
WildFly 10

JBoss Community Documentation Page of 1 226

Extending WildFly

Exported from at 2017-06-19 14:18:46 EDTJBoss Community Documentation Editor

Copyright 2017 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY10

WildFly 10

JBoss Community Documentation Page of 2 226

Table of Contents

1 Target Audience __ 8

1.1 Prerequisites ___ 8

1.2 Examples in this guide ___ 8

2 Overview __ 9

3 Example subsystem __ 10

3.1 Create the skeleton project ___ 10

3.2 Create the schema ___ 13

3.3 Design and define the model structure __ 13

3.3.1 Registering the core subsystem model __ 15

3.3.2 Registering the subsystem child ___

3.4 Parsing and marshalling of the subsystem xml __ 25

3.4.1 Testing the parsers ___ 29

3.5 Add the deployers __ 36

3.5.1 Deployment phases and attachments ___ 38

3.6 Integrate with WildFly ___ 39

3.7 Expressions ___ 44

3.7.1 What expression types are supported ___ 45

3.7.2 How to support expressions in subsystems _____________________________________ 45

4 Working with WildFly Capabilities __ 47

4.1 Capabilities ___ 47

4.1.1 Comparison to other concepts ___ 48

4.1.2 Capability Names ___ 48

4.1.3 Statically vs Dynamically Named Capabilities ___________________________________ 49

4.1.4 Service provided by a capability __ 49

4.1.5 Custom integration APIs provided by a capability ________________________________ 49

4.1.6 Capability Requirements ___ 50

4.2 Capability Contract ___ 51

4.3 Capability Registry ___ 51

4.4 Using Capabilities __ 51

4.4.1 Basics of Using Your Own Capability __ 51

4.4.2 Basics of Using Other Capabilities __ 55

4.4.3 Detailed API ___ 61

5 Key Interfaces and Classes Relevant to Extension Developers _______________________________ 62

5.1 Extension Interface ___ 63

5.2 WildFly Managed Resources ___ 64

5.3 ManagementResourceRegistration Interface ___ 64

5.4 ResourceDefinition Interface __ 64

5.4.1 ResourceDescriptionResolver ___ 64

5.5 AttributeDefinition Interface ___ 65

5.6 OperationDefinition and OperationStepHandler Interfaces _______________________________ 65

5.7 Operation Execution and the OperationContext _______________________________________ 65

5.8 Resource Interface ___ 65

WildFly 10

JBoss Community Documentation Page of 3 226

5.9 DeploymentUnitProcessor Interface __ 65

5.10 Useful classes for implementing OperationStepHandler _________________________________ 65

6 CLI Extensibility for Layered Products __ 66

7 All WildFly documentation __ 68

8 CLI extensibility for layered products ___ 69

9 Domain Mode Subsystem Transformers ___ 71

9.1 "Abstract" ___ 73

9.2 Background ___ 73

9.2.1 Getting the initial domain model __ 74

9.2.2 An operation changes something in the domain configuration ______________________ 76

9.3 Versions and backward compatibility ___ 76

9.3.1 Versioning of subsystems __ 77

9.4 The role of transformers ___ 78

9.4.1 Resource transformers ___ 82

9.4.2 Operation transformers __ 83

9.4.3 Different profiles for different versions ___ 83

9.5 How do I know what needs to be transformed? _______________________________________ 85

9.5.1 Getting data for a previous version ___ 86

9.5.2 See what changed __ 86

9.6 How do I write a transformer? ___ 88

9.6.1 ResourceTransformationDescriptionBuilder ____________________________________ 91

9.6.2 AttributeTransformationDescriptionBuilder _____________________________________ 93

9.6.3 OperationTransformationOverrideBuilder _____________________________________ 107

9.7 Evolving transformers with subsystem ModelVersions _________________________________ 107

9.7.1 The old way __ 110

9.7.2 Chained transformers ___ 110

9.8 Testing transformers ___ 112

9.8.1 Testing a configuration that works ___ 112

9.8.2 Testing a configuration that does not work ____________________________________ 114

9.9 Common transformation use-cases ___ 116

9.9.1 Child resource type does not exist in legacy model ______________________________ 117

9.9.2 Attribute does not exist in the legacy subsystem ________________________________ 117

9.9.3 Attribute has a different default value ___ 121

9.9.4 Attribute has a different type ___ 121

10 Example subsystem ___ 124

10.1 Create the skeleton project __ 124

10.2 Create the schema __ 127

10.3 Design and define the model structure ___ 127

10.3.1 Registering the core subsystem model _______________________________________ 129

10.3.2 Registering the subsystem child ___

10.4 Parsing and marshalling of the subsystem xml _______________________________________ 139

10.4.1 Testing the parsers __ 143

10.5 Add the deployers ___ 150

10.5.1 Deployment phases and attachments __ 152

10.6 Integrate with WildFly __ 153

10.7 Expressions __ 158

WildFly 10

JBoss Community Documentation Page of 4 226

10.7.1 What expression types are supported __ 159

10.7.2 How to support expressions in subsystems ____________________________________ 159

10.8 Add the deployers ___ 160

10.8.1 Deployment phases and attachments __ 162

10.9 Create the schema __ 164

10.10Create the skeleton project ___ 164

10.11Design and define the model structure ___ 166

10.11.1Registering the core subsystem model _______________________________________ 168

10.11.2Registering the subsystem child ___

10.12Expressions ___ 178

10.12.1What expression types are supported __ 179

10.12.2How to support expressions in subsystems ___________________________________ 179

10.13Integrate with WildFly __ 181

10.14Parsing and marshalling of the subsystem xml ______________________________________ 186

10.14.1Testing the parsers __ 190

11 Key Interfaces and Classes Relevant to Extension Developers ______________________________ 198

11.1 Extension Interface __ 199

11.2 WildFly Managed Resources __ 200

11.3 ManagementResourceRegistration Interface __ 200

11.4 ResourceDefinition Interface ___ 200

11.4.1 ResourceDescriptionResolver __ 200

11.5 AttributeDefinition Interface __ 201

11.6 OperationDefinition and OperationStepHandler Interfaces ______________________________ 201

11.7 Operation Execution and the OperationContext ______________________________________ 201

11.8 Resource Interface __ 201

11.9 DeploymentUnitProcessor Interface ___ 201

11.10Useful classes for implementing OperationStepHandler _______________________________ 201

12 Transformers ___ 202

12.1 What are transformers __ 202

12.1.1 When are they invoked ___ 202

12.1.2 When should they be implemented __ 202

12.1.3 Model Transformer ___ 202

12.1.4 Operation Transformer __ 203

12.1.5 Testing transformers ___ 203

13 WildFly 9 JNDI Implementation ___ 204

13.1 Introduction __ 204

13.2 Architecture __ 204

13.3 Binding APIs ___ 204

13.3.1 Subsystem ___ 205

13.3.2 EE Deployment ___ 206

13.4 Resource Ref Processing ___ 211

14 Working with WildFly Capabilities ___ 212

14.1 Capabilities __ 212

14.1.1 Comparison to other concepts __ 213

14.1.2 Capability Names __ 213

14.1.3 Statically vs Dynamically Named Capabilities __________________________________ 214

WildFly 10

JBoss Community Documentation Page of 5 226

14.1.4 Service provided by a capability ___ 214

14.1.5 Custom integration APIs provided by a capability _______________________________ 214

14.1.6 Capability Requirements __ 215

14.2 Capability Contract __ 216

14.3 Capability Registry __ 216

14.4 Using Capabilities ___ 216

14.4.1 Basics of Using Your Own Capability ___ 216

14.4.2 Basics of Using Other Capabilities ___ 220

14.4.3 Detailed API __ 226

WildFly 10

JBoss Community Documentation Page of 6 226

Target Audience

Prerequisites

Examples in this guide

Overview

Example subsystem

Create the skeleton project

Create the schema

Design and define the model structure

Registering the core subsystem model

Registering the subsystem child

Parsing and marshalling of the subsystem xml

Testing the parsers

Add the deployers

Deployment phases and attachments

STRUCTURE

PARSE

DEPENDENCIES

CONFIGURE_MODULE

POST_MODULE

INSTALL

CLEANUP

Integrate with WildFly

Expressions

What expression types are supported

How to support expressions in subsystems

WildFly 10

JBoss Community Documentation Page of 7 226

Working with WildFly Capabilities

Capabilities

Comparison to other concepts

Capabilities vs modules

Capabilities vs Extensions

Capability Names

Statically vs Dynamically Named Capabilities

Service provided by a capability

Custom integration APIs provided by a capability

Capability Requirements

Supporting runtime-only requirements

Capability Contract

Capability Registry

Using Capabilities

Basics of Using Your Own Capability

Creating your capability

Registering and unregistering your capability

Installing, accessing and removing the service provided by your capability

Basics of Using Other Capabilities

Registering a hard requirement for a static capability

Registering a requirement for a dynamically named capability

Depending upon a service provided by another capability

Using a custom integration API provided by another capability

Runtime-only requirements

Using a capability in a DeploymentUnitProcessor

Detailed API

Key Interfaces and Classes Relevant to Extension Developers

 InterfaceExtension

WildFly Managed Resources

 InterfaceManagementResourceRegistration

 InterfaceResourceDefinition

ResourceDescriptionResolver

 InterfaceAttributeDefinition

 and InterfacesOperationDefinition OperationStepHandler

Operation Execution and the OperationContext

 InterfaceResource

 InterfaceDeploymentUnitProcessor

Useful classes for implementing OperationStepHandler

 CLI Extensibility for Layered Products

All WildFly documentation

WildFly 10

JBoss Community Documentation Page of 8 226

1 Target Audience
This document is intended for people who want to extend WildFly to introduce new capabilities.

1.1 Prerequisites

You should know how to download, install and run WildFly. If not please consult the .Getting Started Guide

You should also be familiar with the management concepts from the , particularly the Admin Guide Core

 section and you need Java development experience to follow the example in thismanagement concepts

guide.

1.2 Examples in this guide

Most of the examples in this guide are being expressed as excerpts of the XML configuration files or by

using a representation of the de-typed management model.

https://docs.jboss.org/author/display/WFLY8/Getting+Started+Guide
https://docs.jboss.org/author/display/WFLY8/Admin+Guide
https://docs.jboss.org/author/display/WFLY8/Core+management+concepts
https://docs.jboss.org/author/display/WFLY8/Core+management+concepts

WildFly 10

JBoss Community Documentation Page of 9 226

2 Overview
In this document we provide an example of how to extend the core functionality of WildFly via an extension

and the subsystem it installs. The WildFly core is very simple and lightweight; most of the capabilities people

associate with an application server are provided via extensions and their subsystems. The WildFly

distribution includes many extensions and subsystems; the webserver integration is via a subsystem; the

transaction manager integration is via a subsystem, the EJB container integration is via a subsystem, etc.

This document is divided into two main sections. The is focused on learning by doing. This section willfirst

walk you through the steps needed to create your own subsystem, and will touch on most of the concepts

discussed elsewhere in this guide. The focuses on a conceptual overview of the key interfaces andsecond

classes described in the example. Readers should feel free to start with the second section if that better fits

their learning style. Jumping back and forth between the sections is also a good strategy.

https://docs.jboss.org/author/display/WFLY8/Key+Interfaces+and+Classes+Relevant+to+Extension+Developers

WildFly 10

JBoss Community Documentation Page of 10 226

3 Example subsystem
Our example subsystem will keep track of all deployments of certain types containing a special marker file,

and expose operations to see how long these deployments have been deployed.

3.1 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

WildFly 10

JBoss Community Documentation Page of 11 226

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

WildFly 10

JBoss Community Documentation Page of 12 226

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

https://docs.jboss.org/author/display/WFLY8/Creating+your+own+application
https://docs.jboss.org/author/download/attachments/91947463/acme-subsystem.zip?version=1&modificationDate=1332346374000

WildFly 10

JBoss Community Documentation Page of 13 226

3.2 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

WildFly 10

JBoss Community Documentation Page of 14 226

3.3 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The SubsystemExtension.initialize() method defines the model, currently it sets up the basics to add our

subsystem to the model:

WildFly 10

JBoss Community Documentation Page of 15 226

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

3.3.1 Registering the core subsystem model

Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

It's parameter is an implementation of the ResourceDefinition interface, which means that when you call

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by SubsystemDefinition.INSTANCE.

WildFly 10

JBoss Community Documentation Page of 16 226

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The ManagementResourceRegistration obtained in is then usedSubsystemExtension.initialize()

to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line insidemust ADD

registerOperations in your ResourceDefinition or by providing it in constructor of your

SimpleResourceDefinition just as we did in example above.

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

WildFly 10

JBoss Community Documentation Page of 17 226

There are two way to define DescriptionProvider, one is by defining it by hand using ModelNode, but as this

has show to be very error prone there are lots of helper methods to help you automatically describe the

model. Flowing example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

DefaultResourceAddDescriptionProvider and DefaultResourceRemoveDescriptionProvider that do work for

you. In case you use SimpleResourceDefinition even that part is hidden from you.

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use DefaultOperationDescriptionProvider that

takes additional parameter of what is the name of operation and optional array of parameters/attributes

operation takes. This is an example to register operation "add-mime" with two parameters:

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

WildFly 10

JBoss Community Documentation Page of 18 226

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

WildFly 10

JBoss Community Documentation Page of 19 226

3.3.2 Registering the subsystem child

The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it TypeDefinition and for ease of use let it extend

SimpleResourceDefinition instead just implement ResourceDefinition.

