the token. This means a security policy that uses a

sp:TransportBinding and sp:HttpsToken.

A bearer token has no encryption or signing keys associated with it, therefore a sp:IssuedToken of

bearer keyType should be used with a sp:SupportingToken or a sp:SignedSupportingTokens.

Web service Provider
This section examines the web service elements for the SAML Bearer scenario. The components are

Bearer web service provider's WSDL

SSL configuration

Bearer web service provider's Interface and Implementation classes.

Crypto properties and keystore files

MANIFEST.MF

WildFly 10

JBoss Community Documentation Page of 458 532

Web service provider WSDL

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in WSDL, BearerService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0 Bearer

token issued from a designed STS. The address of the STS is provided in the WSDL. HTTPS, a

TransportBinding and HttpsToken policy are used to protect the SOAP body of messages that pass back

and forth between ws-requester and ws-provider. A detailed explanation of the security settings are

provided in the comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions targetNamespace="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 name="BearerService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

 schemaLocation="BearerService_schema1.xsd"/>

 </xsd:schema>

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="BearerIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

<!--

 The wsp:PolicyReference binds the security requirments on all the endpoints.

 The wsp:Policy wsu:Id="#TransportSAML2BearerPolicy" element is defined later in this

file.

-->

 <binding name="BearerServicePortBinding" type="tns:BearerIface">

 <wsp:PolicyReference URI="#TransportSAML2BearerPolicy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

WildFly 10

JBoss Community Documentation Page of 459 532

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

<!--

 The soap:address has been defined to use JBoss's https port, 8443. This is

 set in conjunction with the sp:TransportBinding policy for https.

-->

 <service name="BearerService">

 <port name="BearerServicePort" binding="tns:BearerServicePortBinding">

 <soap:address

location="https://@jboss.bind.address@:8443/jaxws-samples-wsse-policy-trust-bearer/BearerService"/>

</port>

 </service>

 <wsp:Policy wsu:Id="TransportSAML2BearerPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

<!--

 The sp:TransportBinding element indicates that security is provided by the

 message exchange transport medium, https. WS-Security policy specification

 defines the sp:HttpsToken for use in exchanging messages transmitted over HTTPS.

-->

 <sp:TransportBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </wsp:Policy>

 </sp:TransportToken>

<!--

 The sp:AlgorithmSuite element, requires the TripleDes algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDes />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

WildFly 10

JBoss Community Documentation Page of 460 532

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 </wsp:Policy>

 </sp:TransportBinding>

<!--

 The sp:SignedSupportingTokens element causes the supporting tokens

 to be signed using the primary token that is used to sign the message.

-->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token of type

 Bearer is expected from the STS. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

-->

 <sp:IssuedToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer</t:KeyType>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

<!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

-->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-bearer/SecurityTokenService</wsaws:Address>

<wsaws:Metadata

 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-bearer/SecurityTokenService?wsdl">

<wsaw:ServiceName

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

WildFly 10

JBoss Community Documentation Page of 461 532

 EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

WildFly 10

JBoss Community Documentation Page of 462 532

SSL configuration

This web service is using https, therefore the JBoss server must be configured to provide SSL support in the

Web subsystem. There are 2 components to SSL configuration.

create a certificate keystore

declare an SSL connector in the Web subsystem of the JBoss server configuration file.

Follow the directions in the, " " section in the Using the pure Java implementation supplied by JSSE SSL

.Setup Guide

Here is an example of an SSL connector declaration.

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host"

native="false">

 <connector name="jbws-https-connector" protocol="HTTP/1.1" scheme="https"

socket-binding="https" secure="true" enabled="true">

 <ssl key-alias="tomcat" password="changeit"

certificate-key-file="/myJbossHome/security/test.keystore" verify-client="false"/>

 </connector>

 ...

Web service Interface

The web service provider interface class, BearerIface, is a simple straight forward web service definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy"

)

public interface BearerIface

{

 @WebMethod

 String sayHello();

}

https://docs.jboss.org/author/display/WFLY8/SSL+setup+guide
https://docs.jboss.org/author/display/WFLY8/SSL+setup+guide

WildFly 10

JBoss Community Documentation Page of 463 532

Web service Implementation

The web service provider implementation class, BearerImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for signature creation/verification, as is

asserted by the WSDL for this service. The WSS4J configuration information being provided by BearerImpl

is for Crypto's Merlin implementation. More information will be provided about this in the keystore section.

Because the web service provider automatically trusts that the incoming SOAP request came from the

subject defined in the SAML token there is no need for a Crypto callbackHandler class or a signature

username, unlike in prior examples, however in order to verify the message signature, the Java properties

file that contains the (Merlin) crypto configuration information is still required.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import javax.jws.WebService;

@WebService

(

 portName = "BearerServicePort",

 serviceName = "BearerService",

 wsdlLocation = "WEB-INF/wsdl/BearerService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy",

 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.trust.bearer.BearerIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties")

})

public class BearerImpl implements BearerIface

{

 public String sayHello()

 {

 return "Bearer WS-Trust Hello World!";

 }

}

https://ws.apache.org/wss4j/

WildFly 10

JBoss Community Documentation Page of 464 532

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Bearer Security Token Service
This section examines the crucial elements in providing the Security Token Service functionality for providing

a SAML Bearer token. The components that will be discussed are.

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

WildFly 10

JBoss Community Documentation Page of 465 532

Security Domain

The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties file for use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

A sample roles.properties file for use with the UsersRolesLoginModule

alice=friend

STS's WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

WildFly 10

JBoss Community Documentation Page of 466 532

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

 targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:element name='RequestSecurityTokenResponse'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:complexType name='AbstractRequestSecurityTokenType'>

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional'/>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

 type='wst:RequestSecurityTokenCollectionType'/>

 <xs:complexType name='RequestSecurityTokenCollectionType'>

 <xs:sequence>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType' minOccurs='2'

 maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

 type='wst:RequestSecurityTokenResponseCollectionType'/>

 <xs:complexType name='RequestSecurityTokenResponseCollectionType'>

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

WildFly 10

JBoss Community Documentation Page of 467 532

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an STS supporting full protocol -->

 <!--

 The wsdl:portType and data types are XML elements defined by the

 WS_Trust specification. The wsdl:portType defines the endpoints

 supported in the STS implementation. This WSDL defines all operations

 that an STS implementation can support.

 -->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

 message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

WildFly 10

JBoss Community Documentation Page of 468 532

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!--

 The wsp:PolicyReference binds the security requirments on all the STS endpoints.

 The wsp:Policy wsu:Id="UT_policy" element is later in this file.

 -->

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy"/>

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"/>

WildFly 10

JBoss Community Documentation Page of 469 532

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The sp:UsingAddressing element, indicates that the endpoints of this

 web service conforms to the WS-Addressing specification. More detail

 can be found here: [http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529]

 -->

 <wsap10:UsingAddressing/>

 <!--

 The sp:SymmetricBinding element indicates that security is provided

 at the SOAP layer and any initiator must authenticate itself by providing

WildFly 10

JBoss Community Documentation Page of 470 532

 WSS UsernameToken credentials.

 -->

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <!--

 In a symmetric binding, the keys used for encrypting and signing in both

 directions are derived from a single key, the one specified by the

 sp:ProtectionToken element. The sp:X509Token sub-element declares this

 key to be a X.509 certificate and the

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never"

 attribute adds the requirement that the token MUST NOT be included in

 any messages sent between the initiator and the recipient; rather, an

 external reference to the token should be used. Lastly the WssX509V3Token10

 sub-element declares that the Username token presented by the initiator

 should be compliant with Web Services Security UsernameToken Profile

 1.0 specification. [

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf]

 -->

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys/>

 <sp:RequireThumbprintReference/>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

 </sp:ProtectionToken>

 <!--

 The sp:AlgorithmSuite element, requires the Basic256 algorithm suite

 be used in performing cryptographic operations.

 -->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

 -->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:SymmetricBinding>

WildFly 10

JBoss Community Documentation Page of 471 532

 <!--

 The sp:SignedSupportingTokens element declares that the security header

 of messages must contain a sp:UsernameToken and the token must be signed.

 The attribute

IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient"

on sp:UsernameToken indicates that the token MUST be included in all

 messages sent from initiator to the recipient and that the token MUST

 NOT be included in messages sent from the recipient to the initiator.

 And finally the element sp:WssUsernameToken10 is a policy assertion

 indicating the Username token should be as defined in Web Services

 Security UsernameToken Profile 1.0

 -->

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

 -->

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 <sp:MustSupportRefIssuerSerial/>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

 -->

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens/>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

WildFly 10

JBoss Community Documentation Page of 472 532

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS's implementation class

WildFly 10

JBoss Community Documentation Page of 473 532

The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

This STS implementation class, SampleSTSBearer, is a POJO that extends from

SecurityTokenServiceProvider. Note that the class is defined with a WebServiceProvider annotation and not

a WebService annotation. This annotation defines the service as a Provider-based endpoint, meaning it

supports a more messaging-oriented approach to Web services. In particular, it signals that the exchanged

messages will be XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the BearerImpl class, the WSS4J annotations EndpointProperties and EndpointProperty are

providing endpoint configuration for the CXF runtime. The first EndpointProperty statement in the listing is

declaring the user's name to use for the message signature. It is used as the alias name in the keystore to

get the user's cert and private key for signature. The next two EndpointProperty statements declares the

Java properties file that contains the (Merlin) crypto configuration information. In this case both for signing

and encrypting the messages. WSS4J reads this file and extra required information for message handling.

The last EndpointProperty statement declares the STSBearerCallbackHandler implementation class. It is

used to obtain the user's password for the certificates in the keystore file.

In this implementation we are customizing the operations of token issuance, token validation and their static

properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation has a modular structure. This allows custom behaviors to be injected into the

processing of messages. In this case we are overriding the SecurityTokenServiceProvider's default behavior

and performing SAML token processing. CXF provides an implementation of a SAMLTokenProvider which

we are using rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer;

import org.apache.cxf.annotations.EndpointProperties;

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html
http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

WildFly 10

JBoss Community Documentation Page of 474 532

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

import javax.xml.ws.WebServiceProvider;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/bearer-ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.username", value = "mystskey"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer.STSBearerCallbackHandler")

})

public class SampleSTSBearer extends SecurityTokenServiceProvider

{

 public SampleSTSBearer() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSBearerCallbackHandler.class.getName());

 props.setEncryptionCryptoProperties("stsKeystore.properties");

 props.setEncryptionUsername("myservicekey");

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

 "https://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService",

 "https://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService",

"https://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-bearer/BearerService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setServices(services);

 issueOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 }

}

WildFly 10

JBoss Community Documentation Page of 475 532

STSBearerCallbackHandler

STSBearerCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsbearer;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

public class STSBearerCallbackHandler extends PasswordCallbackHandler

{

 public STSBearerCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

WildFly 10

JBoss Community Documentation Page of 476 532

MANIFEST.MF

When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the constructor. TheSampleSTS

dependency statement directs the server to provide them at deployment.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Web service requester
This section examines the crucial elements in calling a web service that implements endpoint security as

described in the SAML Bearer scenario. The components that will be discussed are.

Web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

WildFly 10

JBoss Community Documentation Page of 477 532

Web service requester Implementation

The ws-requester, the client, uses standard procedures for creating a reference to the web service. To

address the endpoint security requirements, the web service's "Request Context" is configured with the

information needed in message generation. In addition, the STSClient that communicates with the STS is

configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these settings

as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that is

auto-generated for this service call.

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. When providing the STSClient in

this way, the user must provide a org.apache.cxf.Bus for it and the configuration keys must not have the ".it"

suffix. This is used in the ActAs and OnBehalfOf examples.

String serviceURL = "https://" + getServerHost() +

":8443/jaxws-samples-wsse-policy-trust-bearer/BearerService";

 final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/bearerwssecuritypolicy", "BearerService");

 Service service = Service.create(new URL(serviceURL + "?wsdl"), serviceName);

 BearerIface proxy = (BearerIface) service.getPort(BearerIface.class);

 Map<String, Object> ctx = ((BindingProvider)proxy).getRequestContext();

 // set the security related configuration information for the service "request"

 ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

 ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

 ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

 //-- Configuration settings that will be transfered to the STSClient

 // "alice" is the name provided for the WSS Username. Her password will

 // be retreived from the ClientCallbackHander by the STSClient.

 ctx.put(SecurityConstants.USERNAME + ".it", "alice");

 ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

 ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

 ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

 ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

 ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

 proxy.sayHello();

WildFly 10

JBoss Community Documentation Page of 478 532

ClientCallbackHandler

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-ClientCallbackHandler

ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 } else if ("bob".equals(pc.getIdentifier())) {

 pc.setPassword("trombone");

 break;

 } else if ("myservicekey".equals(pc.getIdentifier())) { // rls test added for

bearer test

 pc.setPassword("skpass");

 break;

 }

 }

 }

 }

}

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-ClientCallbackHandler

WildFly 10

JBoss Community Documentation Page of 479 532

Crypto properties and keystore files

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-RequesterCryptopropertiesandkeystorefiles

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

SAML Holder-Of-Key Assertion Scenario

SAML Holder-Of-Key Assertion Scenario

Web service Provider

Web service provider WSDL

SSL configuration

Web service Interface

Web service Implementation

Crypto properties and keystore files

MANIFEST.MF

Security Token Service

Security Domain

STS's WSDL

STS's implementation class

HolderOfKeyCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

Web service requester

Web service requester Implementation

ClientCallbackHandler

Crypto properties and keystore files

SAML Holder-Of-Key Assertion Scenario
WS-Trust deals with managing software security tokens. A SAML assertion is a type of security token. In

the Holder-Of-Key method, the STS creates a SAML token containing the client's public key and signs the

SAML token with its private key. The client includes the SAML token and signs the outgoing soap envelope

to the web service with its private key. The web service validates the SOAP message and the SAML token.

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-RequesterCryptopropertiesandkeystorefiles

WildFly 10

JBoss Community Documentation Page of 480 532

Implementation of this scenario has the following requirements.

SAML tokens with a Holder-Of-Key subject confirmation method must be protected so the token can

not be snooped. In most cases, a Holder-Of-Key token combined with HTTPS is sufficient to prevent

"a man in the middle" getting possession of the token. This means a security policy that uses a

sp:TransportBinding and sp:HttpsToken.

A Holder-Of-Key token has no encryption or signing keys associated with it, therefore a

sp:IssuedToken of SymmetricKey or PublicKey keyType should be used with a

sp:SignedEndorsingSupportingTokens.

Web service Provider
This section examines the web service elements for the SAML Holder-Of-Key scenario. The components

are

Web service provider's WSDL

SSL configuration

Web service provider's Interface and Implementation classes.

Crypto properties and keystore files

MANIFEST.MF

Web service provider WSDL

The web service provider is a contract-first endpoint. All the WS-trust and security policies for it are declared

in the WSDL, HolderOfKeyService.wsdl. For this scenario a ws-requester is required to present a SAML 2.0

token of SymmetricKey keyType, issued from a designed STS. The address of the STS is provided in the

WSDL. A transport binding policy is used. The token is declared to be signed and endorsed,

sp:SignedEndorsingSupportingTokens. A detailed explanation of the security settings are provided in the

comments in the listing below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<definitions

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 name="HolderOfKeyService"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsaws="http://www.w3.org/2005/08/addressing"

 xmlns:wsx="http://schemas.xmlsoap.org/ws/2004/09/mex"

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

 xmlns:t="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <types>

 <xsd:schema>

 <xsd:import

namespace="http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

 schemaLocation="HolderOfKeyService_schema1.xsd"/>

 </xsd:schema>

WildFly 10

JBoss Community Documentation Page of 481 532

 </types>

 <message name="sayHello">

 <part name="parameters" element="tns:sayHello"/>

 </message>

 <message name="sayHelloResponse">

 <part name="parameters" element="tns:sayHelloResponse"/>

 </message>

 <portType name="HolderOfKeyIface">

 <operation name="sayHello">

 <input message="tns:sayHello"/>

 <output message="tns:sayHelloResponse"/>

 </operation>

 </portType>

<!--

 The wsp:PolicyReference binds the security requirments on all the endpoints.

 The wsp:Policy wsu:Id="#TransportSAML2HolderOfKeyPolicy" element is defined later in

this file.

-->

 <binding name="HolderOfKeyServicePortBinding" type="tns:HolderOfKeyIface">

 <wsp:PolicyReference URI="#TransportSAML2HolderOfKeyPolicy" />

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="sayHello">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

<!--

 The soap:address has been defined to use JBoss's https port, 8443. This is

 set in conjunction with the sp:TransportBinding policy for https.

-->

 <service name="HolderOfKeyService">

 <port name="HolderOfKeyServicePort" binding="tns:HolderOfKeyServicePortBinding">

 <soap:address

location="https://@jboss.bind.address@:8443/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService"/>

</port>

 </service>

 <wsp:Policy wsu:Id="TransportSAML2HolderOfKeyPolicy">

 <wsp:ExactlyOne>

 <wsp:All>

 <!--

 The wsam:Addressing element, indicates that the endpoints of this

 web service MUST conform to the WS-Addressing specification. The

 attribute wsp:Optional="false" enforces this assertion.

 -->

 <wsam:Addressing wsp:Optional="false">

 <wsp:Policy />

 </wsam:Addressing>

<!--

 The sp:TransportBinding element indicates that security is provided by the

 message exchange transport medium, https. WS-Security policy specification

 defines the sp:HttpsToken for use in exchanging messages transmitted over HTTPS.

WildFly 10

JBoss Community Documentation Page of 482 532

-->

 <sp:TransportBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </wsp:Policy>

 </sp:TransportToken>

<!--

 The sp:AlgorithmSuite element, requires the TripleDes algorithm suite

 be used in performing cryptographic operations.

-->

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:TripleDes />

 </wsp:Policy>

 </sp:AlgorithmSuite>

<!--

 The sp:Layout element, indicates the layout rules to apply when adding

 items to the security header. The sp:Lax sub-element indicates items

 are added to the security header in any order that conforms to

 WSS: SOAP Message Security.

-->

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax />

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp />

 </wsp:Policy>

 </sp:TransportBinding>

<!--

 The sp:SignedEndorsingSupportingTokens, when transport level security level is

 used there will be no message signature and the signature generated by the

 supporting token will sign the Timestamp.

-->

 <sp:SignedEndorsingSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

<!--

 The sp:IssuedToken element asserts that a SAML 2.0 security token of type

 Bearer is expected from the STS. The

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

attribute instructs the runtime to include the initiator's public key

 with every message sent to the recipient.

 The sp:RequestSecurityTokenTemplate element directs that all of the

 children of this element will be copied directly into the body of the

 RequestSecurityToken (RST) message that is sent to the STS when the

 initiator asks the STS to issue a token.

-->

 <sp:IssuedToken

WildFly 10

JBoss Community Documentation Page of 483 532

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<sp:RequestSecurityTokenTemplate>

<t:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0</t:TokenType>

<!--

 KeyType of "SymmetricKey", the client must prove to the WS service that it

 possesses a particular symmetric session key.

 -->

<t:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey</t:KeyType>

 </sp:RequestSecurityTokenTemplate>

 <wsp:Policy>

 <sp:RequireInternalReference />

 </wsp:Policy>

<!--

 The sp:Issuer element defines the STS's address and endpoint information

 This information is used by the STSClient.

-->

 <sp:Issuer>

<wsaws:Address>http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-holderofkey/SecurityTokenService</wsaws:Address>

<wsaws:Metadata

 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"

wsdli:wsdlLocation="http://@jboss.bind.address@:8080/jaxws-samples-wsse-policy-trust-sts-holderofkey/SecurityTokenService?wsdl">

<wsaw:ServiceName

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:stsns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 EndpointName="UT_Port">stsns:SecurityTokenService</wsaw:ServiceName>

 </wsaws:Metadata>

 </sp:Issuer>

 </sp:IssuedToken>

 </wsp:Policy>

 </sp:SignedEndorsingSupportingTokens>

<!--

 The sp:Wss11 element declares WSS: SOAP Message Security 1.1 options

 to be supported by the STS. These particular elements generally refer

 to how keys are referenced within the SOAP envelope. These are normally

 handled by CXF.

-->

 <sp:Wss11>

 <wsp:Policy>

 <sp:MustSupportRefIssuerSerial />

 <sp:MustSupportRefThumbprint />

 <sp:MustSupportRefEncryptedKey />

 </wsp:Policy>

 </sp:Wss11>

<!--

 The sp:Trust13 element declares controls for WS-Trust 1.3 options.

 They are policy assertions related to exchanges specifically with

 client and server challenges and entropy behaviors. Again these are

 normally handled by CXF.

-->

 <sp:Trust13>

 <wsp:Policy>

 <sp:MustSupportIssuedTokens />

 <sp:RequireClientEntropy />

WildFly 10

JBoss Community Documentation Page of 484 532

 <sp:RequireServerEntropy />

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</definitions>

SSL configuration

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-SSLconfiguration

This web service is using https, therefore the JBoss server must be configured to provide SSL support in the

Web subsystem. There are 2 components to SSL configuration.

create a certificate keystore

declare an SSL connector in the Web subsystem of the JBoss server configuration file.

Follow the directions in the, " " section in the Using the pure Java implementation supplied by JSSE [SSL

.Setup Guide|../../../../../../../../../../display/WFLY8/SSL+setup+guide|||\||]

Here is an example of an SSL connector declaration.

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host"

native="false">

.....

 <connector name="jbws-https-connector" protocol="HTTP/1.1" scheme="https"

socket-binding="https" secure="true" enabled="true">

 <ssl key-alias="tomcat" password="changeit"

certificate-key-file="/myJbossHome/security/test.keystore" verify-client="false"/>

 </connector>

...

Web service Interface

The web service provider interface class, HolderOfKeyIface, is a simple straight forward web service

definition.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy"

)

public interface HolderOfKeyIface {

 @WebMethod

 String sayHello();

}

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-SSLconfiguration

WildFly 10

JBoss Community Documentation Page of 485 532

Web service Implementation

The web service provider implementation class, HolderOfKeyImpl, is a simple POJO. It uses the standard

WebService annotation to define the service endpoint. In addition there are two Apache CXF annotations,

EndpointProperties and EndpointProperty used for configuring the endpoint for the CXF runtime. These

annotations come from the , which provides a Java implementation of the primaryApache WSS4J project

WS-Security standards for Web Services. These annotations are programmatically adding properties to the

endpoint. With plain Apache CXF, these properties are often set via the <jaxws:properties> element on the

<jaxws:endpoint> element in the Spring config; these annotations allow the properties to be configured in the

code.

WSS4J uses the Crypto interface to get keys and certificates for signature creation/verification, as is

asserted by the WSDL for this service. The WSS4J configuration information being provided by

HolderOfKeyImpl is for Crypto's Merlin implementation. More information will be provided about this in the

keystore section.

The first EndpointProperty statement in the listing disables ensurance of compliance with the Basic Security

Profile 1.1. The next EndpointProperty statements declares the Java properties file that contains the (Merlin)

crypto configuration information. The last EndpointProperty statement declares the

STSHolderOfKeyCallbackHandler implementation class. It is used to obtain the user's password for the

certificates in the keystore file.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import javax.jws.WebService;

@WebService

 (

 portName = "HolderOfKeyServicePort",

 serviceName = "HolderOfKeyService",

 wsdlLocation = "WEB-INF/wsdl/HolderOfKeyService.wsdl",

 targetNamespace =

"http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy",

 endpointInterface =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey.HolderOfKeyIface"

)

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.is-bsp-compliant", value = "false"),

 @EndpointProperty(key = "ws-security.signature.properties", value =

"serviceKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.holderofkey.HolderOfKeyCallbackHandler")

})

public class HolderOfKeyImpl implements HolderOfKeyIface

{

 public String sayHello()

 {

 return "Holder-Of-Key WS-Trust Hello World!";

 }

}

https://ws.apache.org/wss4j/

WildFly 10

JBoss Community Documentation Page of 486 532

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

serviceKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=sspass

org.apache.ws.security.crypto.merlin.keystore.alias=myservicekey

org.apache.ws.security.crypto.merlin.keystore.file=servicestore.jks

MANIFEST.MF

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-MANIFEST.MF

When deployed on WildFly this application requires access to the JBossWs and CXF APIs provided in

module org.jboss.ws.cxf.jbossws-cxf-client. The dependency statement directs the server to provide them at

deployment.

Manifest-Version:1.0

Ant-Version: Apache Ant1.8.2

Created-By:1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client

Security Token Service
This section examines the crucial elements in providing the Security Token Service functionality for providing

a SAML Holder-Of-Key token. The components that will be discussed are.

Security Domain

STS's WSDL

STS's implementation class

STSBearerCallbackHandler

Crypto properties and keystore files

MANIFEST.MF

https://docs.jboss.org/author/display/JBWS/WS-Trust+and+STS#WS-TrustandSTS-MANIFEST.MF

WildFly 10

JBoss Community Documentation Page of 487 532

Security Domain

The STS requires a JBoss security domain be configured. The jboss-web.xml descriptor declares a named

security domain,"JBossWS-trust-sts" to be used by this service for authentication. This security domain

requires two properties files and the addition of a security-domain declaration in the JBoss server

configuration file.

For this scenario the domain needs to contain user , password , and role . See the listingsalice clarinet friend

below for jbossws-users.properties and jbossws-roles.properties. In addition the following XML must be

added to the JBoss security subsystem in the server configuration file. Replace " " withSOME_PATH

appropriate information.