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

WildFly 10

JBoss Community Documentation Page of 20 226

Which will take care of describing the model for us. As you can see in example above we define

SimpleAttributeDefinition named TICK, this is a mechanism to define Attributes in more type safe way and to

add more common API to manipulate attributes. As you can see here we define default value of 1000 as

also other constraints and capabilities. There could be other properties set such as validators, alternate

names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation validateAndSet on AttributeDefinition that

helps us validate and set the model based on definition of the attribute.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

WildFly 10

JBoss Community Documentation Page of 21 226

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

WildFly 10

JBoss Community Documentation Page of 22 226

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

WildFly 10

JBoss Community Documentation Page of 23 226

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

WildFly 10

JBoss Community Documentation Page of 24 226

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

WildFly 10

JBoss Community Documentation Page of 25 226

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

WildFly 10

JBoss Community Documentation Page of 26 226

3.4 Parsing and marshalling of the subsystem xml

JBoss AS 7 uses the Stax API to parse the xml files. This is initialized in bySubsystemExtension

mapping our parser onto our namespace:

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

WildFly 10

JBoss Community Documentation Page of 27 226

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

WildFly 10

JBoss Community Documentation Page of 28 226

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

WildFly 10

JBoss Community Documentation Page of 29 226

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

3.4.1 Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

WildFly 10

JBoss Community Documentation Page of 30 226

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

WildFly 10

JBoss Community Documentation Page of 31 226

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

WildFly 10

JBoss Community Documentation Page of 32 226

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

WildFly 10

JBoss Community Documentation Page of 33 226

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

WildFly 10

JBoss Community Documentation Page of 34 226

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

WildFly 10

JBoss Community Documentation Page of 35 226

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

WildFly 10

JBoss Community Documentation Page of 36 226

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

3.5 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

WildFly 10

JBoss Community Documentation Page of 37 226

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

WildFly 10

JBoss Community Documentation Page of 38 226

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

3.5.1 Deployment phases and attachments

The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

WildFly 10

JBoss Community Documentation Page of 39 226

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

3.6 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

WildFly 10

JBoss Community Documentation Page of 40 226

This will have built our project and assembled a module for us that can be used for installing it into WildFly 8.

If you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

WildFly 10

JBoss Community Documentation Page of 41 226

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$AS7/domain/configuration/domain.xml

Now start up WildFly 8 by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

WildFly 10

JBoss Community Documentation Page of 42 226

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly 8 console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

https://docs.jboss.org/author/download/attachments/91947468/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/91947468/test2.zip?version=1&modificationDate=1311326215000

WildFly 10

JBoss Community Documentation Page of 43 226

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

WildFly 10

JBoss Community Documentation Page of 44 226

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

3.7 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

WildFly 10

JBoss Community Documentation Page of 45 226

3.7.1 What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

3.7.2 How to support expressions in subsystems

The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

WildFly 10

JBoss Community Documentation Page of 46 226

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type ModelType.EXPRESSION.

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation ModelNode, and if it isn't already

ModelType.EXPRESSION, it checks if the value is a string that contains the expression syntax. If so, the

value stored in the model will be of type ModelType.EXPRESSION. Doing this ensures that expressions are

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

WildFly 10

JBoss Community Documentation Page of 47 226

1.

2.

3.

1.

2.

3.

4.

4 Working with WildFly Capabilities
An extension to WildFly will likely want to make use of services provided by the WildFly kernel, may want to

make use of services provided by other subsystems, and may wish to make functionality available to other

extensions. Each of these cases involves integration between different parts of the system. In releases prior

to WildFly 10, this kind of integration was done on an ad-hoc basis, resulting in overly tight coupling between

different parts of the system and overly weak integration contracts. For example, a service installed by

subsystem A might depend on a service installed by subsystem B, and to record that dependency A's

authors copy a ServiceName from B's code, or even refer to a constant or static method from B's code. The

result is B's code cannot evolve without risking breaking A. And the authors of B may not even intend for

other subsystems to use its services. There is no proper integration contract between the two subsystems.

Beginning with WildFly Core 2 and WildFly 10 the WildFly kernel's management layer provides a mechanism

for allowing different parts of the system to integrate with each other in a loosely coupled manner. This is

done via WildFly Capabilities. Use of capabilities provides the following benefits:

A standard way for system components to define integration contracts for their use by other system

components.

A standard way for system components to access integration contracts provided by other system

components.

A mechanism for configuration model referential integrity checking, such that if one component's

configuration has an attribute that refers to an other component (e.g. a attribute insocket-binding

a subsystem that opens a socket referring to that socket's configuration), the validity of that reference

can be checked when validating the configuration model.

4.1 Capabilities

A capability is a piece of functionality used in a WildFly Core based process that is exposed via the WildFly

Core management layer. Capabilities may depend on other capabilities, and this interaction between

capabilities is mediated by the WildFly Core management layer.

Some capabilities are automatically part of a WildFly Core based process, but in most cases the

configuration provided by the end user (i.e. in standalone.xml, domain.xml and host.xml) determines what

capabilities are present at runtime. It is the responsibility of the handlers for management operations to

register capabilities and to register any requirements those capabilities may have for the presence of other

capabilities. This registration is done during the MODEL stage of operation execution

A capability has the following basic characteristics:

It has a name.

It may install an MSC service that can be depended upon by services installed by other capabilities. If

it does, it provides a mechanism for discovering the name of that service.

It may expose some other API not based on service dependencies allowing other capabilities to

integrate with it at runtime.

It may depend on, or other capabilities.require

WildFly 10

JBoss Community Documentation Page of 48 226

During boot of the process, and thereafter whenever a management operation makes a change to the

process' configuration, at the end of the MODEL stage of operation execution the kernel management layer

will validate that all capabilities required by other capabilities are present, and will fail any management

operation step that introduced an unresolvable requirement. This will be done before execution of the

management operation proceeds to the RUNTIME stage, where interaction with the process' MSC Service

Container is done. As a result, in the RUNTIME stage the handler for an operation can safely assume that

the runtime services provided by a capability for which it has registered a requirement are available.

4.1.1 Comparison to other concepts

Capabilities vs modules
A JBoss Modules module is the means of making resources available to the classloading system of a

WildFly Core based process. To make a capability available, you must package its resources in one or more

modules and make them available to the classloading system. But a module is not a capability in and of

itself, and simply copying a module to a WildFly installation does not mean a capability is available. Modules

can include resources completely unrelated to management capabilities.

Capabilities vs Extensions
An extension is the means by which the WildFly Core management layer is made aware of manageable

functionality that is not part of the WildFly Core kernel. The extension registers with the kernel new

management resource types and handlers for operations on those resources. One of the things a handler

can do is register or unregister a capability and its requirements. An extension may register a single

capability, multiple capabilities, or possibly none at all. Further, not all capabilities are registered by

extensions; the WildFly Core kernel itself may register a number of different capabilities.

4.1.2 Capability Names

Capability names are simple strings, with the dot character serving as a separator to allow namespacing.

The 'org.wildfly' namespace is reserved for projects associated with the WildFly organization on github (

).https://github.com/wildfly

https://github.com/wildfly

WildFly 10

JBoss Community Documentation Page of 49 226

4.1.3 Statically vs Dynamically Named Capabilities

The full name of a capability is either statically known, or it may include a statically known base element and

then a dynamic element. The dynamic part of the name is determined at runtime based on the address of

the management resource that registers the capability. For example, the management resource at the

address '/socket-binding-group=standard-sockets/socket-binding=web' will register a dynamically named

capability named 'org.wildlfy.network.socket-binding.web'. The 'org.wildlfy.network.socket-binding' portion is

the static part of the name.

All dynamically named capabilities that have the same static portion of their name should provide a

consistent feature set and set of requirements.

4.1.4 Service provided by a capability

Typically a capability functions by registering a service with the WildFly process' MSC ServiceContainer, and

then dependent capabilities depend on that service. The WildFly Core management layer orchestrates

registration of those services and service dependencies by providing a means to discover service names.

4.1.5 Custom integration APIs provided by a capability

Instead of or in addition to providing MSC services, a capability may expose some other API to dependent

capabilities. This API must be encapsulated in a single class (although that class can use other non-JRE

classes as method parameters or return types).

WildFly 10

JBoss Community Documentation Page of 50 226

4.1.6 Capability Requirements

A capability may rely on other capabilities in order to provide its functionality at runtime. The management

operation handlers that register capabilities are also required to register their requirements.

There are three basic types of requirements a capability may have:

Hard requirements. The required capability must always be present for the dependent capability to

function.

Optional requirements. Some aspect of the configuration of the dependent capability controls whether

the depended on capability is actually necessary. So the requirement cannot be known until the

running configuration is analyzed.

Runtime-only requirements. The dependent capability will check for the presence of the depended

upon capability at runtime, and if present it will utilize it, but if it is not present it will function properly

without the capability. There is nothing in the dependent capability's configuration that controls

whether the depended on capability must be present. Only capabilities that declare themselves as

being suitable for use as a runtime-only requirement should be depended upon in this manner.

Hard and optional requirements may be for either statically named or dynamically named capabilities.

Runtime-only requirements can only be for statically named capabilities, as such a requirement cannot be

specified via configuration, and without configuration the dynamic part of the required capability name is

unknown.

Supporting runtime-only requirements
Not all capabilities are usable as a runtime-only requirement.

Any dynamically named capability is not usable as a runtime-only requirement.

For a capability to support use as a runtime-only requirement, it must guarantee that a configuration change

to a running process that removes the capability will not impact currently running capabilities that have a

runtime-only requirement for it. This means:

A capability that supports runtime-only usage must ensure that it never removes its runtime service

except via a full process reload.

A capability that exposes a custom integration API generally is not usable as a runtime-only

requirement. If such a capability does support use as a runtime-only requirement, it must ensure that

any functionality provided via its integration API remains available as long as a full process reload has

not occurred.

WildFly 10

JBoss Community Documentation Page of 51 226

4.2 Capability Contract

A capability provides a stable contract to users of the capability. The contract includes the following:

The name of the capability (including whether it is dynamically named).

Whether it installs an MSC Service, and if it does, the value type of the service. That value type then

becomes a stable API users of the capability can rely upon.

Whether it provides a custom integration API, and if it does, the type that represents that API. That

type then becomes a stable API users of the capability can rely upon.

Whether the capability supports use as a runtime-only requirement.

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

.capabilty registry

4.3 Capability Registry

The WildFly organization on github maintains a git repo where information about available capabilities is

published.

https://github.com/wildfly/wildfly-capabilities

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

capabilty registry.

The README.md file at the root of that repo explains the how to find out information about the registry.

Developers of new capabilities are to document and register their capability bystrongly encouraged

submitting a pull request to the wildfly-capabilities github repo. This both allows others to learn about your

capability and helps prevent capability name collisions. Capabilities that are used in the WildFly or WildFly

Core code base itself have a registry entry before the code referencing them will be merged.must

External organizations that create capabilities should include an organization-specific namespace as part

their capability names to avoid name collisions.

4.4 Using Capabilities

Now that all the background information is presented, here are some specifics about how to use WildFly

capabilities in your code.

https://github.com/wildfly/wildfly-capabilities

WildFly 10

JBoss Community Documentation Page of 52 226

4.4.1 Basics of Using Your Own Capability

Creating your capability
A capability is an instance of the immutable

 class. A capability is usuallyorg.jboss.as.controller.capability.RuntimeCapability

registered by a resource, so the usual way to use one is to store it in constant in the resource's

. Use a to create one.ResourceDefinition RuntimeCapability.Builder

class MyResourceDefinition extends SimpleResourceDefinition {

 static final RuntimeCapability<Void> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo").build();

 . . .

}

That creates a statically named capability named .com.example.foo

If the capability is dynamically named, add the parameter to state this:dynamic

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true).build();

Most capabilities install a service that requiring capabilities can depend on. If your capability does this, you

need to declare the service's (the type of the object returned by value type

). For example, if FOO_CAPABILITY provides a org.jboss.msc.Service.getValue()

:Service<javax.sql.DataSource>

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", DataSource.class).build();

For a dynamic capability:

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true, DataSource.class).build();

If the capability provides a custom integration API, you need to instantiate an instance of that API:

WildFly 10

JBoss Community Documentation Page of 53 226

public class JTSCapability {

 static final JTSCapability INSTANCE = new JTSCapability();

 private JTSCapability() {}

 /**

 * Gets the names of the {@link org.omg.PortableInterceptor.ORBInitializer} implementations

that should be included

 * as part of the {@link org.omg.CORBA.ORB#init(String[], java.util.Properties)

initialization of an ORB}.

 *

 * @return the names of the classes implementing {@code ORBInitializer}. Will not be {@code

null}.

 */

 public List<String> getORBInitializerClasses() {

 return Collections.unmodifiableList(Arrays.asList(

"com.arjuna.ats.jts.orbspecific.jacorb.interceptors.interposition.InterpositionORBInitializerImpl",

"com.arjuna.ats.jbossatx.jts.InboundTransactionCurrentInitializer"));

 }

}

and provide it to the builder:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE).build();

For a dynamic capability:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo", true, JTSCapability.INSTANCE).build();

A capability can provide both a custom integration API and install a service:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE)

 .setServiceType(DataSource.class)

 .build();

WildFly 10

JBoss Community Documentation Page of 54 226

Registering and unregistering your capability
Once you have your capability, you need to ensure it gets registered with the WildFly Core kernel when your

resource is added. This is easily done simply by providing a reference to the capability to the resource's

. This assumes your add handler is a subclass of the standard ResourceDefinition

. providesorg.jboss.as.controller.SimpleResourceDefinition SimpleResourceDefinition

a class that provides a builder-style API for setting up all the data needed by your definition.Parameters

This includes a method that can be used to declare the capabilities provided bysetCapabilities

resources of this type.

class MyResourceDefinition extends SimpleResourceDefinition {

 . . .