<security-domain name="JBossWS-trust-sts">

 <authentication>

 <login-module code="UsersRoles" flag="required">

 <module-option name="usersProperties" value="/SOME_PATH/jbossws-users.properties"/>

 <module-option name="unauthenticatedIdentity" value="anonymous"/>

 <module-option name="rolesProperties" value="/SOME_PATH/jbossws-roles.properties"/>

 </login-module>

 </authentication>

</security-domain>

jboss-web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jboss-web PUBLIC"-//JBoss//DTD Web Application 2.4//EN" ">

<jboss-web>

 <security-domain>java:/jaas/JBossWS-trust-sts</security-domain>

</jboss-web>

jbossws-users.properties

A sample users.properties filefor use with the UsersRolesLoginModule

alice=clarinet

jbossws-roles.properties

A sample roles.properties filefor use with the UsersRolesLoginModule

alice=friend

STS's WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

WildFly 10

JBoss Community Documentation Page of 488 532

 xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wstrust="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsap10="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

 targetNamespace='http://docs.oasis-open.org/ws-sx/ws-trust/200512'>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:element name='RequestSecurityTokenResponse'

 type='wst:AbstractRequestSecurityTokenType'/>

 <xs:complexType name='AbstractRequestSecurityTokenType'>

 <xs:sequence>

 <xs:any namespace='##any' processContents='lax' minOccurs='0'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:attribute name='Context' type='xs:anyURI' use='optional'/>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenCollection'

 type='wst:RequestSecurityTokenCollectionType'/>

 <xs:complexType name='RequestSecurityTokenCollectionType'>

 <xs:sequence>

 <xs:element name='RequestSecurityToken'

 type='wst:AbstractRequestSecurityTokenType' minOccurs='2'

 maxOccurs='unbounded'/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name='RequestSecurityTokenResponseCollection'

 type='wst:RequestSecurityTokenResponseCollectionType'/>

 <xs:complexType name='RequestSecurityTokenResponseCollectionType'>

 <xs:sequence>

 <xs:element ref='wst:RequestSecurityTokenResponse' minOccurs='1'

 maxOccurs='unbounded'/>

 </xs:sequence>

 <xs:anyAttribute namespace='##other' processContents='lax'/>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- WS-Trust defines the following GEDs -->

 <wsdl:message name="RequestSecurityTokenMsg">

 <wsdl:part name="request" element="wst:RequestSecurityToken"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseMsg">

 <wsdl:part name="response"

 element="wst:RequestSecurityTokenResponse"/>

WildFly 10

JBoss Community Documentation Page of 489 532

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenCollectionMsg">

 <wsdl:part name="requestCollection"

 element="wst:RequestSecurityTokenCollection"/>

 </wsdl:message>

 <wsdl:message name="RequestSecurityTokenResponseCollectionMsg">

 <wsdl:part name="responseCollection"

 element="wst:RequestSecurityTokenResponseCollection"/>

 </wsdl:message>

 <!-- This portType an example of a Requestor (or other) endpoint that

 Accepts SOAP-based challenges from a Security Token Service -->

 <wsdl:portType name="WSSecurityRequestor">

 <wsdl:operation name="Challenge">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an STS supporting full protocol -->

 <wsdl:portType name="STS">

 <wsdl:operation name="Cancel">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Issue">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal"

 message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <wsdl:input

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET"

 message="tns:RequestSecurityTokenMsg"/>

 <wsdl:output

WildFly 10

JBoss Community Documentation Page of 490 532

 wsam:Action="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal"

 message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>

 <wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- This portType is an example of an endpoint that accepts

 Unsolicited RequestSecurityTokenResponse messages -->

 <wsdl:portType name="SecurityTokenResponseService">

 <wsdl:operation name="RequestSecurityTokenResponse">

 <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="UT_Binding" type="wstrust:STS">

 <wsp:PolicyReference URI="#UT_policy"/>

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Issue">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Validate">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate"/>

 <wsdl:input>

 <wsp:PolicyReference

 URI="#Input_policy"/>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsp:PolicyReference

 URI="#Output_policy"/>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="Cancel">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

WildFly 10

JBoss Community Documentation Page of 491 532

 </wsdl:operation>

 <wsdl:operation name="Renew">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="KeyExchangeToken">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KeyExchangeToken"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RequestCollection">

 <soap:operation

 soapAction="http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/RequestCollection"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SecurityTokenService">

 <wsdl:port name="UT_Port" binding="tns:UT_Binding">

 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy wsu:Id="UT_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <wsap10:UsingAddressing/>

 <sp:SymmetricBinding

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:ProtectionToken>

 <wsp:Policy>

 <sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/Never">

 <wsp:Policy>

 <sp:RequireDerivedKeys/>

 <sp:RequireThumbprintReference/>

 <sp:WssX509V3Token10/>

 </wsp:Policy>

 </sp:X509Token>

 </wsp:Policy>

WildFly 10

JBoss Community Documentation Page of 492 532

 </sp:ProtectionToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 <sp:EncryptSignature/>

 <sp:OnlySignEntireHeadersAndBody/>

 </wsp:Policy>

 </sp:SymmetricBinding>

 <sp:SignedSupportingTokens

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SignedSupportingTokens>

 <sp:Wss11

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportRefKeyIdentifier/>

 <sp:MustSupportRefIssuerSerial/>

 <sp:MustSupportRefThumbprint/>

 <sp:MustSupportRefEncryptedKey/>

 </wsp:Policy>

 </sp:Wss11>

 <sp:Trust13

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <wsp:Policy>

 <sp:MustSupportIssuedTokens/>

 <sp:RequireClientEntropy/>

 <sp:RequireServerEntropy/>

 </wsp:Policy>

 </sp:Trust13>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Input_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

WildFly 10

JBoss Community Documentation Page of 493 532

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

 <wsp:Policy wsu:Id="Output_policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SignedParts

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

 <sp:Body/>

 <sp:Header Name="To"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="From"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="FaultTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="ReplyTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="MessageID"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="RelatesTo"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 <sp:Header Name="Action"

 Namespace="http://www.w3.org/2005/08/addressing"/>

 </sp:SignedParts>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

</wsdl:definitions>

STS's implementation class

The Apache CXF's STS, SecurityTokenServiceProvider, is a web service provider that is compliant with the

protocols and functionality defined by the WS-Trust specification. It has a modular architecture. Many of its

components are configurable or replaceable and there are many optional features that are enabled by

implementing and configuring plug-ins. Users can customize their own STS by extending from

SecurityTokenServiceProvider and overriding the default settings. Extensive information about the CXF's

STS configurable and pluggable components can be found .here

http://coheigea.blogspot.com/2011/11/apache-cxf-sts-documentation-part-viii_10.html

WildFly 10

JBoss Community Documentation Page of 494 532

This STS implementation class, SampleSTSHolderOfKey, is a POJO that extends from

SecurityTokenServiceProvider. Note that the class is defined with a WebServiceProvider annotation and not

a WebService annotation. This annotation defines the service as a Provider-based endpoint, meaning it

supports a more messaging-oriented approach to Web services. In particular, it signals that the exchanged

messages will be XML documents of some type. SecurityTokenServiceProvider is an implementation of the

javax.xml.ws.Provider interface. In comparison the WebService annotation defines a (service endpoint

interface) SEI-based endpoint which supports message exchange via SOAP envelopes.

As was done in the HolderOfKeyImpl class, the WSS4J annotations EndpointProperties and

EndpointProperty are providing endpoint configuration for the CXF runtime. The first EndpointProperty

statements declares the Java properties file that contains the (Merlin) crypto configuration information.

WSS4J reads this file and extra required information for message handling. The last EndpointProperty

statement declares the STSHolderOfKeyCallbackHandler implementation class. It is used to obtain the

user's password for the certificates in the keystore file.

In this implementation we are customizing the operations of token issuance and their static properties.

StaticSTSProperties is used to set select properties for configuring resources in the STS. You may think this

is a duplication of the settings made with the WSS4J annotations. The values are the same but the

underlaying structures being set are different, thus this information must be declared in both places.

The setIssuer setting is important because it uniquely identifies the issuing STS. The issuer string is

embedded in issued tokens and, when validating tokens, the STS checks the issuer string value.

Consequently, it is important to use the issuer string in a consistent way, so that the STS can recognize the

tokens that it has issued.

The setEndpoints call allows the declaration of a set of allowed token recipients by address. The addresses

are specified as reg-ex patterns.

TokenIssueOperation has a modular structure. This allows custom behaviors to be injected into the

processing of messages. In this case we are overriding the SecurityTokenServiceProvider's default behavior

and performing SAML token processing. CXF provides an implementation of a SAMLTokenProvider which

we are using rather than writing our own.

Learn more about the SAMLTokenProvider .here

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey;

import org.apache.cxf.annotations.EndpointProperties;

import org.apache.cxf.annotations.EndpointProperty;

import org.apache.cxf.sts.StaticSTSProperties;

import org.apache.cxf.sts.operation.TokenIssueOperation;

import org.apache.cxf.sts.service.ServiceMBean;

import org.apache.cxf.sts.service.StaticService;

import org.apache.cxf.sts.token.provider.SAMLTokenProvider;

import org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider;

import javax.xml.ws.WebServiceProvider;

import java.util.Arrays;

import java.util.LinkedList;

import java.util.List;

http://coheigea.blogspot.it/2011/10/apache-cxf-sts-documentation-part-iv.html

WildFly 10

JBoss Community Documentation Page of 495 532

/**

 * User: rsearls

 * Date: 3/14/14

 */

@WebServiceProvider(serviceName = "SecurityTokenService",

 portName = "UT_Port",

 targetNamespace = "http://docs.oasis-open.org/ws-sx/ws-trust/200512/",

 wsdlLocation = "WEB-INF/wsdl/holderofkey-ws-trust-1.4-service.wsdl")

//be sure to have dependency on org.apache.cxf module when on AS7, otherwise Apache CXF

annotations are ignored

@EndpointProperties(value = {

 @EndpointProperty(key = "ws-security.signature.properties", value =

"stsKeystore.properties"),

 @EndpointProperty(key = "ws-security.callback-handler", value =

"org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey.STSHolderOfKeyCallbackHandler")
})
public

class SampleSTSHolderOfKey extends SecurityTokenServiceProvider

{

 public SampleSTSHolderOfKey() throws Exception

 {

 super();

 StaticSTSProperties props = new StaticSTSProperties();

 props.setSignatureCryptoProperties("stsKeystore.properties");

 props.setSignatureUsername("mystskey");

 props.setCallbackHandlerClass(STSHolderOfKeyCallbackHandler.class.getName());

 props.setEncryptionCryptoProperties("stsKeystore.properties");

 props.setEncryptionUsername("myservicekey");

 props.setIssuer("DoubleItSTSIssuer");

 List<ServiceMBean> services = new LinkedList<ServiceMBean>();

 StaticService service = new StaticService();

 service.setEndpoints(Arrays.asList(

"https://localhost:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService",

"https://\\[::1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService",

"https://\\[0:0:0:0:0:0:0:1\\]:(\\d)*/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService"

));

 services.add(service);

 TokenIssueOperation issueOperation = new TokenIssueOperation();

 issueOperation.getTokenProviders().add(new SAMLTokenProvider());

 issueOperation.setServices(services);

 issueOperation.setStsProperties(props);

 this.setIssueOperation(issueOperation);

 }

}

WildFly 10

JBoss Community Documentation Page of 496 532

HolderOfKeyCallbackHandler

STSHolderOfKeyCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the

password for the private key in the keystore. This class enables CXF to retrieve the password of the user

name to use for the message signature.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.stsholderofkey;

import org.jboss.wsf.stack.cxf.extensions.security.PasswordCallbackHandler;

import java.util.HashMap;

import java.util.Map;

/**

 * User: rsearls

 * Date: 3/19/14

 */

public class STSHolderOfKeyCallbackHandler extends PasswordCallbackHandler

{

 public STSHolderOfKeyCallbackHandler()

 {

 super(getInitMap());

 }

 private static Map<String, String> getInitMap()

 {

 Map<String, String> passwords = new HashMap<String, String>();

 passwords.put("mystskey", "stskpass");

 passwords.put("alice", "clarinet");

 return passwords;

 }

}

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

stsKeystore.properties contains this information.

File servicestore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for

myservicekey and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=stsspass

org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

WildFly 10

JBoss Community Documentation Page of 497 532

MANIFEST.MF

When deployed on WildFly, this application requires access to the JBossWs and CXF APIs provided in

modules org.jboss.ws.cxf.jbossws-cxf-client and org.apache.cxf. The Apache CXF internals,

org.apache.cxf.impl, are needed to build the STS configuration in the SampleSTSHolderOfKey constructor.

The dependency statement directs the server to provide them at deployment.

Manifest-Version:1.0

Ant-Version: Apache Ant1.8.2

Created-By:1.7.0_25-b15 (Oracle Corporation)

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client,org.apache.cxf.impl

Web service requester
This section examines the crucial elements in calling a web service that implements endpoint security as

described in the SAML Holder-Of-Key scenario. The components that will be discussed are.

web service requester's implementation

ClientCallbackHandler

Crypto properties and keystore files

WildFly 10

JBoss Community Documentation Page of 498 532

Web service requester Implementation

The ws-requester, the client, uses standard procedures for creating a reference to the web service. To

address the endpoint security requirements, the web service's "Request Context" is configured with the

information needed in message generation. In addition, the STSClient that communicates with the STS is

configured with similar values. Note the key strings ending with a ".it" suffix. This suffix flags these settings

as belonging to the STSClient. The internal CXF code assigns this information to the STSClient that is

auto-generated for this service call.

There is an alternate method of setting up the STSCLient. The user may provide their own instance of the

STSClient. The CXF code will use this object and not auto-generate one. When providing the STSClient in

this way, the user must provide a org.apache.cxf.Bus for it and the configuration keys must not have the ".it"

suffix. This is used in the ActAs and OnBehalfOf examples.

String serviceURL = "https://" + getServerHost() +

":8443/jaxws-samples-wsse-policy-trust-holderofkey/HolderOfKeyService";

final QName serviceName = new

QName("http://www.jboss.org/jbossws/ws-extensions/holderofkeywssecuritypolicy",

"HolderOfKeyService");

final URL wsdlURL = new URL(serviceURL + "?wsdl");

Service service = Service.create(wsdlURL, serviceName);

HolderOfKeyIface proxy = (HolderOfKeyIface) service.getPort(HolderOfKeyIface.class);

Map<String, Object> ctx = ((BindingProvider)proxy).getRequestContext();

// set the security related configuration information for the service "request"

ctx.put(SecurityConstants.CALLBACK_HANDLER, new ClientCallbackHandler());

ctx.put(SecurityConstants.SIGNATURE_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES,

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.SIGNATURE_USERNAME, "myclientkey");

ctx.put(SecurityConstants.ENCRYPT_USERNAME, "myservicekey");

//-- Configuration settings that will be transfered to the STSClient

// "alice" is the name provided for the WSS Username. Her password will

// be retreived from the ClientCallbackHander by the STSClient.

ctx.put(SecurityConstants.USERNAME + ".it", "alice");

ctx.put(SecurityConstants.CALLBACK_HANDLER + ".it", new ClientCallbackHandler());

ctx.put(SecurityConstants.ENCRYPT_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.ENCRYPT_USERNAME + ".it", "mystskey");

ctx.put(SecurityConstants.STS_TOKEN_USERNAME + ".it", "myclientkey");

ctx.put(SecurityConstants.STS_TOKEN_PROPERTIES + ".it",

 Thread.currentThread().getContextClassLoader().getResource(

 "META-INF/clientKeystore.properties"));

ctx.put(SecurityConstants.STS_TOKEN_USE_CERT_FOR_KEYINFO + ".it", "true");

proxy.sayHello();

WildFly 10

JBoss Community Documentation Page of 499 532

ClientCallbackHandler

ClientCallbackHandler is a callback handler for the WSS4J Crypto API. It is used to obtain the password for

the private key in the keystore. This class enables CXF to retrieve the password of the user name to use for

the message signature. Note that "alice" and her password have been provided here. This information is

not in the (JKS) keystore but provided in the WildFly security domain. It was declared in file

jbossws-users.properties.

package org.jboss.test.ws.jaxws.samples.wsse.policy.trust.shared;

import java.io.IOException;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.ws.security.WSPasswordCallback;

public class ClientCallbackHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 if (callbacks[i] instanceof WSPasswordCallback) {

 WSPasswordCallback pc = (WSPasswordCallback) callbacks[i];

 if ("myclientkey".equals(pc.getIdentifier())) {

 pc.setPassword("ckpass");

 break;

 } else if ("alice".equals(pc.getIdentifier())) {

 pc.setPassword("clarinet");

 break;

 } else if ("bob".equals(pc.getIdentifier())) {

 pc.setPassword("trombone");

 break;

 } else if ("myservicekey".equals(pc.getIdentifier())) { // rls test added for

bearer test

 pc.setPassword("skpass");

 break;

 }

 }

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 500 532

Crypto properties and keystore files

WSS4J's Crypto implementation is loaded and configured via a Java properties file that contains Crypto

configuration data. The file contains implementation-specific properties such as a keystore location,

password, default alias and the like. This application is using the Merlin implementation. File

clientKeystore.properties contains this information.

File clientstore.jks, is a Java KeyStore (JKS) repository. It contains self signed certificates for myservicekey

and mystskey. Self signed certificates are not appropriate for production use.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks

org.apache.ws.security.crypto.merlin.keystore.password=cspass

org.apache.ws.security.crypto.merlin.keystore.alias=myclientkey

org.apache.ws.security.crypto.merlin.keystore.file=META-INF/clientstore.jks

35.3.14 Reliable Messaging

JBoss Web Services inherits full WS-Reliable Messaging capabilities from the underlying Apache CXF

implementation. At the time of writing, Apache CXF provides support for the WS-Reliable Messaging 1.0

(February 2005) version of the specification.

Enabling WS-Reliable Messaging
WS-Reliable Messaging is implemented internally in Apache CXF through a set of interceptors that deal with

the low level requirements of the reliable messaging protocol. In order for enabling WS-Reliable Messaging,

users need to either:

consume a WSDL contract that specifies proper WS-Reliable Messaging policies / assertions

manually add / configure the reliable messaging interceptors

specify the reliable messaging policies in an optional CXF Spring XML descriptor

specify the Apache CXF reliable messaging feature in an optional CXF Spring XML descriptor

The former approach relies on the Apache CXF WS-Policy engine and is the only portable one. The other

approaches are Apache CXF proprietary ones, however they allow for fine-grained configuration of protocol

aspects that are not covered by the WS-Reliable Messaging Policy. More details are available in the Apache

.CXF documentation

Example
In this example we configure WS-Reliable Messaging endpoint and client through the WS-Policy support.

http://schemas.xmlsoap.org/ws/2005/02/rm/
http://cxf.apache.org/docs/wsrmconfiguration.html
http://cxf.apache.org/docs/wsrmconfiguration.html

WildFly 10

JBoss Community Documentation Page of 501 532

Endpoint
We go with a contract-first approach, so we start by creating a proper WSDL contract, containing the

WS-Reliable Messaging and WS-Addressing policies (the latter is a requirement of the former):

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="SimpleService"

targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wsrm"

 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wsrm"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsp="http://www.w3.org/2006/07/ws-policy">

 <wsdl:types>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wsrm"

 attributeFormDefault="unqualified" elementFormDefault="unqualified"

 targetNamespace="http://www.jboss.org/jbossws/ws-extensions/wsrm">

<xsd:element name="ping" type="tns:ping"/>

<xsd:complexType name="ping">

<xsd:sequence/>

</xsd:complexType>

<xsd:element name="echo" type="tns:echo"/>

<xsd:complexType name="echo">

<xsd:sequence>

<xsd:element minOccurs="0" name="arg0" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="echoResponse" type="tns:echoResponse"/>

<xsd:complexType name="echoResponse">

<xsd:sequence>

<xsd:element minOccurs="0" name="return" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part name="parameters" element="tns:echoResponse">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part name="parameters" element="tns:echo">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="ping">

 <wsdl:part name="parameters" element="tns:ping">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="SimpleService">

 <wsdl:operation name="ping">

 <wsdl:input name="ping" message="tns:ping">

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="echo">

 <wsdl:input name="echo" message="tns:echo">

WildFly 10

JBoss Community Documentation Page of 502 532

 </wsdl:input>

 <wsdl:output name="echoResponse" message="tns:echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="SimpleServiceSoapBinding" type="tns:SimpleService">

 <wsp:Policy>

 <!-- WS-Addressing and basic WS-Reliable Messaging policy assertions -->

 <wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2006/05/addressing/wsdl"/>

 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"/>

 <!-- --- -->

 </wsp:Policy>

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="ping">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="ping">

 <soap:body use="literal"/>

 </wsdl:input>

 </wsdl:operation>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="SimpleService">

 <wsdl:port name="SimpleServicePort" binding="tns:SimpleServiceSoapBinding">

 <soap:address location="http://localhost:8080/jaxws-samples-wsrm-api"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Then we use the tool to generate both standard JAX-WS client and endpoint.wsconsume

We provide a basic JAX-WS implementation for the endpoint, nothing special in it:

WildFly 10

JBoss Community Documentation Page of 503 532

package org.jboss.test.ws.jaxws.samples.wsrm.service;

import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

(

 name = "SimpleService",

 serviceName = "SimpleService",

 wsdlLocation = "WEB-INF/wsdl/SimpleService.wsdl",

 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsrm"

)

public class SimpleServiceImpl

{

 @Oneway

 @WebMethod

 public void ping()

 {

 System.out.println("ping()");

 }

 @WebMethod

 public String echo(String s)

 {

 System.out.println("echo(" + s + ")");

 return s;

 }

}

Finally we package the generated POJO endpoint together with a basic web.xml the usual way and deploy

to the application server. The webservices stack automatically detects the policies and enables WS-Reliable

Messaging.

Client
The endpoint advertises his RM capabilities (and requirements) through the published WSDL and the client

is required to also enable WS-RM for successfully exchanging messages with the server.

So a regular JAX WS client is enough if the user does not need to tune any specific detail of the RM

subsystem.

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wsrm",

"SimpleService");

URL wsdlURL = new URL("http://localhost:8080/jaxws-samples-wsrm-api?wsdl");

Service service = Service.create(wsdlURL, serviceName);

proxy = (SimpleService)service.getPort(SimpleService.class);

proxy.echo("Hello World!");

WildFly 10

JBoss Community Documentation Page of 504 532

Additional configuration
Fine-grained tuning of WS-Reliable Messaging engine requires setting up proper RM features and attach

them for instance to the client proxy. Here is an example:

package org.jboss.test.ws.jaxws.samples.wsrm.client;

//...

import javax.xml.ws.Service;

import org.apache.cxf.ws.rm.feature.RMFeature;

import org.apache.cxf.ws.rm.manager.AcksPolicyType;

import org.apache.cxf.ws.rm.manager.DestinationPolicyType;

import org.jboss.test.ws.jaxws.samples.wsrm.generated.SimpleService;

// ...

Service service = Service.create(wsdlURL, serviceName);

RMFeature feature = new RMFeature();

RMAssertion rma = new RMAssertion();

RMAssertion.BaseRetransmissionInterval bri = new RMAssertion.BaseRetransmissionInterval();

bri.setMilliseconds(4000L);

rma.setBaseRetransmissionInterval(bri);

AcknowledgementInterval ai = new AcknowledgementInterval();

ai.setMilliseconds(2000L);

rma.setAcknowledgementInterval(ai);

feature.setRMAssertion(rma);

DestinationPolicyType dp = new DestinationPolicyType();

AcksPolicyType ap = new AcksPolicyType();

ap.setIntraMessageThreshold(0);

dp.setAcksPolicy(ap);

feature.setDestinationPolicy(dp);

SimpleService proxy = (SimpleService)service.getPort(SimpleService.class, feature);

proxy.echo("Hello World");

The same can of course be achieved by factoring the feature into a custom pojo extending

 and setting the obtained property in a clientorg.apache.cxf.ws.rm.feature.RMFeature

configuration:

WildFly 10

JBoss Community Documentation Page of 505 532

package org.jboss.test.ws.jaxws.samples.wsrm.client;

import org.apache.cxf.ws.rm.feature.RMFeature;

import org.apache.cxf.ws.rm.manager.AcksPolicyType;

import org.apache.cxf.ws.rm.manager.DestinationPolicyType;

import org.apache.cxf.ws.rmp.v200502.RMAssertion;

import org.apache.cxf.ws.rmp.v200502.RMAssertion.AcknowledgementInterval;

public class CustomRMFeature extends RMFeature

{

 public CustomRMFeature() {

 super();

 RMAssertion rma = new RMAssertion();

 RMAssertion.BaseRetransmissionInterval bri = new RMAssertion.BaseRetransmissionInterval();

 bri.setMilliseconds(4000L);

 rma.setBaseRetransmissionInterval(bri);

 AcknowledgementInterval ai = new AcknowledgementInterval();

 ai.setMilliseconds(2000L);

 rma.setAcknowledgementInterval(ai);

 super.setRMAssertion(rma);

 DestinationPolicyType dp = new DestinationPolicyType();

 AcksPolicyType ap = new AcksPolicyType();

 ap.setIntraMessageThreshold(0);

 dp.setAcksPolicy(ap);

 super.setDestinationPolicy(dp);

 }

}

... this is how the descriptor would look:jaxws-client-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:javaee="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">

<client-config>

<config-name>Custom Client Config</config-name>

<property>

<property-name>cxf.features</property-name>

<property-value>org.jboss.test.ws.jaxws.samples.wsrm.client.CustomRMFeature</property-value>

</property>

</client-config>

</jaxws-config>

... and this is how the client would set the configuration:

WildFly 10

JBoss Community Documentation Page of 506 532

import org.jboss.ws.api.configuration.ClientConfigUtil;

import org.jboss.ws.api.configuration.ClientConfigurer;

//...

Service service = Service.create(wsdlURL, serviceName);

SimpleService proxy = (SimpleService)service.getPort(SimpleService.class);

ClientConfigurer configurer = ClientConfigUtil.resolveClientConfigurer();

configurer.setConfigProperties(proxy, "META-INF/jaxws-client-config.xml", "Custom Client

Config");

proxy.echo("Hello World!");

35.3.15 SOAP over JMS

JBoss Web Services allows communication over the transport. The functionality comes from ApacheJMS

CXF support for the specification, which is aimed at a set ofSOAP over Java Message Service 1.0

standards for interoperable transport of messages over .SOAP JMS

On top of Apache CXF functionalities, the JBossWS integration allows users to deploy WS archives

containing both and endpoints the same way as they do for basic WS endpoints (in JMS HTTP HTTP war

archives). The webservices layer of WildFly takes care of looking for enpdoints in the deployed archiveJMS

and starts them delegating to the Apache CXF core similarly as with endpoints.HTTP

http://www.w3.org/TR/soapjms/

WildFly 10

JBoss Community Documentation Page of 507 532

Configuring SOAP over JMS
As per specification, the transport configuration is controlled by proper elements andSOAP over JMS

attributes in the and elements of the WSDL contract. So a endpoint is usuallybinding service JMS

developed using a contract-first approach.

The covers all the details of the supported configurations. The minimumApache CXF documentation

configuration implies:

setting a proper JMS URI in the [1]soap:address location

providing a JNDI connection factory name to be used for connecting to the queues [2]

setting the transport binding [3]

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

...

<wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/> <!-- 3 -->

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="HelloWorldService">

 <soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

<!-- 2 -->

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/> <!-- 1 -->

 </wsdl:port>

</wsdl:service>

Apache CXF takes care of setting up the JMS transport for endpoint implementations whose @WebService

annotation points to a port declared for JMS transport as explained above.

JBossWS currently supports POJO endpoints only for JMS transport use. The endpoint classes

can be deployed as part of or archives.jar war

The descriptor in archives doesn't need any entry for JMS endpoints.web.xml war

http://cxf.apache.org/docs/soap-over-jms-10-support.html

WildFly 10

JBoss Community Documentation Page of 508 532

Examples

JMS endpoint only deployment
In this example we create a simple endpoint relying on and deploy it as part of a jar archive.SOAP over JMS

The endpoint is created using wsconsume tool from a WSDL contract such as:

<?xml version='1.0' encoding='UTF-8'?>

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:ns1="http://schemas.xmlsoap.org/soap/http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<xs:schema elementFormDefault="unqualified" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

version="1.0" xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="echo" type="tns:echo"/>

<xs:element name="echoResponse" type="tns:echoResponse"/>

<xs:complexType name="echo">

 <xs:sequence>

 <xs:element minOccurs="0" name="arg0" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="echoResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part element="tns:echoResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part element="tns:echo" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="HelloWorld">

 <wsdl:operation name="echo">

 <wsdl:input message="tns:echo" name="echo">

 </wsdl:input>

 <wsdl:output message="tns:echoResponse" name="echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

WildFly 10

JBoss Community Documentation Page of 509 532

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HelloWorldService">

<soapjms:jndiConnectionFactoryName>java:jms/RemoteConnectionFactory</soapjms:jndiConnectionFactoryName>

<soapjms:jndiInitialContextFactory>org.jboss.naming.remote.client.InitialContextFactory</soapjms:jndiInitialContextFactory>

<soapjms:jndiURL>http-remoting://myhost:8080</soapjms:jndiURL>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 </wsdl:service>

 <wsdl:service name="HelloWorldServiceLocal">

<soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

The here is meant for using the that has to be created beforeHelloWorldImplPort testQueue

deploying the endpoint.