 MyResourceDefinition() {

 super(new SimpleResourceDefinition.Parameters(PATH, RESOLVER)

 .setAddHandler(MyAddHandler.INSTANCE)

 .setRemoveHandler(MyRemoveHandler.INSTANCE)

 .setCapabilities(FOO_CAPABILITY)

);

 }

}

Your add handler needs to extend the standard

 class or one of its subclasses:org.jboss.as.controller.AbstractAddStepHandler

class MyAddHandler extends AbstractAddStepHandler() {

's logic will register the capability when it executes.AbstractAddStepHandler

Your remove handler must also extend of the standard

 or one of its subclasses.org.jboss.as.controller.AbstractRemoveStepHandler

class MyRemoveHandler extends AbstractRemoveStepHandler() {

's logic will deregister the capability when it executes.AbstractRemoveStepHandler

If for some reason you cannot base your on orResourceDefinition SimpleResourceDefinition

your handlers on and then you will need toAbstractAddStepHandler AbstractRemoveStepHandler

take responsibility for registering the capability yourself. This is not expected to be a common situation. See

the implementation of those classes to see how to do it.

WildFly 10

JBoss Community Documentation Page of 55 226

Installing, accessing and removing the service provided by your

capability
If your capability installs a service, you should use the when you need to determineRuntimeCapability

the service's name. For example in the handling of your "add" step handler. Here's anStage.RUNTIME

example for a statically named capability:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

If the capability is dynamically named, get the dynamic part of the name from the andOperationContext

use that when getting the service name:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 String myName = context.getCurrentAddressValue();

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName(myName);

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

The same patterns should be used when accessing or removing the service in handlers for , remove

 and custom operations.write-attribute

If you use for the operation, simply provide your ServiceRemoveStepHandler remove

 to the constructor and it will automatically removeRuntimeCapability ServiceRemoveStepHandler

your capability's service when it executes.

WildFly 10

JBoss Community Documentation Page of 56 226

4.4.2 Basics of Using Other Capabilities

When a capability needs another capability, it only refers to it by its string name. A capability should not

reference the object of another capability.RuntimeCapability

Before a capability can look up the service name for a required capability's service, or access its custom

integration API, it must first register a requirement for the capability. This must be done in Stage.MODEL,

while service name lookups and accessing the custom integration API is done in Stage.RUNTIME.

Registering a requirement for a capability is simple.

Registering a hard requirement for a static capability
If your capability has a hard requirement for a statically named capability, simply declare that to the builder

for your . For example, WildFly's JTS capability requires both a basic transactionRuntimeCapability

support capability and IIOP capabilities:

static final RuntimeCapability<JTSCapability> JTS_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.transactions.jts", new JTSCapability())

 .addRequirements("org.wildfly.transactions", "org.wildfly.iiop.orb",

"org.wildfly.iiop.corba-naming")

 .build();

When your capability is registered with the system, the WildFly Core kernel will automatically register any

static hard requirements declared this way.

WildFly 10

JBoss Community Documentation Page of 57 226

Registering a requirement for a dynamically named capability
If the capability you require is dynamically named, usually your capability's resource will include an attribute

whose value is the dynamic part of the required capability's name. You should declare this fact in the

 for the attribute using the AttributeDefinition

 method.SimpleAttributeDefinitionBuilder.setCapabilityReference

For example, the WildFly "remoting" subsystem's "org.wildfly.remoting.connector" capability has a

requirement for a dynamically named socket-binding capability:

public class ConnectorResource extends SimpleResourceDefinition {

 . . .

 static final String SOCKET_CAPABILITY_NAME = "org.wildfly.network.socket-binding";

 static final RuntimeCapability<Void> CONNECTOR_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.remoting.connector", true)

 .build();

 . . .

 static final SimpleAttributeDefinition SOCKET_BINDING =

 new SimpleAttributeDefinitionBuilder(CommonAttributes.SOCKET_BINDING,

ModelType.STRING, false)

.addAccessConstraint(SensitiveTargetAccessConstraintDefinition.SOCKET_BINDING_REF)

 .setCapabilityReference(SOCKET_CAPABILITY_NAME, CONNECTOR_CAPABILITY)

 .build();

If the "add" operation handler for your resource extends and the handler for AbstractAddStepHandler

 extends , the declaration above is sufficient towrite-attribute AbstractWriteAttributeHandler

ensure that the appropriate capability requirement will be registered when the attribute is modified.

WildFly 10

JBoss Community Documentation Page of 58 226

Depending upon a service provided by another capability
Once the requirement for the capability is registered, your OperationStepHandler}}s can use the

 to discover the name of the service provided by the required capability.{{OperationContext

For example, the "add" handler for a remoting connector uses the to find the name ofOperationContext

the needed {{SocketBinding} service:

final String socketName = ConnectorResource.SOCKET_BINDING.resolveModelAttribute(context,

fullModel).asString();

 final ServiceName socketBindingName =

context.getCapabilityServiceName(ConnectorResource.SOCKET_CAPABILITY_NAME, socketName,

SocketBinding.class);

That service name is then used to add a dependency on the service to the remotingSocketBinding

connector service.

If the required capability isn't dynamically named, exposes an overloaded OperationContext

 variant. For example, if a capability requires a remoting Endpoint:getCapabilityServiceName

ServiceName endpointService = context.getCapabilityServiceName("org.wildfly.remoting.endpoint",

Endpoint.class);

Using a custom integration API provided by another capability
In your handler, use to get aStage.RUNTIME OperationContext.getCapabilityRuntimeAPI

reference to the required capability's custom integration API. Then use it as necessary.

List<String> orbInitializers = new ArrayList<String>();

 . . .

 JTSCapability jtsCapability =

context.getCapabilityRuntimeAPI(IIOPExtension.JTS_CAPABILITY, JTSCapability.class);

 orbInitializers.addAll(jtsCapability.getORBInitializerClasses());

WildFly 10

JBoss Community Documentation Page of 59 226

Runtime-only requirements
If your capability has a runtime-only requirement for another capability, that means that if that capability is

present in you'll use it, and if not you won't. There is nothing about the configuration ofStage.RUNTIME

your capability that triggers the need for the other capability; you'll just use it if it's there.

In this case, use in your handler toOperationContext.hasOptionalCapability Stage.RUNTIME

check if the capability is present:

protected void performRuntime(final OperationContext context, final ModelNode operation, final

ModelNode model) throws OperationFailedException {

 ServiceName myServiceName = MyResource.FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> myService = createService(context, model);

 ServiceBuilder<DataSource> builder = context.getTarget().addService(myServiceName,

myService);

 // Inject a "Bar" into our "Foo" if bar capability is present

 if (context.hasOptionalCapability("com.example.bar",

MyResource.FOO_CAPABILITY.getName(), null) {

 ServiceName barServiceName = context.getCapabilityServiceName("com.example.bar",

Bar.class);

 builder.addDependency(barServiceName, Bar.class, myService.getBarInjector());

 }

 builder.install();

 }

The WildFly Core kernel will not register a requirement for the "com.example.bar" capability, so if a

configuration change occurs that means that capability will no longer be present, that change will not be

rolled back. Because of this, runtime-only requirements can only be used with capabilities that declare in

their contract that they support such use.

Using a capability in a DeploymentUnitProcessor
{{DeploymentUnitProcessor}}s are likely to have a need to interact with capabilities, in order to create service

dependencies from a deployment service to a capability provided service or to access some aspect of a

capability's custom integration API that relates to deployments.

If a associated with a capability implementation needs to utilize its ownDeploymentUnitProcessor

capability object, the authors should simply provide it with a reference to the DeploymentUnitProcessor

 instance. Service name lookups or access to the capabilities custom integration APIRuntimeCapability

can then be performed by invoking the methods on the .RuntimeCapability

If you need to access service names or a custom integration API associated with a different capability, you

will need to use the objectorg.jboss.as.controller.capability.CapabilityServiceSupport

associated with the deployment unit. This can be found as an attachment to the

:DeploymentPhaseContext

WildFly 10

JBoss Community Documentation Page of 60 226

class MyDUP implements DeploymentUntiProcessor {

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 AttachmentKey<CapabilityServiceSupport> key =

org.jboss.as.server.deployment.Attachments.DEPLOYMENT_COMPLETE_SERVICES;

 CapabilityServiceSupport capSvcSupport = phaseContext.getAttachment(key);

Once you have the you can use it to look up service names:CapabilityServiceSupport

ServiceName barSvcName = capSvcSupport.getCapabilityServiceName("com.example.bar");

 // Determine what 'baz' the user specified in the deployment descriptor

 String bazDynamicName = getSelectedBaz(phaseContext);

 ServiceName bazSvcName = capSvcSupport.getCapabilityServiceName("com.example.baz",

bazDynamicName);

It's important to note that when you request a service name associated with a capability, the

 will give you one regardless of whether the capability is actuallyCapabilityServiceSupport

registered with the kernel. If the capability isn't present, any service dependency your DUP creates

using that service name will eventually result in a service start failure, due to the missing

dependency. This behavior of not failing immediately when the capability service name is

requested is deliberate. It allows deployment operations that use the

 header to successfully install (but not start) all of therollback-on-runtime-failure=false

services related to a deployment. If a subsequent operation adds the missing capability, the

missing service dependency problem will then be resolved and the MSC service container will

automatically start the deployment services.

You can also use the to obtain a reference to the capability's customCapabilityServiceSupport

integration API:

// We need custom integration with the baz capability beyond service injection

 BazIntegrator bazIntegrator;

 try {

 bazIntegrator = capSvcSupport.getCapabilityRuntimeAPI("com.example.baz",

bazDynamicName, BazIntegrator.class);

 } catch (NoSuchCapabilityException e) {

 //

 String msg = String.format("Deployment %s requires use of the 'bar' capability but

it is not currently registered",

 phaseContext.getDeploymentUnit().getName());

 throw new DeploymentUnitProcessingException(msg);

 }

WildFly 10

JBoss Community Documentation Page of 61 226

Note that here, unlike the case with service name lookups, the will throw aCapabilityServiceSupport

checked exception if the desired capability is not installed. This is because the kernel has no way to satisfy

the request for a custom integration API if the capability is not installed. The DeploymentUnitProcessor

will need to catch and handle the exception.

4.4.3 Detailed API

The WildFly Core kernel's API for using capabilities is covered in detail in the javadoc for the

 classes and the and RuntimeCapability and RuntimeCapability.Builder OperationContext

 interfaces.CapabilityServiceSupport

Many of the methods in related to capabilities have to do with registering capabilitiesOperationContext

or registering requirements for capabilities. Typically non-kernel developers won't need to worry about these,

as the abstract implementations provided by the kernel take care of this for you,OperationStepHandler

as described in the preceding sections. If you do find yourself in a situation where you need to use these in

an extension, please read the javadoc thoroughly.

https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/RuntimeCapability.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/OperationContext.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/CapabilityServiceSupport.java

WildFly 10

JBoss Community Documentation Page of 62 226

5 Key Interfaces and Classes Relevant to

Extension Developers
In the first major section of this guide, we provided an example of how to implement an extension to the AS.

The emphasis there was learning by doing. In this section, we'll focus a bit more on the major WildFly

interfaces and classes that most are relevant to extension developers. The best way to learn about these

interfaces and classes in detail is to look at their javadoc. What we'll try to do here is provide a brief

introduction of the key items and how they relate to each other.

Before digging into this section, readers are encouraged to read the "Core Management Concepts" section

of the Admin Guide.

WildFly 10

JBoss Community Documentation Page of 63 226

5.1 Extension Interface

The interface is the hook by which your extension to the coreorg.jboss.as.controller.Extension

AS is able to integrate with the AS. During boot of the AS, when the element in the AS's xml<extension>

configuration file naming your extension is parsed, the JBoss Modules module named in the element's name

attribute is loaded. The standard JDK mechanism is then used to load yourjava.lang.ServiceLoader

module's implementation of this interface.

The function of an implementation is to register with the core AS the management API, xmlExtension

parsers and xml marshallers associated with the extension module's subsystems. An canExtension

register multiple subsystems, although the usual practice is to register just one per extension.

Once the is loaded, the core AS will make two invocations upon it:Extension

void initializeParsers(ExtensionParsingContext context)

When this is invoked, it is the implementation's responsibility to initialize the XML parsers forExtension

this extension's subsystems and register them with the given . The parser'sExtensionParsingContext

job when it is later called is to create objects representing WildFlyorg.jboss.dmr.ModelNode

management API operations needed make the AS's running configuration match what is described in the

xml. Those management operation {{ModelNode}}s are added to a list passed in to the parser.