At the time of writing, is the default connection factory JNDI location on WildFlyjava:/ConnectionFactory

For allowing remote JNDI lookup of the connection factory, a specific service () forHelloWorldService

remote clients is added to the WSDL. The is the JNDI location of thejava:jms/RemoteConnectionFactory

same connection factory mentioned above, except it's exposed for remote lookup. The

 and complete the remote connectionsoapjms:jndiInitialContextFactory soap:jmsjndiURL

configuration, specifying the initial context factory class to use and the JNDI registry address.

Have a look at the application server domain for finding out the configured connection factory JNDI

locations.

The endpoint implementation is a basic JAX-WS POJO using @WebService annotation to refer to the

consumed contract:

WildFly 10

JBoss Community Documentation Page of 510 532

package org.jboss.test.ws.jaxws.cxf.jms;

import javax.jws.WebService;

@WebService

(

 portName = "HelloWorldImplPort",

 serviceName = "HelloWorldServiceLocal",

 wsdlLocation = "META-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 return input;

 }

}

The endpoint implementation references the wsdl service, so thatHelloWorldServiceLocal

the local JNDI connection factory location is used for starting the endpoint on server side.

That's pretty much all. We just need to package the generated service endpoint interface, the endpoint

implementation and the WSDL file in a archive and deploy it:jar

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-tests/target/test-libs/jaxws-cxf-jms-only-deployment.jar

 0 Thu Jun 23 15:18:44 CEST 2011 META-INF/

 129 Thu Jun 23 15:18:42 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 23 15:18:42 CEST 2011 org/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/

 0 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/

 313 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/HelloWorld.class

 1173 Thu Jun 23 15:18:42 CEST 2011 org/jboss/test/ws/jaxws/cxf/jms/HelloWorldImpl.class

 0 Thu Jun 23 15:18:40 CEST 2011 META-INF/wsdl/

 3074 Thu Jun 23 15:18:40 CEST 2011 META-INF/wsdl/HelloWorldService.wsdl

WildFly 10

JBoss Community Documentation Page of 511 532

A dependency on module needs to be added in MANIFEST.MF when deploying toorg.hornetq

WildFly.

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.1

Created-By: 17.0-b16 (Sun Microsystems Inc.)

Dependencies: org.hornetq

A JAX-WS client can interact with the JMS endpoint the usual way:

URL wsdlUrl = ...

//start another bus to avoid affecting the one that could already be assigned to the current

thread - optional but highly suggested

Bus bus = BusFactory.newInstance().createBus();

BusFactory.setThreadDefaultBus(bus);

try

{

 QName serviceName = new QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldService");

 Service service = Service.create(wsdlUrl, serviceName);

 HelloWorld proxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldImplPort"), HelloWorld.class);

 setupProxy(proxy);

 proxy.echo("Hi");

}

finally

{

 bus.shutdown(true);

}

The WSDL location URL needs to be retrieved in a custom way, depending on the client

application. Given the endpoint is JMS only, there's no automatically published WSDL contract.

in order for performing the remote invocation (which internally goes through remote JNDI lookup of the

connection factory), the calling user credentials need to be set into the Apache CXF JMSConduit:

WildFly 10

JBoss Community Documentation Page of 512 532

private void setupProxy(HelloWorld proxy) {

 JMSConduit conduit = (JMSConduit)ClientProxy.getClient(proxy).getConduit();

 JNDIConfiguration jndiConfig = conduit.getJmsConfig().getJndiConfig();

 jndiConfig.setConnectionUserName("user");

 jndiConfig.setConnectionPassword("password");

 Properties props = conduit.getJmsConfig().getJndiTemplate().getEnvironment();

 props.put(Context.SECURITY_PRINCIPAL, "user");

 props.put(Context.SECURITY_CREDENTIALS, "password");

}

Have a look at the WildFly domain and messaging configuration for finding out the actual security

requirements. At the time of writing, a user with role is required and that's internally checkedguest

using the security domain.other

Of course once the endpoint is exposed over JMS transport, any plain JMS client can also be used to send

messages to the webservice endpoint. You can have a look at the SOAP over JMS spec details and code

the client similarly to

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.remote.client.InitialContextFactory");

env.put(Context.PROVIDER_URL, "http-remoting://myhost:8080");

env.put(Context.SECURITY_PRINCIPAL, "user");

env.put(Context.SECURITY_CREDENTIALS, "password");

InitialContext context = new InitialContext(env);

QueueConnectionFactory connectionFactory =

(QueueConnectionFactory)context.lookup("jms/RemoteConnectionFactory");

Queue reqQueue = (Queue)context.lookup("jms/queue/test");

Queue resQueue = (Queue)context.lookup("jms/queue/test");

QueueConnection con = connectionFactory.createQueueConnection("user", "password");

QueueSession session = con.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

QueueReceiver receiver = session.createReceiver(resQueue);

ResponseListener responseListener = new ResponseListener(); //a custom response listener...

receiver.setMessageListener(responseListener);

con.start();

TextMessage message = session.createTextMessage(reqMessage);

message.setJMSReplyTo(resQueue);

//setup SOAP-over-JMS properties...

message.setStringProperty("SOAPJMS_contentType", "text/xml");

message.setStringProperty("SOAPJMS_requestURI", "jms:queue:testQueue");

QueueSender sender = session.createSender(reqQueue);

sender.send(message);

sender.close();

...

WildFly 10

JBoss Community Documentation Page of 513 532

JMS and HTTP endpoints deployment
In this example we create a deployment containing an endpoint that serves over both HTTP and JMS

transports.

We from a WSDL contract such as below (please note we've two / for the same binding portType

):service

<?xml version='1.0' encoding='UTF-8'?>

<wsdl:definitions name="HelloWorldService" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:ns1="http://schemas.xmlsoap.org/soap/http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapjms="http://www.w3.org/2010/soapjms/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

<xs:schema elementFormDefault="unqualified" targetNamespace="http://org.jboss.ws/jaxws/cxf/jms"

version="1.0"

 xmlns:tns="http://org.jboss.ws/jaxws/cxf/jms" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="echo" type="tns:echo"/>

<xs:element name="echoResponse" type="tns:echoResponse"/>

<xs:complexType name="echo">

 <xs:sequence>

 <xs:element minOccurs="0" name="arg0" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="echoResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="return" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

 </wsdl:types>

 <wsdl:message name="echoResponse">

 <wsdl:part element="tns:echoResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="echo">

 <wsdl:part element="tns:echo" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="HelloWorld">

 <wsdl:operation name="echo">

 <wsdl:input message="tns:echo" name="echo">

 </wsdl:input>

 <wsdl:output message="tns:echoResponse" name="echoResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://www.w3.org/2010/soapjms/"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

WildFly 10

JBoss Community Documentation Page of 514 532

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="HttpHelloWorldServiceSoapBinding" type="tns:HelloWorld">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="echo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input name="echo">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="echoResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HelloWorldService">

<soapjms:jndiConnectionFactoryName>java:jms/RemoteConnectionFactory</soapjms:jndiConnectionFactoryName>

<soapjms:jndiInitialContextFactory>org.jboss.naming.remote.client.InitialContextFactory</soapjms:jndiInitialContextFactory>

<soapjms:jndiURL>http-remoting://localhost:8080</soapjms:jndiURL>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

 <wsdl:port binding="tns:HttpHelloWorldServiceSoapBinding" name="HttpHelloWorldImplPort">

 <soap:address location="http://localhost:8080/jaxws-cxf-jms-http-deployment"/>

 </wsdl:port>

 </wsdl:service>

 <wsdl:service name="HelloWorldServiceLocal">

<soapjms:jndiConnectionFactoryName>java:/ConnectionFactory</soapjms:jndiConnectionFactoryName>

 <wsdl:port binding="tns:HelloWorldServiceSoapBinding" name="HelloWorldImplPort">

 <soap:address location="jms:queue:testQueue"/>

 </wsdl:port>

</wsdl:definitions>

The same considerations of the previous example regarding the JMS queue and JNDI connection factory

still apply.

Here we can implement the endpoint in multiple ways, either with a common implementation class that's

extended by the JMS and HTTP ones, or keep the two implementation classes independent and just have

them implement the same service endpoint interface:

WildFly 10

JBoss Community Documentation Page of 515 532

package org.jboss.test.ws.jaxws.cxf.jms_http;

import javax.jws.WebService;

@WebService

(

 portName = "HelloWorldImplPort",

 serviceName = "HelloWorldServiceLocal",

 wsdlLocation = "WEB-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms_http.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 System.out.println("input: " + input);

 return input;

 }

}

package org.jboss.test.ws.jaxws.cxf.jms_http;

import javax.jws.WebService;

@WebService

(

 portName = "HttpHelloWorldImplPort",

 serviceName = "HelloWorldService",

 wsdlLocation = "WEB-INF/wsdl/HelloWorldService.wsdl",

 endpointInterface = "org.jboss.test.ws.jaxws.cxf.jms_http.HelloWorld",

 targetNamespace = "http://org.jboss.ws/jaxws/cxf/jms"

)

public class HttpHelloWorldImpl implements HelloWorld

{

 public String echo(String input)

 {

 System.out.println("input (http): " + input);

 return "(http) " + input;

 }

}

Both classes are packaged together the service endpoint interface and the WSDL file in a archive:war

WildFly 10

JBoss Community Documentation Page of 516 532

alessio@inuyasha /dati/jbossws/stack/cxf/trunk $ jar -tvf

./modules/testsuite/cxf-spring-tests/target/test-libs/jaxws-cxf-jms-http-deployment.war

 0 Thu Jun 23 15:18:44 CEST 2011 META-INF/

 129 Thu Jun 23 15:18:42 CEST 2011 META-INF/MANIFEST.MF

 0 Thu Jun 23 15:18:44 CEST 2011 WEB-INF/

 569 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/web.xml

 0 Thu Jun 23 15:18:44 CEST 2011 WEB-INF/classes/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/

 0 Thu Jun 23 15:18:42 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/

 318 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HelloWorld.class

 1192 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HelloWorldImpl.class

 1246 Thu Jun 23 15:18:42 CEST 2011

WEB-INF/classes/org/jboss/test/ws/jaxws/cxf/jms_http/HttpHelloWorldImpl.class

 0 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/wsdl/

 3068 Thu Jun 23 15:18:40 CEST 2011 WEB-INF/wsdl/HelloWorldService.wsdl

A trivial web.xml descriptor is also included to trigger the HTTP endpoint publish:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>EndpointServlet</servlet-name>

 <servlet-class>org.jboss.test.ws.jaxws.cxf.jms_http.HttpHelloWorldImpl</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>EndpointServlet</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

Here too the MANIFEST.MF needs to declare a dependency on module whenorg.hornetq

deploying to WildFly.

Finally, the JAX-WS client can ineract with both JMS and HTTP endpoints as usual:

WildFly 10

JBoss Community Documentation Page of 517 532

//start another bus to avoid affecting the one that could already be assigned to current thread

- optional but highly suggested

Bus bus = BusFactory.newInstance().createBus();

BusFactory.setThreadDefaultBus(bus);

try

{

 QName serviceName = new QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldService");

 Service service = Service.create(wsdlUrl, serviceName);

 //JMS test

 HelloWorld proxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HelloWorldImplPort"), HelloWorld.class);

 setupProxy(proxy);

 proxy.echo("Hi");

 //HTTP test

 HelloWorld httpProxy = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/jms", "HttpHelloWorldImplPort"), HelloWorld.class);

 httpProxy.echo("Hi");

}

finally

{

 bus.shutdown(true);

}

Use of Endpoint.publish() API
An alternative to deploying an archive containing JMS endpoints is in starting them directly using the

JAX-WS API.Endpoint.publish(..)

That's as easy as doing:

Object implementor = new HelloWorldImpl();

Endpoint ep = Endpoint.publish("jms:queue:testQueue", implementor);

try

{

 //use or let others use the endpoint

}

finally

{

 ep.stop();

}

where is a POJO endpoint implementation referencing a JMS in a given WSDLHelloWorldImpl port

contract, as explained in the previous examples.

The main difference among the deployment approach is in the direct control and responsibility over the

endpoint lifecycle (and).start/publish stop

WildFly 10

JBoss Community Documentation Page of 518 532

35.3.16 HTTP Proxy

The HTTP Proxy related functionalities of JBoss Web Services are provided by the Apache CXF http

transport layer.

The suggested configuration mechanism when running JBoss Web Services is explained below; for further

information please refer to the .Apache CXF documentation

Configuration
The HTTP proxy configuration for a given JAX-WS client can be set in the following ways:

through the and system properties, orhttp.proxyHost http.proxyPort

leveraging the optionsorg.apache.cxf.transport.http.HTTPConduit

The former is a JVM level configuration; for instance, assuming the http proxy is currently running at

, here is the setup:http://localhost:9934

System.getProperties().setProperty("http.proxyHost", "localhost");

System.getProperties().setProperty("http.proxyPort", 9934);

The latter is a client stub/port level configuration: the setup is performed on the object that'sHTTPConduit

part of the Apache CXF abstraction.Client

import org.apache.cxf.configuration.security.ProxyAuthorizationPolicy;

import org.apache.cxf.endpoint.Client;

import org.apache.cxf.frontend.ClientProxy;

import org.apache.cxf.transport.http.HTTPConduit;

import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

import org.apache.cxf.transports.http.configuration.ProxyServerType;

...