A parser for each version of the xml schema used by a subsystem should be registered. A well behaved

subsystem should be able to parse any version of its schema that it has ever published in a final release.

void initialize(ExtensionContext context)

When this is invoked, it is the implementation's responsibility to register with the core AS theExtension

management API for its subsystems, and to register the object that is capable of marshalling the

subsystem's in-memory configuration back to XML. Only one XML marshaller is registered per subsystem,

even though multiple XML parsers can be registered. The subsystem should always write documents that

conform to the latest version of its XML schema.

The registration of a subsystem's management API is done via the ManagementResourceRegistration

interface. Before discussing that interface in detail, let's describe how it (and the related Resource

interface) relate to the notion of managed resources in the AS.

WildFly 10

JBoss Community Documentation Page of 64 226

5.2 WildFly Managed Resources

Each subsystem is responsible for managing one or more management resources. The conceptual

characteristics of a management resource are covered in some detail in the ; here we'll justAdmin Guide

summarize the main points. A management resource has

An consisting of a list of key/value pairs that uniquely identifies a resourceaddress

Zero or more , the value of which is some sort of attributes org.jboss.dmr.ModelNode

Zero or more supported . An operation has a string name and zero or more parameters,operations

each of which is a key/value pair where the key is a string naming the parameter and the value is

some sort of ModelNode

Zero or , each of which in turn is a managed resourcechildren

The implementation of a managed resource is somewhat analogous to the implementation of a Java object.

A managed resource will have a "type", which encapsulates API information about that resource and logic

used to implement that API. And then there are actual instances of the resource, which primarily store data

representing the current state of a particular resource. This is somewhat analogous to the "class" and

"object" notions in Java.

A managed resource's type is encapsulated by the

 the core AS createsorg.jboss.as.controller.registry.ManagementResourceRegistration

when the type is registered. The data for a particular instance is encapsulated in an implementation of the

 interface.org.jboss.as.controller.registry.Resource

5.3 ManagementResourceRegistration Interface

TODO

5.4 ResourceDefinition Interface

TODO

Most commonly used implementation: SimpleResourceDefinition

5.4.1 ResourceDescriptionResolver

TODO

Most commonly used implementation: StandardResourceDescriptionResolver

https://docs.jboss.org/author/display/WFLY10/Management+resources

WildFly 10

JBoss Community Documentation Page of 65 226

5.5 AttributeDefinition Interface

TODO

Most commmonly used implementation: . Use SimpleAttributeDefinition

 to build.SimpleAttributeDefinitionBuilder

5.6 OperationDefinition and OperationStepHandler

Interfaces

TODO

5.7 Operation Execution and the OperationContext

TODO

5.8 Resource Interface

TODO

5.9 DeploymentUnitProcessor Interface

TODO

5.10 Useful classes for implementing

OperationStepHandler

TODO

WildFly 10

JBoss Community Documentation Page of 66 226

6 CLI Extensibility for Layered Products
In addition to supporting the ServiceLoader extension mechanism to load command handlers coming from

outside of the CLI codebase, starting from wildfly-core-1.0.0.Beta1 release the CLI running in a modular

classloading environment can be extended with commands exposed in server extension modules. The CLI

will look for and register extension commands when it (re-)connects to the controller by iterating through the

registered by that time extensions and using the ServiceLoader mechanism on the extension modules.

(Note, that this mechanism will work only for extensions available in the server installation the CLI is

launched from.)

Here is an example of a simple command handler and its integration.

package org.jboss.as.test.cli.extensions;public class ExtCommandHandler extends

org.jboss.as.cli.handlers.CommandHandlerWithHelp {

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandler extends org.jboss.as.cli.handlers.CommandHandlerWithHelp {

 public static final String NAME = "ext-command";

 public static final String OUTPUT = "hello world!";

 public CliExtCommandHandler() {

 super(NAME, false);

 }

 @Override

 protected void doHandle(CommandContext ctx) throws CommandLineException {

 ctx.printLine(OUTPUT);

 }

}

The command will simply print a message to the terminal. The next step is to implement the CLI

CommandHandlerProvider interface.

WildFly 10

JBoss Community Documentation Page of 67 226

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandlerProvider implements org.jboss.as.cli.CommandHandlerProvider {

 @Override

 public CommandHandler createCommandHandler(CommandContext ctx) {

 return new ExtCommandHandler();

 }

 /**

 * Whether the command should be available in tab-completion.

 */

 @Override

 public boolean isTabComplete() {

 return true;

 }

 /**

 * Command name(s).

 */

 @Override

 public String[] getNames() {

 return new String[]{ExtCommandHandler.NAME};

 }

}

The final step is to include entry into theMETA-INF/services/org.jboss.as.cli.CommandHandlerProvider

JAR file containing the classes above with value

.org.jboss.as.test.cli.extensions.ExtCommandHandlerProvider

WildFly 10

JBoss Community Documentation Page of 68 226

7 All WildFly documentation
Documentation

https://docs.jboss.org/author/display/WFLY10/Documentation

WildFly 10

JBoss Community Documentation Page of 69 226

8 CLI extensibility for layered products
In addition to supporting the ServiceLoader extension mechanism to load command handlers coming from

outside of the CLI codebase, starting from wildfly-core-1.0.0.Beta1 release the CLI running in a modular

classloading environment can be extended with commands exposed in server extension modules. The CLI

will look for and register extension commands when it (re-)connects to the controller by iterating through the

registered by that time extensions and using the ServiceLoader mechanism on the extension modules.

(Note, that this mechanism will work only for extensions available in the server installation the CLI is

launched from.)

Here is an example of a simple command handler and its integration.

package org.jboss.as.test.cli.extensions;public class ExtCommandHandler extends

org.jboss.as.cli.handlers.CommandHandlerWithHelp {

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandler extends org.jboss.as.cli.handlers.CommandHandlerWithHelp {

 public static final String NAME = "ext-command";

 public static final String OUTPUT = "hello world!";

 public CliExtCommandHandler() {

 super(NAME, false);

 }

 @Override

 protected void doHandle(CommandContext ctx) throws CommandLineException {

 ctx.printLine(OUTPUT);

 }

}

The command will simply print a message to the terminal. The next step is to implement the CLI

CommandHandlerProvider interface.

WildFly 10

JBoss Community Documentation Page of 70 226

package org.jboss.as.test.cli.extensions;

public class ExtCommandHandlerProvider implements org.jboss.as.cli.CommandHandlerProvider {

 @Override

 public CommandHandler createCommandHandler(CommandContext ctx) {

 return new ExtCommandHandler();

 }

 /**

 * Whether the command should be available in tab-completion.

 */

 @Override

 public boolean isTabComplete() {

 return true;

 }

 /**

 * Command name(s).

 */

 @Override

 public String[] getNames() {

 return new String[]{ExtCommandHandler.NAME};

 }

}

The final step is to include entry into theMETA-INF/services/org.jboss.as.cli.CommandHandlerProvider

JAR file containing the classes above with value

.org.jboss.as.test.cli.extensions.ExtCommandHandlerProvider

WildFly 10

JBoss Community Documentation Page of 71 226

9 Domain Mode Subsystem Transformers

"Abstract"

Background

Getting the initial domain model

An operation changes something in the domain configuration

Versions and backward compatibility

Versioning of subsystems

The role of transformers

Resource transformers

Rejection in resource transformers

Operation transformers

Rejection in operation transformers

Different profiles for different versions

Ignoring resources on legacy hosts

How do I know what needs to be transformed?

Getting data for a previous version

See what changed

WildFly 10

JBoss Community Documentation Page of 72 226

How do I write a transformer?

ResourceTransformationDescriptionBuilder

Silently discard child resources

Reject child resource

Redirect address for child resource

Getting a child resource builder

AttributeTransformationDescriptionBuilder

Attribute transformation lifecycle

Discarding attributes

The DiscardAttributeChecker interface

DiscardAttributeChecker helper classes/implementations

DiscardAttributeChecker.DefaultDiscardAttributeChecker

DiscardAttributeChecker.DiscardAttributeValueChecker

DiscardAttributeChecker.ALWAYS

DiscardAttributeChecker.UNDEFINED

Rejecting attributes

The RejectAttributeChecker interface

RejectAttributeChecker helper classes/implementations

RejectAttributeChecker.DefaultRejectAttributeChecker

RejectAttributeChecker.DEFINED

RejectAttributeChecker.SIMPLE_EXPRESSIONS

RejectAttributeChecker.ListRejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

Converting attributes

The AttributeConverter interface

Introducing attributes during transformation

Renaming attributes

OperationTransformationOverrideBuilder

Evolving transformers with subsystem ModelVersions

The old way

Chained transformers

Testing transformers

Testing a configuration that works

Testing a configuration that does not work

Common transformation use-cases

Child resource type does not exist in legacy model

Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behaviour

Default value of the attribute is different from legacy implied behaviour

Attribute has a different default value

Attribute has a different type

WildFly 10

JBoss Community Documentation Page of 73 226

9.1 "Abstract"

A WildFly/JBoss AS 7 domain may consist of a new Domain Controller (DC) controlling slave Host

Controllers (HC) running older versions. Each slave HC maintains a copy of the centralized domain

configuration, which they use for controlling their own servers. In order for the slave HCs to understand the

configuration from the DC, transformation is needed, whereby the DC translates the configuration and

operations into something the slave HCs can understand.

9.2 Background

WildFly comes with a which allows you to have one Host Controller acting as the Domaindomain mode

Controller. The Domain Controller's job is to maintain the centralized domain configuration. Another term for

the DC is 'Master Host Controller'. Before explaining why transformers are important and when they should

be used, we will revisit how the domain configuration is used in domain mode.

The centralized domain configuration is stored in . This is only ever parsed on the DC, and itdomain.xml

has the following structure:

 - contains:extensions

 - a references to a module that bootstraps the extension

 implementation used to bootstrap yourorg.jboss.as.controller.Extension

subsystem parsers and initialize the resource definitions for your subsystems.

 - contains:profiles

 - a named set of:profile

 - contains the configuration for a subsystem, using the parser initialized bysubsystem

the subsystem's extension.

 - contains:socket-binding-groups

 - a named set of:socket-binding-group

 - A named port on an interface which can be referenced from the socket-binding

 configurations for subsystems opening sockets.subsystem

 - containsserver-groups

 - this has a name and references a and a server-group profile

. The HCs then reference the name from their socket-binding-group server-group

 section in .<servers> host.xml

When the DC parses , it is transformed into (and in some cases)domain.xml add write-attribute

operations just as explained in . These operations build up theParsing and marshalling of the subsystem xml

model on the DC.

https://docs.jboss.org/author/display/WFLY8/Domain+Setup
https://docs.jboss.org/author/display/WFLY8/Parsing+and+marshalling+of+the+subsystem+xml

WildFly 10

JBoss Community Documentation Page of 74 226

A HC wishing to join the domain and use the DC's centralized configuration is known as a 'slave HC'. A slave

HC maintains a copy of the DC's centralized domain configuration. This copy of the domain configuration is

used to start its servers. This is done by asking the domain model to itself, which in turn asks thedescribe

subsystems to themselves. The operation for a subsystem looks at the state of thedescribe describe

subsystem model and produces the operations necessary to create the subsystem on the server. Theadd

same mechanism also takes place on the DC (bear in mind that the DC is also a HC, which can have its own

servers), although of course its copy of the domain configuration is the centralized one.

There are two steps involved in keeping the keeping the slave HC's domain configuration in sync with the

centralized domain configuration.

getting the initial domain model

an operation changes something in the domain configuration

Let's look a bit closer at what happens in each of these steps.

9.2.1 Getting the initial domain model

When a slave HC connects to the DC it obtains a copy of the domain model from the DC. This is done in a

simpler serialized format, different from the operations that built up the model on the DC, or the operations

resulting from the step used to bootstrap the servers. They describe each address that exists indescribe

the DC's model, and contain the attributes set for the resource at that address. This serialized form looks like

this:

WildFly 10

JBoss Community Documentation Page of 75 226

[{

 "domain-resource-address" => [],

 "domain-resource-model" => {

 "management-major-version" => 2,

 "management-minor-version" => 0,

 "management-micro-version" => 0,

 "release-version" => "8.0.0.Beta1-SNAPSHOT",

 "release-codename" => "WildFly"

 }

},

{

 "domain-resource-address" => [("extension" => "org.jboss.as.clustering.infinispan")],

 "domain-resource-model" => {"module" => "org.jboss.as.clustering.infinispan"}

},

--SNIP - the rest of the extensions --

{

 "domain-resource-address" => [("extension" => "org.jboss.as.weld")],

 "domain-resource-model" => {"module" => "org.jboss.as.weld"}

},

{

 "domain-resource-address" => [("system-property" => "java.net.preferIPv4Stack")],

 "domain-resource-model" => {

 "value" => "true",

 "boot-time" => undefined

 }

},

{

 "domain-resource-address" => [("profile" => "full-ha")],

 "domain-resource-model" => undefined

},

{

 "domain-resource-address" => [

 ("profile" => "full-ha"),

 ("subsystem" => "logging")

],

 "domain-resource-model" => {}

},

{

 "domain-resource-address" => [sss|WFLY8:Example subsystem],

 "domain-resource-model" => {

 "level" => "INFO",

 "enabled" => undefined,

 "encoding" => undefined,

 "formatter" => "%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n",

 "filter-spec" => undefined,

 "autoflush" => undefined,

 "target" => undefined,

 "named-formatter" => undefined

 }

},

--SNIP---

The slave HC then applies these one at a time and builds up the initial domain model. It needs to do this

before it can start any of its servers.