Service service = Service.create(wsdlURL, new QName("http://org.jboss.ws/jaxws/cxf/httpproxy",

"HelloWorldService"));

HelloWorld port = (HelloWorld) service.getPort(new

QName("http://org.jboss.ws/jaxws/cxf/httpproxy", "HelloWorldImplPort"), HelloWorld.class);

Client client = ClientProxy.getClient(port);

HTTPConduit conduit = (HTTPConduit)client.getConduit();

ProxyAuthorizationPolicy policy = new ProxyAuthorizationPolicy();

policy.setAuthorizationType("Basic");

policy.setUserName(PROXY_USER);

policy.setPassword(PROXY_PWD);

conduit.setProxyAuthorization(policy);

port.echo("Foo");

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://localhost:9934

WildFly 10

JBoss Community Documentation Page of 519 532

The also allows for setting the authotization type as well as the username /ProxyAuthorizationPolicy

password to be used.

Speaking of authorization and authentication, please note that the JDK already features the

 facility, which is used whenever opening a connection to a given URLjava.net.Authenticator

requiring a http proxy. Users might want to set a custom Authenticator for instance when needing to read

WSDL contracts before actually calling into the JBoss Web Services / Apache CXF code; here is an

example:

import java.net.Authenticator;

import java.net.PasswordAuthentication;

...

public class ProxyAuthenticator extends Authenticator

{

 private String user, password;

 public ProxyAuthenticator(String user, String password)

 {

 this.user = user;

 this.password = password;

 }

 protected PasswordAuthentication getPasswordAuthentication()

 {

 return new PasswordAuthentication(user, password.toCharArray());

 }

}

...

Authenticator.setDefault(new ProxyAuthenticator(PROXY_USER, PROXY_PWD));

WildFly 10

JBoss Community Documentation Page of 520 532

35.3.17 Discovery

Apache CXF includes support for (), which is a protocol toWeb Services Dynamic Discovery WS-Discovery

enable dynamic discovery of services available on the local network. The protocol implies using a basedUDP

multicast transport to announce new services and probe for existing services. A managed mode where a

discovery proxy is used to reduce the amount of required multicast traffic is also covered by the protocol.

JBossWS integrates the provided by Apache CXF into the application server.WS-Discovery functionalities

Enabling WS-Discovery
Apache CXF enables depending on the availability of its runtime component; given that'sWS-Discovery

always shipped in the application server, JBossWS integration requires using the

 usage for enabling for a given deployment. Bycxf.ws-discovery.enabled property WS-Discovery

default is disabled on the application server. Below is an example of WS-Discovery jboss-webservices.xml

descriptor to be used for enabling :WS-Discovery

<webservices xmlns="http://www.jboss.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 version="1.2" xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

 <property>

 <name>cxf.ws-discovery.enabled</name>

 <value>true</value>

 </property>

</webservices>

By default, a service endpoint (SOAP-over-UDP bound) will be started the first time aWS-Discovery

WS-Discovery enabled deployment is processed on the application server. Every ws endpoint belonging to

 enabled deployments will be automatically registered into such a serviceWS-Discovery WS-Discovery

endpoint (messages). The service will reply to and messages received on port Hello Probe Resolve UDP

 (including multicast messages sent to address , as per).3702 IPv4 239.255.255.250 specification

Endpoints will eventually be automatically unregistered using messages upon undeployment.Bye

Probing services
Apache CXF comes with a API that can be used to probe / resolve services. When runningWS-Discovery

in-container, a JBoss module to the module is to be set to havedependency org.apache.cxf.impl

access to client functionalities.WS-Discovery

The class provides the and methods whichorg.apache.cxf.ws.discovery.WSDiscoveryClient probe resolve

also accepts filters on scopes. Users can rely on them for locating available endpoints on the network.

Please have a look at the JBossWS testsuite which includes a on CXF WS-Discovery usage.sample

http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
http://cxf.apache.org/docs/ws-discovery.html
https://docs.jboss.org/author/display/WFLY8/Advanced+User+Guide#AdvancedUserGuide-Configurationthroughdeploymentdescriptor
http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html#_Toc234231816
https://docs.jboss.org/author/display/WFLY8/JBoss+Modules+and+WS+applications
http://svn.apache.org/viewvc/cxf/tags/cxf-2.7.5/services/ws-discovery/ws-discovery-api/src/main/java/org/apache/cxf/ws/discovery/WSDiscoveryClient.java?revision=1481139&view=markup
http://anonsvn.jboss.org/repos/jbossws/stack/cxf/tags/jbossws-cxf-4.2.0.Beta1/modules/testsuite/cxf-tests/src/test/java/org/jboss/test/ws/jaxws/samples/wsdd/WSDiscoveryTestCase.java

WildFly 10

JBoss Community Documentation Page of 521 532

35.3.18 Policy

Apache CXF WS-Policy support

Contract-first approach

Code-first approach

JBossWS additions

Policy sets

Apache CXF WS-Policy support
JBossWS policy support rely on the Apache CXF WS-Policy framework, which is compliant with the Web

 and specifications.Services Policy 1.5 - Framework Web Services Policy 1.5 - Attachment

Users can work with policies in different ways:

by adding policy assertions to wsdl contracts and letting the runtime consume them and behave

accordingly;

by specifying endpoint policy attachments using either CXF annotations or features.

Of course users can also make direct use of the Apache CXF policy framework, ,defining custom assertions

etc.

Finally, JBossWS provides some additional annotations for simplified policy attachment.

Contract-first approach
WS-Policies can be attached and referenced in wsdl elements (the specifications describe all possible

alternatives). Apache CXF automatically recognizes, reads and uses policies defined in the wsdl.

Users should hence develop endpoints using the approach, that is explicitly providing thecontract-first

contract for their services. Here is a excerpt taken from a wsdl including a WS-Addressing policy:

<wsdl:definitions name="Foo" targetNamespace="http://ws.jboss.org/foo"

...

<wsdl:service name="FooService">

 <wsdl:port binding="tns:FooBinding" name="FooPort">

 <soap:address location="http://localhost:80800/foo"/>

 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy">

 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

 </wsdl:port>

</wsdl:service>

</wsdl:definitions>

Of course, CXF also acts upon policies specified in wsdl documents consumed on client side.

http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
http://cxf.apache.org/docs/developing-assertions.html

WildFly 10

JBoss Community Documentation Page of 522 532

Code-first approach
For those preferring code-first (java-first) endpoint development, Apache CXF comes with

 and org.apache.cxf.annotations.Policy org.apache.cxf.annotations.Policies

annotations to be used for attaching policy fragments to the wsdl generated at deploy time.

Here is an example of a code-first endpoint including @Policy annotation:

import javax.jws.WebService;

import org.apache.cxf.annotations.Policy;

@WebService(portName = "MyServicePort",

 serviceName = "MyService",

 name = "MyServiceIface",

 targetNamespace = "http://www.jboss.org/jbossws/foo")

@Policy(placement = Policy.Placement.BINDING, uri = "JavaFirstPolicy.xml")

public class MyServiceImpl {

 public String sayHello() {

 return "Hello World!";

 }

}

The referenced descriptor is to be added to the deployment and will include the policy to be attached; the

attachment position in the contracts is defined through the attribute. Here is a descriptorplacement

example:

<?xml version="1.0" encoding="UTF-8" ?>

<wsp:Policy wsu:Id="MyPolicy" xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:SupportingTokens

xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:UsernameToken

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient">

<wsp:Policy>

 <sp:WssUsernameToken10/>

 </wsp:Policy>

 </sp:UsernameToken>

 </wsp:Policy>

 </sp:SupportingTokens>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

WildFly 10

JBoss Community Documentation Page of 523 532

JBossWS additions

Policy sets
Both approaches above require users to actually write their policies' assertions; while this offer great

flexibility and control of the actual contract, providing the assertions might end up being quite a challenging

task for complex policies. For this reason, the JBossWS integration provides , which are basicallypolicy sets

pre-defined groups of policy assertions corresponding to well known / common needs. Each set has a label

allowing users to specify it in the annotation to have@org.jboss.ws.api.annotation.PolicySets

the policy assertions for that set attached to the annotated endpoint. Multiple labels can also be specified.

Here is an example of the @PolicySets annotation on a service endpoint interface:

import javax.jws.WebService;

import org.jboss.ws.api.annotation.PolicySets;

@WebService(name = "EndpointTwo", targetNamespace = "http://org.jboss.ws.jaxws.cxf/jbws3648")

@PolicySets({"WS-RM_Policy_spec_example", "WS-SP-EX223_WSS11_Anonymous_X509_Sign_Encrypt",

"WS-Addressing"})

public interface EndpointTwo

{

 String echo(String input);

}

The three sets specified in @PolicySets will cause the wsdl generated for the endpoint having this interface

to be enriched with some policy assertions for WS-RM, WS-Security and WS-Addressing.

The labels' list of known sets is stored in the

META-INF/policies/org.jboss.wsf.stack.cxf.extensions.policy.PolicyAttachmentStore

file within the (maven artifact).jbossws-cxf-client.jar org.jboss.ws.cxf:jbossws-cxf-client

Actual policy fragments for each set are also stored in the same artifact at

.META-INF/policies/<set-label>-<attachment-position>.xml

Here is a list of the available policy sets:

Label Description

WS-Addressing Basic

WS-Addressing

policy

WS-RM_Policy_spec_example The basic WS-RM

policy example in

the WS-RM

specification

WildFly 10

JBoss Community Documentation Page of 524 532

WS-SP-EX2121_SSL_UT_Supporting_Token The group of policy

assertions used in

the section 2.1.2.1

example of the

WS-Security Policy

Examples 1.0

specification

WS-SP-EX213_WSS10_UT_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.1.3

example of the

WS-Security Policy

Examples 1.0

specification

WS-SP-EX214_WSS11_User_Name_Cert_Sign_Encrypt The group of policy

assertions used in

the section 2.1.4

example of the

WS-Security Policy

Examples 1.0

specification

WS-SP-EX221_WSS10_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.1

example of the

WS-Security Policy

Examples

1.0 specification

WS-SP-EX222_WSS10_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.2

example of the

WS-Security Policy

Examples

1.0 specification

WS-SP-EX223_WSS11_Anonymous_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.3

example of the

WS-Security Policy

Examples

1.0 specification

WildFly 10

JBoss Community Documentation Page of 525 532

WS-SP-EX224_WSS11_Mutual_Auth_X509_Sign_Encrypt The group of policy

assertions used in

the section 2.2.4

example of the

WS-Security Policy

Examples

1.0 specification

AsymmetricBinding_X509v1_TripleDesRsa15_EncryptBeforeSigning_ProtectTokens A WS-Security

policy for

asymmetric binding

(encrypt before

signing) using

X.509v1 tokens,

3DES + RSA 1.5

algorithms and with

token protections

enabled

AsymmetricBinding_X509v1_GCM256OAEP_ProtectTokens The same as

before, but using

custom Apache

CXF algorithm suite

including GCM 256

+ RSA OAEP

algorithms

Always verify the contents of the generated wsdl contract, as policy sets are potentially subject to

updates between JBossWS releases. This is especially important when dealing with security

related policies; the provided sets are to be considered as convenient configuration options only;

users remain responsible for the policies in their contracts.

The interface has convenientorg.jboss.wsf.stack.cxf.extensions.policy.Constants

String constants for the available policy set labels.

If you feel a new set should be added, just propose it by writing the user forum!

WildFly 10

JBoss Community Documentation Page of 526 532

35.3.19 Published WSDL customization

Endpoint address rewrite

System property references

Endpoint address rewrite
JBossWS supports the rewrite of the element of endpoints published in WSDL contracts. <soap:address>

This feature is useful for controlling the server address that is advertised to clients for each endpoint. The

rewrite mechanism is configured at server level through a set of elements in the webservices subsystem of

the WildFly management model. Please refer to the container documentation for details on the options

supported in the selected container version. Below is a list of the elements available in the latest WildFly

sources:

WildFly 10

JBoss Community Documentation Page of 527 532

Name Type Description

modify-wsdl-address boolean This boolean enables and disables the address rewrite functionality.

When modify-wsdl-address is set to true and the content of

<soap:address> is a valid URL, JBossWS will rewrite the URL using the

values of wsdl-host and wsdl-port or wsdl-secure-port.

When modify-wsdl-address is set to false and the content of

<soap:address> is a valid URL, JBossWS will not rewrite the URL. The

<soap:address> URL will be used.

When the content of <soap:address> is not a valid URL, JBossWS will

rewrite it no matter what the setting of modify-wsdl-address.

If modify-wsdl-address is set to true and wsdl-host is not defined or

explicitly set to the content of'jbossws.undefined.host'

<soap:address> URL is use. JBossWS uses the requester's host when

rewriting the <soap:address>

When modify-wsdl-address is not defined JBossWS uses a default value

of true.

wsdl-host string The hostname / IP address to be used for rewriting .<soap:address>

If is set to , JBossWS uses thewsdl-host jbossws.undefined.host

requester's host when rewriting the <soap:address>

When wsdl-host is not defined JBossWS uses a default value of '

'.jbossws.undefined.host

wsdl-port int Set this property to explicitly define the HTTP port that will be used for

rewriting the SOAP address.

Otherwise the HTTP port will be identified by querying the list of installed

HTTP connectors.

wsdl-secure-port int Set this property to explicitly define the HTTPS port that will be used for

rewriting the SOAP address.

Otherwise the HTTPS port will be identified by querying the list of

installed HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the URI scheme to use for rewriting

 . Valid values are and . This<soap:address> http https

configuration overrides scheme computed by processing the endpoint

(even if a transport guarantee

is specified). The provided values for and wsdl-port

 (or their default values) are used depending onwsdl-secure-port

specified scheme.

wsdl-path-rewrite-rule string This string defines a SED substitution command (e.g.,

's/regexp/replacement/g') that JBossWS executes against the path

component of each <soap:address> URL published from the server.