WildFly 10

JBoss Community Documentation Page of 76 226

9.2.2 An operation changes something in the domain

configuration

Once a domain is up and running we can still change things in the domain configuration. These changes

must happen when connected to the DC, and are then propagated to the slave HCs, which then in turn

propagate the changes to any servers running in a server group affected by the changes made. In this

example:

[disconnected /] connect

[domain@localhost:9990 /]

/profile=full/subsystem=datasources/data-source=ExampleDS:write-attribute(name=enabled,value=false)
{

"outcome" => "success",

 "result" => undefined,

 "server-groups" => {"main-server-group" => {"host" => {

 "slave" => {"server-one" => {"response" => {

 "outcome" => "success",

 "result" => undefined,

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}},

 "master" => {

 "server-one" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }},

 "server-two" => {"response" => {

 "outcome" => "success",

 "response-headers" => {

 "operation-requires-restart" => true,

 "process-state" => "restart-required"

 }

 }}

 }

 }}}

}

the DC propagates the changes to itself , which in turn propagates it to its two servershost=master

belonging to which uses the profile. More interestingly, it also propagates it to main-server-group full

 which updates its local copy of the domain model, and then propagates the change to its host=slave

 which belongs to which uses the profile.server-one main-server-group full

WildFly 10

JBoss Community Documentation Page of 77 226

9.3 Versions and backward compatibility

A HC and its servers will always be the same version of WildFly (they use the same module path and jars).

However, the DC and the slave HCs do not necessarily need to be the same version. One of the points in

the original specification for WildFly is that

Important

A Doman Controller should be able to manage slave Host Controllers older than itself.

This means that for example a WildFly 8 DC should be able to work with slave HCs running JBoss AS 7.1.2.

The opposite is not true, the DC must be the same or the newest version in the domain.

9.3.1 Versioning of subsystems

To help with being able to know what is compatible we have versions within the subsystems, this is stored in

the subsystem's extension. When registering the subsystem you will typically see something like:

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 /**

 * {@inheritDoc}

 * @see

org.jboss.as.controller.Extension#initialize(org.jboss.as.controller.ExtensionContext)

 */

 @Override

 public void initialize(ExtensionContext context) {

 // IMPORTANT: Management API version != xsd version! Not all Management API changes

result in XSD changes

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

}

Which sets the of the subsystem.ModelVersion

WildFly 10

JBoss Community Documentation Page of 78 226

Important

Whenever something changes in the subsystem, such as:

an attribute is added or removed from a resource

a attribute is renamed in a resource

an attribute has its type changed

an attribute or operation parameter's nillable or allows expressions is changed

an attribute or operation parameter's default value changes

a child resource type is added or removed

an operation is added or removed

an operation has its parameters changed

and the current version of the subsystem has been part of a Final release of WildFly, we must

bump the version of the subsystem.

Once it has been increased you can of course make more changes until the next Final release without more

version bumps. It is also worth noting that a new WildFly release does not automatically mean a new version

for the subsystem, the new version is only needed if something was changed. For example the jaxrs

subsystem has remained on 1.0.0 for all versions of WildFly and JBoss AS 7.

You can find the of a subsystem by querying its extension:ModelVersion

domain@localhost:9990 /]

/extension=org.jboss.as.clustering.infinispan:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {

 "module" => "org.jboss.as.clustering.infinispan",

 "subsystem" => {"infinispan" => {

 "management-major-version" => 2,

 "management-micro-version" => 0,

 "management-minor-version" => 0,

 "xml-namespaces" => [jboss:domain:infinispan:1.0",

 "urn:jboss:domain:infinispan:1.1",

 "urn:jboss:domain:infinispan:1.2",

 "urn:jboss:domain:infinispan:1.3",

 "urn:jboss:domain:infinispan:1.4",

 "urn:jboss:domain:infinispan:2.0"]

 }}

 }

}

WildFly 10

JBoss Community Documentation Page of 79 226

9.4 The role of transformers

Now that we have mentioned the slave HCs registration process with the DC, and know about

ModelVersions, it is time to mention that when registering with the DC, the slave HC will send across a list of

all its subsystem ModelVersions. The DC maintains this information in a registry for each slave HC, so that it

knows which transformers (if any) to invoke for a legacy slave. We will see how to write and register

transformers later on in . Slave HCs from version 7.2.0 onwards will also includeHow do I write a transformer

a list of resources that they ignore (see), and the DC will maintain thisIgnoring resources on legacy hosts

information in its registry. The DC will not send across any resources that it knows a slave ignores during the

initial domain model transfer. When forwarding operations onto the slave HCs, the DC will skip forwarding

those to slave HCs ignoring those resources.

There are two kinds of transformers:

resource transformers

operation transformers

The main function of transformers is to transform a subsystem to something that the legacy slave HC can

understand, or to aggressively reject things that the legacy slave HC will not understand. Rejection, in this

context, essentially means, that the resource or operation cannot safely be transformed to something valid

on the slave, so the transformation fails. We will see later how to reject attributes in , andRejecting attributes

child resources in .Reject child resource

Both resource and operation transformers are needed, but take effect at different times. Let us use the weld

subsystem, which is relatively simple, as an example. In JBoss AS 7.2.0 and lower it had a ModelVersion of

1.0.0, and its resource description was as follows:

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {},

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 }

 },

 "children" => {}

 },

WildFly 10

JBoss Community Documentation Page of 80 226

In WildFly 8, it has a ModelVersion of 2.0.0 and has added two attributes, require-bean-descriptor

and mode:non-portable

{

 "description" => "The configuration of the weld subsystem.",

 "attributes" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean descriptor

file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

CDI 1.1.",

 "expressions-allowed" => true,

 "nillable" => true,

 "default" => false,

 "access-type" => "read-write",

 "storage" => "configuration",

 "restart-required" => "no-services"

 }

 },

 "operations" => {

 "remove" => {

 "operation-name" => "remove",

 "description" => "Operation removing the weld subsystem.",

 "request-properties" => {},

 "reply-properties" => {}

 },

 "add" => {

 "operation-name" => "add",

 "description" => "Operation creating the weld subsystem.",

 "request-properties" => {

 "require-bean-descriptor" => {

 "type" => BOOLEAN,

 "description" => "If true then implicit bean archives without bean

descriptor file (beans.xml) are ignored by Weld",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 },

 "non-portable-mode" => {

 "type" => BOOLEAN,

 "description" => "If true then the non-portable mode is enabled. The

non-portable mode is suggested by the specification to overcome problems with legacy

applications that do not use CDI SPI properly and may be rejected by more strict validation in

WildFly 10

JBoss Community Documentation Page of 81 226

CDI 1.1.",

 "expressions-allowed" => true,

 "required" => false,

 "nillable" => true,

 "default" => false

 }

 },

 "reply-properties" => {}

 }

 },

 "children" => {}

 }

In the rest of this section we will assume that we are running a DC running WildFly 8 so it will have

ModelVersion 2.0.0 of the weld subsystem, and that we are running a slave using ModelVersion 1.0.0 of the

weld subsystem.

Important

Transformation always takes place on the Domain Controller, and is done when sending across the

initial domain model AND forwarding on operations to legacy slave HCs.

WildFly 10

JBoss Community Documentation Page of 82 226

9.4.1 Resource transformers

When copying over the centralized domain configuration as mentioned in ,Getting the initial domain model

we need to make sure that the copy of the domain model is something that the servers running on the legacy

slave HC understand. So if the centralized domain configuration had any of the two new attributes set, we

would need to reject the transformation in the transformers. One reason for this is to keep things consistent,

it doesn't look good if you connect to the slave HC and find attributes and/or child resources when doing

 which are not there when you do . Also, to make life:read-resource :read-resource-description

easier for subsystem writers, most instances of the operation use a standard implementationdescribe

which would include these attributes when creating the operation for the server, which could causeadd

problems there.

Another, more concrete example from the logging subsystem is that it allows a ' }' in the pattern%K{...

formatter which makes the formatter use colour:

<pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>

This ' }' however was introduced in JBoss AS < 7.1.3 (ModelVersion 1.2.0), so if that makes it across%K{...

to a slave HC running an older version, the servers fail to start up. So the logging extension registerswill

transformers to strip out the ' }' from the attribute value (leaving ' %K{... %-5p

[%c]

') so that the old slave HC's servers can understand it.(%t) %s%E%n"

Rejection in resource transformers
Only slave HCs from JBoss AS 7.2.0 and newer inform the DC about their ignored resources (see Ignoring

). This means that if a transformer on the DC rejects transformation for a legacyresources on legacy hosts

slave HC, exactly what happens to the slave HC depends on the version of the slave HC. If the slave HC is:

 - the DC has no means of knowing if the slave HC has ignored the resource beingolder than 7.2.0

rejected or not. So we log a warning on the DC, and send over the serialized part of that model

anyway. If the slave HC has ignored the resource in question, it does not apply it. If the slave HC has

not ignored the resource in question, it will apply it, but no failure will happen until it tries to start a

server which references this bad configuration.

 - If a resource is ignored on the slave HC, the DC knows about this, and will not7.2.0 or newer

attempt to transform or send the resource across to the slave HC. If the resource transformation is

rejected, we know the resource was not ignored on the slave HC and so we can aggressively fail the

transformation, which in turn will cause the slave HC to fail to start up.

WildFly 10

JBoss Community Documentation Page of 83 226

9.4.2 Operation transformers

When the operation gets sent across to theAn operation changes something in the domain configuration

slave HCs to update their domain models. The slave HCs then forward this operation onto the affected

servers. The same considerations as in are true, although operation transformersResource transformers

give you quicker 'feedback' if something is not valid. If you try to execute:

/profile=full/subsystem=weld:write-attribute(name=require-bean-descriptor, value=false)

This will fail on the legacy slave HC since its version of the subsystem does not contain any such attribute.

However, it is best to aggressively reject in such cases.

Rejection in operation transformers
For transformed operations we can always know if the operation is on an ignored resource in the legacy

slave HC. In 7.2.0 onwards, we know this through the DC's registry of ignored resources on the slave. In

older versions of slaves, we send the operation across to the slave, which tries to invoke the operation. If the

operation is against an ignored resource we inform the DC about this fact. So as part of the transformation

process, if something gets rejected we can (and do!) fail the transformation aggressively. If the operation

invoked on the DC results in the operation being sent across to 10 slave HCs and one of them has a legacy

version which ends up rejecting the transformation, we rollback the operation across the whole domain.

9.4.3 Different profiles for different versions

Now for the example we have been using there is a slight twist. We have the new weld

 and attributes. These have been added in WildFly 8require-bean-descriptor non-portable-mode

which supports Java EE 7, and thus CDI 1.1. JBoss AS 7.x supports Java EE 6, and thus CDI 1.0. In CDI

1.1 the values of these attributes are tweakable, so they can be set to either or . The defaulttrue false

behaviour for these in CDI 1.1, if not set, is that they are . However, for CDI 1.0 these were notfalse

tweakable, and with the way the subsystem in JBoss AS 7.x worked is similar to if they are set to .true

The above discussion implies that to use the weld subsystem on a legacy slave HC, the domain.xml

configuration for it must look like:

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

We will see the exact mechanics for how this is actually done later but in short when pushing this to a legacy

slave DC we register transformers which reject the transformation if these attributes are not set to true

since that implies some behaviour not supported on the legacy slave DC. If they are , all is well, andtrue

the transformers discard, or remove, these attributes since they don't exist in the legacy model. This removal

is fine since they have the values which would result in the behaviour assumed on the legacy slave HC.

WildFly 10

JBoss Community Documentation Page of 84 226

That way the older slave HCs will work fine. However, we might also have WildFly 8 slave HCs in our

domain, and they are missing out on the new features introduced by the attributes introduced in

ModelVersion 2.0.0. If we do

<subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

then it will fail when doing transformation for the legacy controller. The solution is to put these in two different

profiles in domain.xml

<domain>

....

 <profiles>

 <profile name="full">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="false"

 non-portable-mode="false"/>

 ...

 </profile>

 <profile name="full-legacy">

 <subsystem xmlns="urn:jboss:domain:weld:2.0"

 require-bean-descriptor="true"

 non-portable-mode="true"/>

 ...

 </profile>

 </profiles>

 ...

 <server-groups>

 <server-group name="main-server-group" profile="full">

 <server-group>

 <server-group name="main-server-group-legacy" profile="full-legacy">

 <server-group>

 </server-groups>

</domain>

Then have the HCs using WildFly 8 make their servers reference the server group,main-server-group

and the HCs using older versions of WildFly 8 make their servers reference the

 server group.main-server-group-legacy

WildFly 10

JBoss Community Documentation Page of 85 226

Ignoring resources on legacy hosts
Booting the above configuration will still cause problems on legacy slave HCs, especially if they are JBoss

AS 7.2.0 or later. The reason for this is that when they register themselves with the DC it lets the DC know

which they have. If the DC comes to transform something it should reject for a slaveignored resources

HC and it is not part of its ignored resources it will aggressively fail the transformation. Versions of JBoss AS

older than 7.2.0 still have this ignored resources mechanism, but don't let the DC know about what they

have ignored so the DC cannot reject aggressively - instead it will log some warnings. However, it is still

good practice to ignore resources you are not interested in regardless of which legacy version the slave HC

is running.

To ignore the profile we cannot understand we do the following in the legacy slave HC's host.xml

<host xmlns="urn:jboss:domain:1.3" name="slave">

...

 <domain-controller>

 <remote host="${jboss.test.host.master.address}" port="${jboss.domain.master.port:9999}"

security-realm="ManagementRealm">

 <ignored-resources type="profile">

 <instance name="full-legacy"/>

 </ignored-resources>

 </remote>

 </domain-controller>

....

</host>

Important

Any top-level resource type can be ignored , , etc. Ignoring aprofile extension server-group

resource instance ignores that resource, and all its children.

9.5 How do I know what needs to be transformed?

There is a set of related classes in the package to help you determine this.org.wildfly.legacy.util

These now live at

.https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

They are all runnable in your IDE, just start the WildFly or JBoss AS 7 instances as described below.

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/java/org/wildfly/legacy/util

WildFly 10

JBoss Community Documentation Page of 86 226

1.

2.

3.

4.

1.

2.

1.

2.

3.

4.

9.5.1 Getting data for a previous version

 contains thehttps://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

output for the previous WildFly/JBoss AS 7 versions, so check if the files for the version you want to check

backwards compatibility are there yet. If not, then you need to do the following to get the subsystem

definitions:

Start the version of WildFly/JBoss AS 7 using old --server-config=standalone-full-ha.xml

Run , which will output the subsystemorg.wildfly.legacy.util.GrabModelVersionsUtil

versions to target/standalone-model-versions-running.dmr

Run which willorg.wildfly.legacy.util.DumpStandaloneResourceDefinitionUtil

output the full resource definition to

target/standalone-resource-definition-running.dmr

Stop the running version of WildFly/JBoss AS 7

9.5.2 See what changed

To do this follow the following steps

Start the version of WildFly using new --server-config=standalone-full-ha.xml

Run and answer the followingorg.wildfly.legacy.util.CompareModelVersionsUtil

questions"

Enter Legacy AS version:

If it is known version in the folder,tools/src/test/resources/legacy-models

enter the version number.

If it is a not known version, and you got the data yourself in the last step, enter '

'running

Enter type:

Answer ' 'S

Read from target directory or from the legacy-models directory:

If it is known version in the controller/src/test/resources/legacy-models

folder, enter ' '.l

If it is a not known version, and you got the data yourself in the last step, enter ' 't

Report on differences in the model when the management versions are different?:

Answer ' 'y

Here is some example output, as a subsystem developer you can ignore everything down to ======

:Comparing subsystem models ======

https://github.com/wildfly/wildfly-legacy-test/tree/master/tools/src/main/resources/legacy-models

WildFly 10

JBoss Community Documentation Page of 87 226

Enter legacy AS version: 7.2.0.Final

Using target model: 7.2.0.Final

Enter type [S](standalone)/H(host)/D(domain)/F(domain + host):S

Read from target directory or from the legacy-models directory - t/[l]:

Report on differences in the model when the management versions are different? y/[n]: y

Reporting on differences in the model when the management versions are different

Loading legacy model versions for 7.2.0.Final....

Loaded legacy model versions

Loading model versions for currently running server...

Oct 01, 2013 6:26:03 PM org.xnio.Xnio <clinit>

INFO: XNIO version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.xnio.nio.NioXnio <clinit>

INFO: XNIO NIO Implementation Version 3.1.0.CR7

Oct 01, 2013 6:26:03 PM org.jboss.remoting3.EndpointImpl <clinit>

INFO: JBoss Remoting version 4.0.0.Beta1

Loaded current model versions

Loading legacy resource descriptions for 7.2.0.Final....

Loaded legacy resource descriptions

Loading resource descriptions for currently running STANDALONE...

Loaded current resource descriptions

Starting comparison of the current....

====== Comparing core models ======

-- SNIP --

====== Comparing subsystem models ======

-- SNIP --

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

-- SNIP --

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

Done comparison of STANDALONE!

So we can see that for the subsystem, we have added a child type called ,remoting http-connector

and we have added an attribute called (they are missing in legacy).protocol

in the subsystem, we have added the and weld require-bean-descriptor non-portable-mode

attributes in the current version. It will also point out other issues like changed attribute types, changed

defaults etc.

WildFly 10

JBoss Community Documentation Page of 88 226

Warning

Note that CompareModelVersionsUtil simply inspects the raw resource descriptions of the specified

legacy and current models. Its results show the differences between the two. They do not take into

account whether one or more transformers have already been written for those versions

differences. You will need to check that transformers are not already in place for those versions.

One final point to consider are that some subsystems register runtime-only resources and operations. For

example the subsystem has a method. These do not get registered on the , e.g. theremodcluster stop DC

is no operation, it only exists on the servers, for/profile=full-ha/subsystem=modcluster:stop

example . What this means is that/host=xxx/server=server-one/subsystem=modcluster:stop

you don't have to transform such operations and resources. The reason is they are not callable on the DC,

and so do not need propagation to the servers in the domain, which in turn means no transformation is

needed.

9.6 How do I write a transformer?

There are two APIs available to write transformers for a resource. There is the original low-level API where

you register transformers directly, the general idea is that you get hold of a

 for each level and implement the , TransformersSubRegistration ResourceTransformer

 and interfaces directly. It is, however, a prettyOperationTransformer PathAddressTransformer

complex thing to do, so we recommend the other approach. For completeness here is the entry point to

handling transformation in this way.

WildFly 10

JBoss Community Documentation Page of 89 226

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 static void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_1_0(subsystem);

 registerTransformers_1_2_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private static void registerTransformers_1_1_0(final SubsystemRegistration subsystem) {

 final ModelVersion version = ModelVersion.create(1, 1, 0);

 //The default resource transformer forwards all operations

 final TransformersSubRegistration registration =

subsystem.registerModelTransformers(version, ResourceTransformer.DEFAULT);

 final TransformersSubRegistration child =

registration.registerSubResource(PathElement.pathElement("child"));

 //We can do more things on the TransformersSubRegistation instances

 registerRelayTransformers(stack);

 }

Having implemented a number of transformers using the above approach, we decided to simplify things, so

we introduced the

org.jboss.as.controller.transform.description.ResourceTransformationDescriptionBuilder

API. It is a lot simpler and avoids a lot of the duplication of functionality required by the low-level API

approach. While it doesn't give you the full power that the low-level API does, we found that there are very

few places in the WildFly codebase where this does not work, so we will focus on the

 API here. (If you come across a problem where thisResourceTransformationDescriptionBuilder

does not work, get in touch with someone from the WildFly Domain Management Team and we should be

able to help). The builder API makes all the nasty calls to for you underTransformersSubRegistration

the hood. It also allows you to fall back to the low-level API in places, although that will not be covered in the

current version of this guide. The entry point for using the builder API here is taken from the WeldExtension

(in current WildFly this has ModelVersion 2.0.0).

WildFly 10

JBoss Community Documentation Page of 90 226

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

Here we register a and a . As mentioned in discard check reject check Attribute transformation

 all attributes are inspected for whether they should be discarded first. Then all attributes which werelifecycle

not discarded are checked for if they should be rejected. We will dig more into what this code means in the

next few sections, but in short it means that we discard the and require-bean-descriptor

 attributes on the subsystem resource if they have the value . If they have anynon-portable weld true

other value, they will not get discarded and so reach the reject check, which will reject the transformation of

the attributes if they have any other value.

Here we are saying that we should discard the and require-bean-descriptor non-portable-mode

attributes on the subsystem resource if they are undefined, and reject them if they are defined. So thatweld

means that if the weld subsystem looks like

{

 "non-portable-mode" => false,

 "require-bean-descriptor" => false

 }

WildFly 10

JBoss Community Documentation Page of 91 226

or

{

 "non-portable-mode" => undefined,

 "require-bean-descriptor" => undefined

 }

or any other combination (the default values for these attributes if undefined is) we will reject thefalse

transformation for the slave legacy HC.

If the resource has true for these attributes:

{

 "non-portable-mode" => true,

 "require-bean-descriptor" => true

 }

they both get discarded (i.e. removed), so they will not get inspected for rejection, and an empty model not

containing these attributes gets sent to the legacy HC.

Here we will discuss this API a bit more, to outline the most important features/most commonly needed

tasks.

9.6.1 ResourceTransformationDescriptionBuilder

The contains transformations for a resource type. TheResourceTransformationDescriptionBuilder

initial one is for the subsystem, obtained by the following call:

ResourceTransformationDescriptionBuilder subsystemBuilder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

The contains functionality for how to handle childResourceTransformationDescriptionBuilder

resources, which we will look at in this section. It is also the entry point to how to handle transformation of

attributes as we will see in . Also, it allows you to further overrideAttributeTransformationDescriptionBuilder

operation transformation as discussed in . When we have finishedOperationTransformationOverrideBuilder

with our builder, we register it with the against the target ModelVersion.SubsystemRegistration

TransformationDescription.Tools.register(subsystemBuilder.build(), subsystem,

ModelVersion.create(1, 0, 0));

Important

If you have several old ModelVersions you could be transforming to, you need a separate builder

for each of those.

WildFly 10

JBoss Community Documentation Page of 92 226

Silently discard child resources
To make the do something, we need to call some ofResourceTransformationDescriptionBuilder

its methods. For example, if we want to silently discard a child resource, we can do

subsystemBuilder.discardChildResource(PathElement.pathElement("child", "discarded"));

This means that any usage of never make it to the/subsystem=my-subsystem/child=discarded

legacy slave HC running ModelVersion 1.0.0. During the initial domain model transfer, that part of the

serialized domain model is stripped out, and any operations on this address are not forwarded on to the

legacy slave HCs running that version of the subsystem. (For brevity this section will leave out the leading

 part used in domain mode, and use as the 'top-level'/profile=xxx /subsystem=my-subsystem

address).

Warning

Note that discarding, although the simplest option in theory, is .rarely the right thing to do

The presence of the defined child normally implies some behaviour on the DC, and that behaviour is not

available on the legacy slave HC, so normally rejection is a better policy for those cases. Remember we can

have different profiles targeting different groups of versions of legacy slave HCs.

Reject child resource
If we want to reject transformation if a child resource exists, we can do

subsystemBuilder.rejectChildResource(PathElement.pathElement("child", "reject"));

Now, if there are any legacy slaves running ModelVersion 1.0.0, any usage of

 will get rejected for those slaves. Both during the initial/subsystem=my-subsystem/child=reject

domain model transfer, and if any operations are invoked on that address. For example the remoting

subsystem did not have a child until ModelVersion 2.0.0, so it is set up to reject thathttp-connector=*

child when transforming to legacy HCs for all previous ModelVersions (1.1.0, 1.2.0 and 1.3.0). (See

 and for exactly what happens whenRejection in resource transformers Rejection in operation transformers

something is rejected).

WildFly 10

JBoss Community Documentation Page of 93 226

Redirect address for child resource
Sometimes we rename the addresses for a child resource between model versions. To do that we use one

of the methods, note that these also return a builder for the child resourceaddChildRedirection()

(since we are not rejecting or discarding it), we can do this for all children of a given type:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild"),

PathElement.pathElement("oldChild");

Now, in the initial domain transfer becomes /subsystem=my-subsystem/newChild=test

. Similarly all operations against the former address get/subsystem=my-subsystem/oldChild=test

mapped to the latter when executing operations on the DC before sending them to the legacy slave HC

running ModelVersion 1.1.0 of the subsystem.

We can also rename a specific named child:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildRedirection(PathElement.pathElement("newChild", "newName"),

PathElement.pathElement("oldChild", "oldName");

Now, becomes /subsystem=my-subsystem/newChild=newName

 both in the initial domain transfer, and when mapping/subsystem=my-subsystem/oldChild=oldName

operations to the legacy slave. For example, under the subsystem got renamedweb ssl=configuration

to in later versions, meaning we need a redirect from to configuration=ssl configuration=ssl

 in its transformers.ssl=configuration

Getting a child resource builder
Sometimes we don't want to transform the subsystem resource, but we want to transform something in one

of its child resources. Again, since we are not discarding or rejecting, we get a reference to the builder for

the child resource.

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 //We don't actually want to transform anything in /subsystem-my-subsystem/some-child=*

either :-)

 //We are interested in /subsystem-my-subsystem/some-child=*/another-level

 ResourceTransformationDescriptionBuilder anotherBuilder =

 childBuilder.addChildResource(PathElement.pathElement("another-level"));

 //Use anotherBuilder to add child-resource and/or attribute transformation

WildFly 10

JBoss Community Documentation Page of 94 226

9.6.2 AttributeTransformationDescriptionBuilder

To transform attributes you call

 which returns you a ResourceTransformationDescriptionBuilder.getAttributeBuilder()

 which is used to define transformation for theAttributeTransformationDescriptionBuilder

resource's attributes. For example this gets the attribute builder for the subsystem resource:

AttributeTransformationDescriptionBuilder attributeBuilder =

subSystemBuilder.getAttributeBuilder();

or we could get it for one of the child resources:

ResourceTransformationDescriptionBuilder childBuilder =

 subsystemBuilder.addChildResource(PathElement.pathElement("some-child"));

 AttributeTransformationDescriptionBuilder attributeBuilder =

childBuilder.getAttributeBuilder();

The attribute transformations defined by the will alsoAttributeTransformationDescriptionBuilder

impact the parameters to all operations defined on the resource. This means that if you have defined the

 attribute of to reject transformation if its value is example /subsystem=my-subsystem/some-child=*

, the inital domain transfer will reject if it is , also the transformation of the following operations willtrue true

reject:

/subsystem=my-subsystem/some-child=test:add(example=true)

 /subsystem=my-subsystem:write-attribute(name=example, value=true)

 /subsystem=my-subsystem:custom-operation(example=true)

The following operations will pass in this example, since the attribute is not getting set to example true

/subsystem=my-subsystem/some-child=test:add(example=false)

 /subsystem=my-subsystem/some-child=test:add() //Here it 'example' is simply left

undefined

 /subsystem=my-subsystem:write-attribute(name=example, value=false)

 /subsystem=my-subsystem:undefine-attribute(name=example) //Again this makes 'example'

undefined

 /subsystem=my-subsystem:custom-operation(example=false)

For the rest of the examples in this section we assume that the is for attributeBuilder

/subsystem=my-subsystem

WildFly 10

JBoss Community Documentation Page of 95 226

1.