When wsdl-path-rewrite-rule is not defined, JBossWS retains the original

path component of each <soap:address> URL.

When 'modify-wsdl-address' is set to "false" this element is ignored.

WildFly 10

JBoss Community Documentation Page of 528 532

Additionally, users can override the server level configuration by requesting a specific rewrite behavior for a

given endpoint deployment. That is achieved by setting one of the following properties within a

 descriptor:jboss-webservices.xml

Property Corresponding server option

wsdl.soapAddress.rewrite.modify-wsdl-address modify-wsdl-address

wsdl.soapAddress.rewrite.wsdl-host wsdl-host

wsdl.soapAddress.rewrite.wsdl-port wsdl-port

wsdl.soapAddress.rewrite.wsdl-secure-port wsdl-secure-port

wsdl.soapAddress.rewrite.wsdl-path-rewrite-rule wsdl-path-rewrite-rule

wsdl.soapAddress.rewrite.wsdl-uri-scheme wsdl-uri-scheme

Here is an example of partial overriding of the default configuration for a specific deployment:

<?xml version="1.1" encoding="UTF-8"?>

<webservices version="1.2"

 xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

 <property>

 <name>wsdl.soapAddress.rewrite.wsdl-uri-scheme</name>

 <value>https</value>

 </property>

 <property>

 <name>wsdl.soapAddress.rewrite.wsdl-host</name>

 <value>foo</value>

 </property>

</webservices>

WildFly 10

JBoss Community Documentation Page of 529 532

System property references
System property references wrapped within "@" characters are expanded when found in WSDL attribute and

element values. This allows for instance including multiple WS-Policy declarations in the contract and

selecting the policy to use depending on a server wide system property; here is an example:

<wsdl:definitions ...>

 ...

 <wsdl:binding name="ServiceOneSoapBinding" type="tns:EndpointOne">

 ...

 <wsp:PolicyReference URI="#@org.jboss.wsf.test.JBWS3628TestCase.policy@"/>

 <wsdl:operation name="echo">

 ...

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ServiceOne">

 <wsdl:port binding="tns:ServiceOneSoapBinding" name="EndpointOnePort">

 <soap:address location="http://localhost:8080/jaxws-cxf-jbws3628/ServiceOne"/>

 </wsdl:port>

 </wsdl:service>

 <wsp:Policy

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy" wsu:Id="WS-RM_Policy">

 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

 ...

 </wsrmp:RMAssertion>

 </wsp:Policy>

 <wsp:Policy

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy"

 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" wsu:Id="WS-Addressing_policy">

 <wsam:Addressing>

 <wsp:Policy/>

 </wsam:Addressing>

 </wsp:Policy>

</wsdl:definitions>

If the system property is defined and set to "org.jboss.wsf.test.JBWS3628TestCase.policy

", WS-Addressing will be enabled for the endpoint defined by the contract above.WS-Addressing_policy

WildFly 10

JBoss Community Documentation Page of 530 532

35.4 JBoss Modules and WS applications

Setting module dependencies

Using MANIFEST.MF

Using JAXB

Using Apache CXF

Client side WS aggregation module

Annotation scanning

Using jboss-deployment-descriptor.xml

The JBoss Web Services functionalities are provided by a given set of modules / libraries installed on

WildFly, which are organized into JBoss Modules modules. In particular the and org.jboss.as.webservices.*

 modules belong to the JBossWS - WildFly integration. Users should not need to changeorg.jboss.ws.*

anything in them.

While users are of course allowed to provide their own modules for their custom needs, below is a brief

collection of suggestions and hints around modules and webservices development on WildFly.

35.4.1 Setting module dependencies

On WildFly the user deployment classloader does not have any visibility over JBoss internals; so for instance

you can't use JBossWS classes unless you explicitly set a dependency to thedirectly implementation

corresponding module. As a consequence, users need to declare the module dependencies they want to be

added to their deployment.

The JBoss Web Services APIs are always available by default whenever the webservices

subsystem is available on AS7. So users just use them, no need for explicit dependencies

declaration for those modules.

Using MANIFEST.MF
The convenient method for configuring deployment dependencies is adding them into the MANIFEST.MF

file:

Manifest-Version: 1.0

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client services export,foo.bar

Here above and are the modules you want to set dependenciesorg.jboss.ws.cxf.jbossws-cxf-client foo.bar

to; tells the modules framework that you want to also import declarations fromservices META-INF/services/..

the dependency, while exports the classes from the module to any other module that might beexport

depending on the module implicitly created for your deployment.

WildFly 10

JBoss Community Documentation Page of 531 532

When using annotations on your endpoints / handlers such as the Apache CXF ones

(@InInterceptor, @GZIP, ...) remember to add the proper module dependency in your manifest.

Otherwise your annotations are not picked up and added to the annotation index by WildFly,

resulting in them being completely and silently ignored.

Using JAXB
In order for successfully directly using JAXB contexts, etc. in your client or endpoint running in-container, you

need to properly setup a JAXB implementation; that is performed setting the following dependency:

Dependencies: com.sun.xml.bind services export

Using Apache CXF
In order for using Apache CXF APIs and implementation classes you need to add a dependency to the

 (API) module and / or (implementation) module:org.apache.cxf org.apache.cxf.impl

Dependencies: org.apache.cxf services

However, please note that would not come with any JBossWS-CXF customizations nor additional

extensions. For this reason, and generally speaking for simplifying user configuration, a client side

aggregation module is available with all the WS dependencies users might need.

Client side WS aggregation module
Whenever you simply want to use all the JBoss Web Services feature/functionalities, you can set a

dependency to the convenient client module.

Dependencies: org.jboss.ws.cxf.jbossws-cxf-client services

Please note the option above: that's strictly required in order for you to get the JBossWS-CXFservices

version of classes that are retrieved using the , the for instance.Service API org.apache.cxf.Bus

Be careful as issues because of misconfiguration here can be quite hard to track down, because

the Apache CXF behaviour would be sensibly different.

The option is almost always needed when declaring dependencies on services

 and modules. The reason for this is in it affectingorg.jboss.ws.cxf.jbossws-cxf-client org.apache.cxf

the loading of classes through the , which is what is used to wire most of the JBossWSService API

components as well as all Apache CXF Bus extensions.

WildFly 10

JBoss Community Documentation Page of 532 532

Annotation scanning
The application server uses an annotation index for detecting JAX-WS endpoints in user deployments. When

declaring WS endpoints whose class belongs to a different module (for instance referring that in the

 descriptor), be sure to have an type dependency in place. Without that, yourweb.xml annotations

endpoints would simply be ignored as they won't appear as annotated classes to the webservices

subsystem.

Dependencies: org.foo annotations

Using jboss-deployment-descriptor.xml
In some circumstances, the convenient approach of setting module dependencies in MANIFEST.MF might

not work. An example is the need for importing/exporting specific resources from a given module

dependency. Users should hence add a jboss-deployment-structure.xml descriptor to their deployment and

set module dependencies in it.

	WildFly Developer Guide
	Target Audience
	Prerequisites

	Class loading in WildFly
	Deployment Module Names
	Automatic Dependencies
	Class Loading Precedence
	WAR Class Loading
	EAR Class Loading
	Class Path Entries

	Global Modules
	JBoss Deployment Structure File
	Accessing JDK classes
	The "jboss.api" property and application use of modules shipped with WildFly

	Implicit module dependencies for deployments
	What's an implicit module dependency?
	How and when is an implicit module dependency added?
	Which are the implicit module dependencies?

	How do I migrate my application from JBoss AS 5 or AS 6 to WildFly?
	EJB invocations from a remote standalone client using JNDI
	Deploying your EJBs on the server side:
	Writing a remote client application for accessing and invoking the EJBs deployed on the server
	Setting up EJB client context properties
	Summary

	EJB invocations from a remote server
	Application packaging
	Beans
	Security
	Configuring a user on the "Destination Server"
	Start the "Destination Server"
	Deploying the application
	Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server"
	Start the "Client Server"
	Create a security realm on the client server
	Create a outbound-socket-binding on the "Client Server"
	Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding"
	Packaging the client application on the "Client Server"
	Contents on jboss-ejb-client.xml
	Deploy the client application
	Client code invoking the bean

	Remote EJB invocations via JNDI - Which approach to use?
	JBoss EJB 3 reference guide
	Resource Adapter for Message Driven Beans
	Specification of Resource Adapter using Metadata Annotations

	Run-as Principal
	Specification of Run-as Principal using Metadata Annotations

	Security Domain
	Specification of Security Domain using Metadata Annotations

	Transaction Timeout
	Specification of Transaction Timeout with Metadata Annotations
	Specification of Transaction Timeout in the Deployment Descriptor
	Example of trans-timeout

	Timer service
	Single event timer
	Recurring timer
	Calendar timer
	Programmatic calendar timer
	Annotated calendar timer

	JPA reference guide
	Introduction
	Update your Persistence.xml for Hibernate 5.0
	Entity manager
	Application-managed entity manager
	Container-managed entity manager
	Persistence Context
	Transaction-scoped Persistence Context
	Extended Persistence Context
	Extended Persistence Context Inheritance

	Entities
	Deployment
	Troubleshooting
	Using the Hibernate 5.x JPA persistence provider
	Hibernate ORM 3.x integration is not included
	Using the Infinispan second level cache
	Replacing the current Hibernate 5.x jars with a newer version
	Using Hibernate Search
	Packaging the Hibernate JPA persistence provider with your application
	Using OpenJPA
	Using EclipseLink
	Using DataNucleus
	Native Hibernate use
	Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory
	Hibernate properties
	Persistence unit properties
	Determine the persistence provider module
	Binding EntityManagerFactory/EntityManager to JNDI
	Community
	People who have contributed to the WildFly JPA layer:

	OSGi developer guide
	JNDI reference guide
	Overview
	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI
	remote:
	ejb:

	Spring applications development and migration guide
	Dependencies and Modularity
	Persistence usage guide
	Native Spring/Hibernate applications
	JPA-based applications
	Using server-deployed persistence units
	Using Spring-managed persistence units
	Placement of the persistence unit definitions

	Managing dependencies

	All WildFly documentation
	Application Client Reference
	Getting Started
	Connecting to more than one host
	Example

	CDI Reference
	Using CDI Beans from outside the deployment
	Suppressing implicit bean archives
	Per-deployment configuration
	
	Global configuration

	Development mode
	Per-deployment configuration
	
	Global configuration

	Non-portable mode
	Per-deployment configuration
	Global configuration

	Class Loading in WildFly
	Deployment Module Names
	Automatic Dependencies
	Class Loading Precedence
	WAR Class Loading
	EAR Class Loading
	Class Path Entries

	Global Modules
	JBoss Deployment Structure File
	Accessing JDK classes
	The "jboss.api" property and application use of modules shipped with WildFly

	Deployment Descriptors used In WildFly
	Development Guidelines and Recommended Practices
	EE Concurrency Utilities
	Overview
	Context Service
	Managed Thread Factory
	Managed Executor Service
	Managed Scheduled Executor Service

	EJB 3 Reference Guide
	Resource Adapter for Message Driven Beans
	Specification of Resource Adapter using Metadata Annotations

	Run-as Principal
	Specification of Run-as Principal using Metadata Annotations

	Security Domain
	Specification of Security Domain using Metadata Annotations

	Transaction Timeout
	Specification of Transaction Timeout with Metadata Annotations
	Specification of Transaction Timeout in the Deployment Descriptor
	Example of trans-timeout

	Timer service
	Single event timer
	Recurring timer
	Calendar timer
	Programmatic calendar timer
	Annotated calendar timer

	Container interceptors
	Overview
	Typical EJB invocation call path on the server
	Feature request for WildFly
	Configuring container interceptors
	Container interceptor positioning in the interceptor chain
	Semantic difference between container interceptor(s) and Java EE interceptor(s) API
	Testcase

	EJB3 Clustered Database Timers
	Overview
	Setup
	Non clustered timers

	Using clustered timers in a deployment
	Technical details

	EJB3 subsystem configuration guide
	<session-bean>
	<stateless>
	<stateful>
	<singleton>

	<mdb>
	<resource-adaptor-ref>
	<bean-instance-pool-ref>

	<entity-bean>
	<bean-instance-pool-ref>

	
	<pools>
	<caches>
	<passivation-stores>
	<async>
	<timer-service>
	<data-store>

	<remote>
	<thread-pools>
	<iiop>
	<in-vm-remote-interface-invocation>

	EJB IIOP Guide
	Enabling IIOP
	Enabling JTS
	Dynamic Stub's
	Configuring EJB IIOP settings via jboss-ejb3.xml

	jboss-ejb3.xml Reference
	Example File
	The root namespace http://www.jboss.com/xml/ns/javaee
	Assembly descriptor namespaces
	The security namespace urn:security
	The resource adaptor namespace urn:resource-adapter-binding
	The IIOP namespace urn:iiop
	The pool namespace urn:ejb-pool:1.0
	The cache namespace urn:ejb-cache:1.0
	The clustering namespace urn:clustering:1.0

	Message Driven Beans Controlled Delivery
	Delivery Active
	Start-delivery and Stop-Delivery

	Delivery Groups
	Reading and Writing the Delivery State of a Delivery Group
	Using Delivery Groups

	Clustered Singleton Delivery
	Using Multiple MDB Delivery Control Mechanisms

	Securing EJBs
	Overview
	Security Domain
	Absence of security domain configuration but presence of other security metadata
	Access to methods without explicit security metadata, on a secured bean

	EJB invocations from a remote client using JNDI
	Deploying your EJBs on the server side:
	Writing a remote client application for accessing and invoking the EJBs deployed on the server
	Setting up EJB client context properties
	Summary