2.

3.

4.

Attribute transformation lifecycle
There is a well defined lifecycle used for attribute transformation that is worth explaining before jumping into

specifics. Transformation is done in the following phases, in the following order:

 - All attributes in the domain model transfer or invoked operation that have been registereddiscard

for a discard check, are checked to see if the attribute should be discarded. If an attribute should be

discarded, it is removed from the resource's attributes/operation's parameters and it does not get

passed to the next phases. Once discarded it does not get sent to the legacy slave HC.

 - All attributes that have been registered for a reject check (and which not have beenreject

discarded) are checked to see if the attribute should be rejected. As explained in Rejection in

 and exactly what happens when somethingresource transformers Rejection in operation transformers

is rejected varies depending on whether we are transforming a resource or an operation, and the

version of the legacy slave HC we are transforming for. If a transformer rejects an attribute, all other

reject transformers still get invoked, and the next phases also get invoked. This is because we don't

know in all cases what will happen if a reject happens. Although this might sound cumbersome, in

practice it actually makes it easier to write transformers since you only need one kind regardless of if

it is a resource, an operation, and legacy slave HC version. However, as we will see in Common

, it means some extra checks are needed when writing reject and converttransformation use-cases

transformers.

 - All attributes that have been registered for conversion are checked to see if the attributeconvert

should be converted. If the attribute does not exist in the original operation/resource it may be

introduced. This is useful for setting default values for the target legacy slave HC.

 - All attributes registered for renaming are renamed.rename

Next, let us have a look at how to register attributes for each of these phases.

Discarding attributes
The general idea behind a discard is that we remove attributes which do not exist in the legacy slave HC's

model. However, as hopefully described below, we normally can't simply discard everything, we need to

check the values first.

To discard an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.DiscardAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

DiscardAttributeChecker discardCheckerA =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1", "attr2");

As shown, you can register the for several attributes at once, in the aboveDiscardAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:DiscardAttributeChecker

WildFly 10

JBoss Community Documentation Page of 96 226

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerA, "attr2");

Note that you can only have one per attribute, so the following would causeDiscardAttributeChecker

an error (if running with assertions enabled, otherwise will overwrite discardCheckerB

):discardCheckerA

DiscardAttributeChecker discardCheckerA =;

 DiscardAttributeChecker discardCheckerB =;

 attributeBuilder.setDiscard(discardCheckerA, "attr1");

 attributeBuilder.setDiscard(discardCheckerB, "attr1");

The DiscardAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.DiscardAttributeChecker

the and some helper implementations. The implementations of this interfaceDiscardAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple:

public interface DiscardAttributeChecker {

 /**

 * Returns {@code true} if the attribute should be discarded if expressions are used

 *

 * @return whether to discard if expressions are used

 */

 boolean isDiscardExpressions();

Return here to discard the attribute if it is an expression. If it is an expression, and this method returns true

, the and methodstrue isOperationParameterDiscardable isResourceAttributeDiscardable

will not get called.

/**

 * Returns {@code true} if the attribute should be discarded if it is undefined

 *

 * @return whether to discard if the attribute is undefined

 */

 boolean isDiscardUndefined();

Return here to discard the attribute if it is . If it is , and this method returns true undefined undefined

, the , and true isDiscardExpressions isOperationParameterDiscardable

 methods will not get called.isResourceAttributeDiscardable

WildFly 10

JBoss Community Documentation Page of 97 226

/**

 * Gets whether the given operation parameter can be discarded

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter.

 * @param attributeValue the value of the operation parameter.

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 *

 * @return {@code true} if the operation parameter value should be discarded, {@code false}

otherwise.

 */

 boolean isOperationParameterDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to discard the operation.

/**

 * Gets whether the given attribute can be discarded

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 *

 * @return {@code true} if the attribute value should be discarded, {@code false} otherwise.

 */

 boolean isResourceAttributeDiscardable(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

}

DiscardAttributeChecker helper classes/implementations
 contains a few helper implementations for the most common cases to saveDiscardAttributeChecker

you writing the same stuff again and again.

WildFly 10

JBoss Community Documentation Page of 98 226

DiscardAttributeChecker.DefaultDiscardAttributeChecker
 is an abstract convenience class.DiscardAttributeChecker.DefaultDiscardAttributeChecker

In most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and isResourceAttributeDiscardable()

 methods call the following method.isOperationParameterDiscardable()

protected abstract boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context);

All you loose, in the case of an operation transformation, is the name of the transformed operation. The

constructor of also allows you toDiscardAttributeChecker.DefaultDiscardAttributeChecker

define values for and .isDiscardExpressions() isDiscardUndefined()

DiscardAttributeChecker.DiscardAttributeValueChecker
This is another convenience class, which allows you to discard an attribute if it has one or more values. Here

is a real-world example from the subsystem:jpa

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

We will come back to the reject checks in the section. We are saying that we shouldRejecting attributes

discard the attribute if it has theJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

value . The reasoning here is that this attribute did not exist in the old model, but the legacy slave HCs deep

 is that this was . In the current version we added the possibility to toggle this setting,implied behaviour deep

but only is consistent with what is available in the legacy slave HC. In this case we are using thedeep

constructor for which says don'tDiscardAttributeChecker.DiscardAttributeValueChecker

discard if it uses expressions, and discard if it is . If it is in the current model,undefined undefined

looking at the default value of , it is JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

, so a discard is in line with the implied legacy behaviour. If an expression is used, we cannot discarddeep

since we have no idea what the expression will resolve to on the slave HC.

WildFly 10

JBoss Community Documentation Page of 99 226

DiscardAttributeChecker.ALWAYS
 will always discard an attribute. Use this sparingly, since normallyDiscardAttributeChecker.ALWAYS

the presence of an attribute in the current model implies some behaviour should be turned on, and if that

does not exist in the legacy model it implies that that behaviour does not exist in the legacy slave HC and its

servers. Normally the legacy slave HC's subsystem has some implied behaviour which is better checked for

by using a . One valid use for DiscardAttributeChecker.DiscardAttributeValueChecker

 can be found in the subsystem:DiscardAttributeChecker.ALWAYS ejb3

private static void registerTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance()

 .getAttributeBuilder()

 ...

 // We can always discard this attribute, because it's meaningless without the

security-manager subsystem, and

 // a legacy slave can't have that subsystem in its profile.

 .setDiscard(DiscardAttributeChecker.ALWAYS,

EJB3SubsystemRootResourceDefinition.DISABLE_DEFAULT_EJB_PERMISSIONS)

 ...

As the comment says, this attribute only makes sense with the security-manager susbsystem, which does

not exist on legacy slaves running ModelVersion 1.1.0 of the subsystem.ejb3

DiscardAttributeChecker.UNDEFINED
 will discard an attribute if it is . This is normallyDiscardAttributeChecker.UNDEFINED undefined

safer than since the attribute is not set in the current model, weDiscardAttributeChecker.ALWAYS

don't need to send it to the legacy model. However, you should check that this attribute not existing in the

legacy slave HC, implies the same functionality as being undefined in the current DC.

Rejecting attributes
The next step is to check attributes and values which we know for sure will not work on the target legacy

slave HC.

To reject an attribute we need an instance of

, and call theorg.jboss.as.controller.transform.description.RejectAttributeChecker

following method on the :AttributeTransformationDescriptionBuilder

RejectAttributeChecker rejectCheckerA =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1", "attr2");

As shown you can register the for several attributes at once, in the aboveRejectAttributeChecker

example both and get checked for if they should be discarded. You can also register different attr1 attr2

 instances for different attributes:RejectAttributeChecker

WildFly 10

JBoss Community Documentation Page of 100 226

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr2");

You can also register several instances per attributeRejectAttributeChecker

RejectAttributeChecker rejectCheckerA =;

 RejectAttributeChecker rejectCheckerB =;

 attributeBuilder.addRejectCheck(rejectCheckerA, "attr1");

 attributeBuilder.addRejectCheck(rejectCheckerB, "attr1, "attr2");

In this case gets both and . For attributes with several attr1 rejectCheckerA rejectCheckerB

 registered, they get processed in the order that they have been added. SoRejectAttributeChecker

when checking for rejection, gets run before . As mentioned in attr1 rejectCheckerA rejectCheckerB

, if an attribute is rejected, we still invoke the rest of the reject checkers.Attribute transformation lifecycle

The RejectAttributeChecker interface
 contains bothorg.jboss.as.controller.transform.description.RejectAttributeChecker

the and some helper implementations. The implementations of this interfaceRejectAttributeChecker

get called for each attribute they are registered against. The interface itself is quite simple, and its main

methods are similar to :DiscardAttributeChecker

public interface RejectAttributeChecker {

 /**

 * Determines whether the given operation parameter value is not understandable by the

target process and needs

 * to be rejected.

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 * @return {@code true} if the parameter value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter. We have access

to the address of the operation, the name and value of the operation parameter, an unmodifiable copy of the

original operation and the . The allows you accessTransformationContext TransformationContext

to the original resource the operation is working on before any transformation happened, which is useful if

you want to check other values in the resource if this is, say a operation. Return write-attribute true

to reject the operation.

WildFly 10

JBoss Community Documentation Page of 101 226

/**

 * Gets whether the given resource attribute value is not understandable by the target

process and needs

 * to be rejected.

 *

 * @param address the address of the resource

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute

 * @param context the context of the transformation

 * @return {@code true} if the attribute value is not understandable by the target process

and so needs to be rejected, {@code false} otherwise.

 */

 boolean rejectResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the .TransformationContext

Return to discard the operation.true

/**

 * Returns the log message id used by this checker. This is used to group it so that all

attributes failing a type of rejction

 * end up in the same error message

 *

 * @return the log message id

 */

 String getRejectionLogMessageId();

Here we need a unique id for the log message from the . It is used to groupRejectAttributeChecker

rejected attributes by their log message. A typical implementation will contain {{return

getRejectionLogMessage(Collections.<String, ModelNode>emptyMap());}

/**

 * Gets the log message if the attribute failed rejection

 *

 * @param attributes a map of all attributes failed in this checker and their values

 * @return the formatted log message

 */

 String getRejectionLogMessage(Map<String, ModelNode> attributes);

Here we return a message saying why the attributes were rejected, with the possiblity to format the message

to include the names of all the rejected attributes and the values they had.

}

WildFly 10

JBoss Community Documentation Page of 102 226

RejectAttributeChecker helper classes/implementations
 contains a few helper classes for the most common scenarios to save youRejectAttributeChecker

from writing the same stuff again and again.

RejectAttributeChecker.DefaultRejectAttributeChecker
 is an abstract convenience class. InRejectAttributeChecker.DefaultRejectAttributeChecker

most cases you don't need a separate check for if an operation or a resource is being transformed, so it

makes both the and methods call therejectOperationParameter() rejectResourceAttribute()

following method.

protected abstract boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like , all you loose is the name of the transformed operation, in theDefaultDiscardAttributeChecker

case of operation transformation.

RejectAttributeChecker.DEFINED
 is used to reject any attribute that has a defined value. NormallyRejectAttributeChecker.DEFINED

this is because the attribute does not exist on the target legacy slave HC. A typical use case for these is for

the example we looked at in the subsystem in implied behaviour jpa

DiscardAttributeChecker.DiscardAttributeValueChecker

private void initializeTransformers_1_1_0(SubsystemRegistration subsystemRegistration) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .setDiscard(

 new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(ExtendedPersistenceInheritance.DEEP.toString())),

 JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

JPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystemRegistration,

ModelVersion.create(1, 1, 0));

 }

So we discard the value if it is notJPADefinition.DEFAULT_EXTENDEDPERSISTENCE_INHERITANCE

an expression, and also has the value . Now if it was not discarded, it would will still be defined so wedeep

reject it.

Important

Reject and discard often work in pairs.

WildFly 10

JBoss Community Documentation Page of 103 226

RejectAttributeChecker.SIMPLE_EXPRESSIONS
 can be used to reject an attribute that containsRejectAttributeChecker.SIMPLE_EXPRESSIONS

expressions. This was used a lot for transformations to subsystems in JBoss AS 7.1.x, since we had not fully

realized the importance of where to support expressions until JBoss AS 7.2.0 was released, so a lot of

attributes in earlier versions were missing expressions support.