	EJB invocations from a remote server instance
	Application packaging
	Beans
	Security
	Configuring a user on the "Destination Server"
	Start the "Destination Server"
	Deploying the application
	Configuring the "Client Server" to point to the EJB remoting connector on the "Destination Server"
	Start the "Client Server"
	Create a security realm on the client server
	Create a outbound-socket-binding on the "Client Server"
	Create a "remote-outbound-connection" which uses this newly created "outbound-socket-binding"
	Packaging the client application on the "Client Server"
	Contents on jboss-ejb-client.xml
	Deploy the client application
	Client code invoking the bean

	Example Applications - Migrated to WildFly
	Example Applications Migrated from Previous Releases
	Seam 2 JPA example
	Seam 2 DVD Store example
	Seam 2 Booking example
	Seam 2 Booking - step-by-step migration of binaries
	jBPM-Console application
	Order application used for performance testing
	Migrate example application

	Example Applications Based on EE6
	Porting the Order Application from EAP 5.1 to WildFly 8
	Overview of the application
	Summary of changes
	Code Changes
	Modify JNDI lookup code

	Modify logging code
	Modify the code to use Infinispan for 2nd level cache
	EAR Packaging Changes
	Summary

	Seam 2 Booking Application - Migration of Binaries from EAP5.1 to WildFly
	Step 1: Build and deploy the EAP5.1 version of the Seam Booking application
	Step 2: Debug and resolve deployment errors and exceptions
	First Issue: java.lang.ClassNotFoundException: javax.faces.FacesException
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.apache.commons.logging.Log
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.dom4j.DocumentException
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.hibernate.validator.InvalidValue
	What it means:
	How to resolve it:

	Next Issue: java.lang.InstantiationException: org.jboss.seam.jsf.SeamApplicationFactory
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.apache.commons.collections.ArrayStack
	What it means:
	How to resolve it:

	Next Issue: Services with missing/unavailable dependencies
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassNotFoundException: org.hibernate.cache.HashtableCacheProvider
	What it means:
	How to resolve it:

	Next Issue: java.lang.ClassCastException: org.hibernate.cache.HashtableCacheProvider
	What it means:
	How to resolve it:

	No more issues: Deployment errors should be resolved

	Step 3: Debug and resolve runtime errors and exceptions
	First Issue: javax.naming.NameNotFoundException: Name 'jboss-seam-booking' not found in context ''
	What it means:
	How to resolve it:

	Step 4: Access the application
	Summary of Changes

	How do I migrate my application from AS7 to WildFly
	About this Document
	Overview of WildFly
	Server Migration
	JacORB Subsystem
	JacORB Subsystem Configuration

	JBoss Web Subsystem
	JBoss Web Subsystem Configuration
	WebSockets

	Messaging Subsystem
	Messaging Subsystem Configuration
	Management model
	XML Configuration
	Messaging Interceptors
	JMS Destinations

	Messaging Logging
	Messaging Data

	Application Migration
	EJBs
	CMP Entity EJBs
	EJB Client
	Default Remote Connection Port
	Default Connector

	JMS
	Proprietary JMS Resource Definitions
	External JMS Clients

	JPA (and Hibernate)
	Applications That Plan to Use Hibernate ORM 5.0
	Applications that currently use Hibernate ORM 4.0 - 4.3
	Applications that currently use Hibernate 3

	Web Applications
	JBoss Web Valves

	Web Services
	CXF Spring Webservices
	JAX-RPC
	JAX-RS 2.0
	REST Client API

	Application Clustering
	HA Singleton
	Stateful Session EJB Clustering
	Web Session Clustering

	Other Specifications and Frameworks
	Remote JNDI Clients
	JSR-88
	Module Dependencies

	How do I migrate my application to WildFly from other application servers
	Choose from the list below:
	How do I migrate my application from WebLogic to WildFly
	Introduction
	About this Guide
	

	How do I migrate my application from WebSphere to WildFly
	Introduction
	About this Guide

	Implicit module dependencies for deployments
	What's an implicit module dependency?
	How and when is an implicit module dependency added?
	Which are the implicit module dependencies?

	JAX-RS Reference Guide
	Subclassing javax.ws.rs.core.Application and using @ApplicationPath
	Subclassing javax.ws.rs.core.Application and using web.xml
	Using web.xml

	JNDI Reference
	Overview
	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI
	remote:
	ejb:

	Local JNDI
	Binding entries to JNDI
	Using a deployment descriptor
	Programatically
	Java EE Applications
	
	WildFly Modules and Extensions

	

	Naming Subsystem Configuration

	Retrieving entries from JNDI
	Resource Injection
	Standard Java SE JNDI API

	Remote JNDI Reference
	Remote JNDI
	remote:
	ejb:

	Remote JNDI Access
	http-remoting:
	ejb:

	JPA Reference Guide
	Introduction
	Update your Persistence.xml for Hibernate 5.0
	Entity manager
	Application-managed entity manager
	Container-managed entity manager
	Persistence Context
	Transaction-scoped Persistence Context
	Extended Persistence Context
	Extended Persistence Context Inheritance

	Entities
	Deployment
	Troubleshooting
	Using the Hibernate 5.x JPA persistence provider
	Hibernate ORM 3.x integration is not included
	Using the Infinispan second level cache
	Replacing the current Hibernate 5.x jars with a newer version
	Using Hibernate Search
	Packaging the Hibernate JPA persistence provider with your application
	Using OpenJPA
	Using EclipseLink
	Using DataNucleus
	Native Hibernate use
	Injection of Hibernate Session and SessionFactoryInjection of Hibernate Session and SessionFactory
	Hibernate properties
	Persistence unit properties
	Determine the persistence provider module
	Binding EntityManagerFactory/EntityManager to JNDI
	Community
	People who have contributed to the WildFly JPA layer:

	OSGi
	Remote EJB invocations via JNDI - EJB client API or remote-naming project
	Purpose
	History
	Overview
	Client code relying on jndi.properties in classpath
	How does remoting naming work
	JNDI operations allowed using remote-naming project
	Pre-requisites of remotely accessible JNDI objects
	JNDI lookup strings for remote clients backed by the remote-naming project
	How does remote-naming project implementation transfer the JNDI objects to the clients

	Summary
	Remote EJB invocations backed by the remote-naming project
	Why use the EJB client API approach then?
	Is the lookup optimization applicable for all bean types?
	Restrictions for EJB's

	Scoped EJB client contexts
	Overview
	Potential shortcomings of a single EJB client context
	Scoped EJB client contexts
	Lifecycle management of scoped EJB client contexts
	How to close EJB client contexts?
	How to close scoped EJB client contexts?
	Can that code be simplified a bit?

	Can't the scoped EJB client context be automatically closed by the EJB client API when the JNDI context is no longer in scope (i.e. on GC)?

	Spring applications development and migration guide
	Dependencies and Modularity
	Persistence usage guide
	Native Spring/Hibernate applications
	JPA-based applications
	Using server-deployed persistence units
	Using Spring-managed persistence units
	Placement of the persistence unit definitions

	Managing dependencies

	Sharing sessions between wars in an ear
	Webservices reference guide
	JAX-WS User Guide
	Web Service Endpoints
	Plain old Java Object (POJO)
	The endpoint as a web application
	Packaging the endpoint
	Accessing the generated WSDL

	EJB3 Stateless Session Bean (SLSB)
	Packaging the endpoint
	Accessing the generated WSDL

	Endpoint Provider

	Web Service Clients
	Service
	Service Usage
	Static case
	Dynamic case

	Handler Resolver
	Executor

	Dynamic Proxy
	WebServiceRef
	Dispatch
	Asynchronous Invocations
	Oneway Invocations
	Timeout Configuration

	Common API
	Handler Framework
	Logical Handler
	Protocol Handler
	Service endpoint handlers
	Service client handlers

	Message Context
	Logical Message Context
	SOAP Message Context

	Fault Handling

	JAX-WS Annotations
	javax.xml.ws.ServiceMode
	javax.xml.ws.WebFault
	javax.xml.ws.RequestWrapper
	javax.xml.ws.ResponseWrapper
	javax.xml.ws.WebServiceClient
	javax.xml.ws.WebEndpoint
	javax.xml.ws.WebServiceProvider
	javax.xml.ws.BindingType
	javax.xml.ws.WebServiceRef
	javax.xml.ws.WebServiceRefs
	javax.xml.ws.Action
	javax.xml.ws.FaultAction

	JSR-181 Annotations
	javax.jws.WebService
	javax.jws.WebMethod
	javax.jws.OneWay
	javax.jws.WebParam
	javax.jws.WebResult
	javax.jws.SOAPBinding
	javax.jws.HandlerChain

	JAX-WS Tools
	Server side
	Bottom-Up (Using wsprovide)
	Top-Down (Using wsconsume)

	Client Side
	wsconsume
	Command Line Tool
	Examples

	Maven Plugin
	Examples

	Ant Task
	Examples

	wsprovide
	Command Line Tool
	Examples

	Maven Plugin
	Examples

	Ant Task
	Examples

	Advanced User Guide
	Logging
	JAX-WS Handler approach
	Apache CXF approach
	System property
	Manual interceptor addition and logging feature

	WS-* support
	Address rewrite
	Server configuration options
	Dynamic rewrite

	Configuration through deployment descriptor
	context-root element
	config-name and config-file elements
	property element
	port-component element
	webservice-description element

	Schema validation of SOAP messages
	JAXB Introductions
	WSDL system properties expansion
	Predefined client and endpoint configurations
	Overview
	Assigning configurations
	Endpoint configuration assignment
	Endpoint Configuration Deployment Descriptor
	Application server configurations
	Standard configurations
	Handlers classloading
	Examples

	EndpointConfig annotation
	JAXWS Feature
	Explicit setup through API

	Automatic configuration from default descriptors
	Automatic configuration assignment from container setup

	Authentication
	Authentication
	Specify the security domain
	Use BindingProvider to set principal/credential
	Using HTTP Basic Auth for security

	JASPI Authentication

	Apache CXF integration
	JBossWS integration layer with Apache CXF
	Building WS applications the JBoss way
	Portable applications
	Direct Apache CXF API usage

	Bus usage
	Creating a Bus instance
	Using existing Bus instances
	Bus selection strategies for JAXWS clients
	Thread bus strategy (THREAD_BUS)
	New bus strategy (NEW_BUS)
	Thread context classloader bus strategy (TCCL_BUS)
	Strategy configuration

	Server Side Integration Customization
	Deployment descriptor properties
	WorkQueue configuration
	Policy alternative selector
	MBean management
	Schema validation
	Interceptors
	Features
	WS-Discovery enablement

	Apache CXF interceptors
	Apache CXF features
	Properties driven bean creation
	HTTPConduit configuration

	WS-Addressing
	Enabling WS-Addressing
	WS-Addressing Policy
	Example
	Endpoint
	Client

	WS-Security
	WS-Security overview
	JBoss WS-Security support
	Apache CXF WS-Security implementation
	WS-Security Policy support

	JBossWS configuration additions
	Apache CXF annotations

	Examples
	Signature and encryption
	Endpoint
	Client
	Endpoint serving multiple clients

	Authentication and authorization
	Endpoint
	Client

	Secure transport
	Secure conversation

	WS-Trust and STS
	WS-Trust overview
	Security Token Service
	Apache CXF support
	A Basic WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web service provider Interface
	Web service provider Implementation
	ServerCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service (STS)
	STS WSDL
	STS Implementation
	STSCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF
	Security Domain

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Requester Crypto properties and keystore files

	PicketLink STS

	ActAs WS-Trust Scenario
	ActAs WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web Service Interface
	Web Service Implementation
	ActAsCallbackHandler
	UsernameTokenCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service
	STS Implementation class
	STSCallbackHandler

	Web service requester
	Web service requester Implementation

	OnBehalfOf WS-Trust Scenario
	OnBehalfOf WS-Trust Scenario
	Web service provider
	Web service provider WSDL
	Web Service Interface
	Web Service Implementation
	OnBehalfOfCallbackHandler

	Web service requester
	Web service requester Implementation

	SAML Bearer Assertion Scenario
	SAML Bearer Assertion Scenario
	Web service Provider
	Web service provider WSDL
	SSL configuration
	Web service Interface
	Web service Implementation
	Crypto properties and keystore files
	MANIFEST.MF

	Bearer Security Token Service
	Security Domain
	STS's WSDL
	STS's implementation class
	STSBearerCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Crypto properties and keystore files

	SAML Holder-Of-Key Assertion Scenario
	SAML Holder-Of-Key Assertion Scenario
	Web service Provider
	Web service provider WSDL
	SSL configuration
	Web service Interface
	Web service Implementation
	Crypto properties and keystore files
	MANIFEST.MF

	Security Token Service
	Security Domain
	STS's WSDL
	STS's implementation class
	HolderOfKeyCallbackHandler
	Crypto properties and keystore files
	MANIFEST.MF

	Web service requester
	Web service requester Implementation
	ClientCallbackHandler
	Crypto properties and keystore files

	WS-Reliable Messaging
	Enabling WS-Reliable Messaging
	Example
	Endpoint
	Client
	Additional configuration

	SOAP over JMS
	Configuring SOAP over JMS
	Examples
	JMS endpoint only deployment
	JMS and HTTP endpoints deployment
	Use of Endpoint.publish() API

	HTTP Proxy
	Configuration

	WS-Discovery
	Enabling WS-Discovery
	Probing services

	WS-Policy
	Apache CXF WS-Policy support
	Contract-first approach
	Code-first approach

	JBossWS additions
	Policy sets

	Published WSDL customization
	Endpoint address rewrite
	System property references

	JBoss Modules and WS applications
	Setting module dependencies
	Using MANIFEST.MF
	Using JAXB
	Using Apache CXF
	Client side WS aggregation module
	Annotation scanning

	Using jboss-deployment-descriptor.xml