RejectAttributeChecker.ListRejectAttributeChecker
The RejectAttributeChecker}}s we have seen so far work on simple attributes,

i.e. where the attribute has a ModelType which is one of the primitives. We also

 which allows you to define ahave a {{RejectAttributeChecker.ListRejectAttributeChecker

checker for the elements of a list, when the type of an attribute is .ModelType.LIST

attributeBuilder

 .addRejectCheck(new ListRejectAttributeChecker(RejectAttributeChecker.EXPRESSIONS),

"attr1");

For it will check each element of the list and run toattr1 RejectAttributeChecker.EXPRESSIONS

check that each element is not an expression. You can of course pass in another kind of

 to check the elements as well.RejectAttributeChecker

RejectAttributeChecker.ObjectFieldsRejectAttributeChecker
For attributes where the type is we have ModelType.OBJECT

 which allows you to registerRejectAttributeChecker.ObjectFieldsRejectAttributeChecker

different reject checkers for the different fields of the registered object.

Map<String, RejectAttributeChecker> fieldRejectCheckers = new HashMap<String,

RejectAttributeChecker>();

 fieldRejectCheckers.put("time", RejectAttributeChecker.SIMPLE_EXPRESSIONS);

 fieldRejectCheckers.put("unit", "Lunar Month");

 attributeBuilder

 .addRejectCheck(new ObjectFieldsRejectAttributeChecker(fieldRejectCheckers),

"attr1");

Now if is a complex type where attr1 attr1.get("time").getType() == ModelType.EXPRESSION

or we reject the attribute.attr1.get("unit").asString().equals("Lunar Month")

Converting attributes
To convert an attribute you register an

 instance against theorg.jboss.as.controller.transform.description.AttributeConverter

attributes you want to convert:

WildFly 10

JBoss Community Documentation Page of 104 226

AttributeConverter converterA = ...;

 AttributeConverter converterB = ...;

 attributeBuilder

 .setValueConverter(converterA, "attr1", "attr2");

 attributeBuilder

 .setValueConverter(converterB, "attr3");

Now if and get converted with , while gets converted with .attr1 attr2 converterA attr3 converterB

The AttributeConverter interface
The interface gets called for each attribute for which the AttributeConverter AttributeConverter

has been registered

public interface AttributeConverter {

 /**

 * Converts an operation parameter

 *

 * @param address the address of the operation

 * @param attributeName the name of the operation parameter

 * @param attributeValue the value of the operation parameter to be converted

 * @param operation the operation executed. This is unmodifiable.

 * @param context the context of the transformation

 */

 void convertOperationParameter(PathAddress address, String attributeName, ModelNode

attributeValue, ModelNode operation, TransformationContext context);

If we are transforming an operation, this method gets called for each operation parameter for which the con.

We have access to the address of the operation, the name and value of the operation parameter, an

unmodifiable copy of the original operation and the . The TransformationContext

 allows you access to the original resource the operation is working on beforeTransformationContext

any transformation happened, which is useful if you want to check other values in the resource if this is, say

a write-attribute operation. To change the attribute value, you modify the .attributeValue

/**

 * Converts a resource attribute

 *

 * @param address the address of the operation

 * @param attributeName the name of the attribute

 * @param attributeValue the value of the attribute to be converted

 * @param context the context of the transformation

 */

 void convertResourceAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

If we are transforming a resource, this method gets called for each attribute in the resource. We have access

to the address of the resource, the name and value of the attribute, and the . ToTransformationContext

change the attribute value, you modify the .attributeValue

WildFly 10

JBoss Community Documentation Page of 105 226

}

A hypothetical example is if the current and legacy subsystems both contain an attribute called . Intimeout

the legacy model this was specified to be milliseconds, however in the current model it has been changed to

be seconds, hence we need to convert the value when sending it to slave HCs using the legacy model:

AttributeConverter secondsToMs = new AttributeConverter.DefaultAttributeConverter() {

 @Override

 protected void convertAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 if (attributeValue.isDefined()) {

 int seconds = attributeValue.asInt();

 int milliseconds = seconds * 1000;

 attributeValue.set(milliseconds);

 }

 }

 };

 attributeBuilder.

 .setValueConverter(secondsToMs , "timeout")

We need to be a bit careful here. If the attribute is an expression our nice conversion will not work,timeout

so we need to add a reject check to make sure it is not an expression as well:

attributeBuilder.

 .addRejectCheck(SIMPLE_EXPRESSIONS, "timeout")

 .setValueConverter(secondsToMs , "timeout")

Now it should be fine.

 is is an abstract convenience class. In mostAttributeConverter.DefaultAttributeConverter

cases you don't need a separate check for if an operation or a resource is being transformed, so it makes

both the convertOperationParameter() and convertResourceAttribute() methods call the following method.

protected abstract void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context);

Like and , all you loose isDefaultDiscardAttributeChecker DefaultRejectAttributeChecker

the name of the transformed operation, in the case of operation transformation.

WildFly 10

JBoss Community Documentation Page of 106 226

Introducing attributes during transformation
Say both the current and the legacy models have an attribute called . In the legacy version this attributeport

had to be specified, and the default xml configuration had for its value. In the current version this1234

attribute has been made optional with a default value of so that it does not need to be specified. When1234

transforming to a slave HC using the old version we will need to introduce this attribute if the new model

does not contain it:

attributeBuilder.

 setValueConverter(AttributeConverter.Factory.createHardCoded(new ModelNode(1234) true),

"port");

So what this factory method does is to create an implementation of

 where in we set AttributeConverter.DefaultAttributeConverter convertAttribute()

 to have the value if it is . As long as gets set in thatattributeValue 1234 undefined attributeValue

method it will get set in the model, regardless of if it existed already or not.

Renaming attributes
To rename an attribute, you simply do

attributeBuilder.addRename("my-name", "legacy-name");

Now, in the initial domain transfer to the legacy slave HC, we rename 's /subsystem=my-subsystem

 attribute to . Also, the operations involving this attribute are affected, somy-name legacy-name

/subsystem=my-subsystem/:add(my-name=true) ->

 /subsystem=my-subsystem/:add(legacy-name=true)

 /subsystem=my-subsystem:write-attribute(name=my-name, value=true) ->

 /subsystem=my-subsystem:write-attribute(name=legacy-name, value=true)

 /subsystem=my-subsystem:undefine-attribute(name=my-name) ->

 /subsystem=my-subsystem:undefine-attribute(name=legacy-name)

WildFly 10

JBoss Community Documentation Page of 107 226

9.6.3 OperationTransformationOverrideBuilder

All operations on a resource automatically get the same transformations on their parameters as set up by the

. In some cases you might want to change this, soAttributeTransformationDescriptionBuilder

you can use the , which is got from:OperationTransformationOverrideBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

In this case the operation will now no longer inherit the attribute/operation parameter transformations, so

they are effectively turned off. In other cases you might want to include them by calling

, and to include some more checks (the inheritResourceAttributeDefinitions()

 interface has all the methods found in OperationTransformationBuilder

:AttributeTransformationBuilder

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.inheritResourceAttributeDefinitions();

 operationBuilder.setValueConverter(AttributeConverter.Factory.createHardCoded(new

ModelNode(1234) true), "port");

You can also rename operations, in this case the operation gets renamed to some-operation

 before getting sent to the legacy slave HC.legacy-operation

OperationTransformationOverrideBuilder operationBuilder =

subSystemBuilder.addOperationTransformationOverride("some-operation");

 operationBuilder.rename("legacy-operation");

9.7 Evolving transformers with subsystem

ModelVersions

Say you have a subsystem with ModelVersions 1.0.0 and 1.1.0. There will (hopefully!) already be

transformers in place for 1.1.0 to 1.0.0 transformations. Let's say that the transformers registration looks like:

WildFly 10

JBoss Community Documentation Page of 108 226

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 1;

 private static final int MANAGEMENT_API_MINOR_VERSION = 1;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

 private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now say we want to do a new version of the model. This new version contains a new attribute called

'new-attr' which cannot be defined when transforming to 1.1.0, we bump the model version to 2.0.0:

WildFly 10

JBoss Community Documentation Page of 109 226

public class SomeExtension implements Extension {

 private static final String SUBSYSTEM_NAME = "my-subsystem"'

 private static final int MANAGEMENT_API_MAJOR_VERSION = 2;

 private static final int MANAGEMENT_API_MINOR_VERSION = 0;

 private static final int MANAGEMENT_API_MICRO_VERSION = 0;

 @Override

 public void initialize(ExtensionContext context) {

 SubsystemRegistration registration = context.registerSubsystem(SUBSYSTEM_NAME,

MANAGEMENT_API_MAJOR_VERSION,

 MANAGEMENT_API_MINOR_VERSION, MANAGEMENT_API_MICRO_VERSION);

 //Register the resource definitions

 }

There are a few ways to evolve your transformers:

The old way

Chained transformers

WildFly 10

JBoss Community Documentation Page of 110 226

9.7.1 The old way

This is the way that has been used up to WildFly 8.x. However, in WildFly 9, it is strongly recommended to

migrate to what is mentioned in Chained transformers

Now we need some new transformers from the current ModelVersion to 1.1.0 where we reject any defined

occurrances of our new attribute :new-attr

private void registerTransformers(final SubsystemRegistration subsystem) {

 registerTransformers_1_0_0(subsystem);

 registerTransformers_1_1_0(subsystem);

 }

 /**

 * Registers transformers from the current version to ModelVersion 1.1.0

 */

 private void registerTransformers_1_1_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 1, 0));

 }

So that is all well and good, however we also need to take into account that new-attr does not exist in

, so we need to extend our transformer for 1.0.0 to reject it there as well. As youModelVersion 1.0.0 either

can see 1.0.0 also rejects a defined 'attr1' in addition to the 'new-attr'(which is rejected in both versions).

/**

 * Registers transformers from the current version to ModelVersion 1.0.0

 */

 private void registerTransformers_1_0_0(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1", "new-attr")

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

}

Now will be rejected if defined for all previous model versions.new-attr

WildFly 10

JBoss Community Documentation Page of 111 226

9.7.2 Chained transformers

Since 'The old way' had a lot of duplication of code, in WildFly 9 we now have chained transformers. You

obtain a which is a different entry point to the ChainedTransformationDescriptionBuilder

 we have seen earlier. Each ResourceTransformationDescriptionBuilder

 deals with transformation across one version delta.ResourceTransformationDescriptionBuilder

private void registerTransformers(SubsystemRegistration subsystem) {

 ModelVersion version1_1_0 = ModelVersion.create(1, 1, 0);

 ModelVersion version1_0_0 = ModelVersion.create(1, 0, 0);

 ChainedTransformationDescriptionBuilder chainedBuilder =

TransformationDescriptionBuilder.Factory.createChainedSubystemInstance(subsystem.getSubsystemVersion());

//Differences between the current version and 1.1.0

 ResourceTransformationDescriptionBuilder builder110 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_1_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "new-attr")

 .end();

 //Differences between the 1.1.0 and 1.0.0

 ResourceTransformationDescriptionBuilder builder100 =

 chainedBuilder.create(subsystem.getSubsystemVersion(), version1_0_0);

 builder110.getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.DEFINED, "attr1")

 .end();

 chainedBuilder.buildAndRegister(subsystem, new ModelVersion[]{version1_0_0,

version1_1_0});

The method registers a chain consisting of the builtbuildAndRegister(ModelVersion[]... chains)

 and for transformation to 1.0.0, and a chain consisting of the built builder110 builder100 builder110

for transformation to 1.1.0. It allows you to specify more than one chain.

Now when transforming from the current version to 1.0.0, the resource is first transformed from the current

version to 1.1.0 (which rejects a defined) and then it is transformed from 1.1.0 to 1.0.0 (whichnew-attr

rejects a defined). So when evolving transformers you should normally only need to add things to theattr1

last version delta. The full current-to-1.1.0 transformation is run before the 1.1.0-to-1.0.0 transformation is

run.

One thing worth pointing out that the value returned by

 and TransformationContext.readResource(PathAddress address)

 which you can useTransformationContext.readResourceFromRoot(PathAddress address)

from your custom , and RejectAttributeChecker DiscardAttributeChecker

 behaves slightly differently depending on if you are transforming an operation or aAttributeConverter

resource.

WildFly 10

JBoss Community Documentation Page of 112 226

During this will be the latest model, so in our above example, in the current-to-1.1.0resource transformation

transformation it will be the original model. In the 1.1.0-to-1.0.0 transformation, it will be the result of the

current-to-1.1.0 transformation.

During these methods will always return the original model (we are transformingoperation transformation

operations, not resources!).

In WildFly 9 we are now less aggressive about transforming to all previous versions of WildFly, however we

still have a lot of good tests for running against 7.1.x, 8. Also, for Red Hat employees we have tests against

EAP versions. These tests no longer get run by default, to run them you need to specify some system

properties when invoking maven. They are:

 - enables the non-default subsystem tests.-Djboss.test.transformers.subsystem.old

-Djboss.test.transformers.eap - (Red Hat developers only), enables the eap tests, but only the ones

run by default. If run in conjunction with you get-Djboss.test.transformers.subsystem.old

all the possible subsystem tests run.

-Djboss.test.transformers.core.old - enables the non-default core model tests.

9.8 Testing transformers

To test transformation you need to extend

 or org.jboss.as.subsystem.test.AbstractSubsystemTest

. Then, in order to have the best testorg.jboss.as.subsystem.test.AbstractSubsystemBaseTest

coverage possible, you should test the fullest configuration that will work, and you should also test

configurations that don't work if you have rejecting transformers registered. The following example is from

the threads subsystem, and I have only included the tests against 7.1.2 - there are more! First we need to

set up our test:

public class ThreadsSubsystemTestCase extends AbstractSubsystemBaseTest {

 public ThreadsSubsystemTestCase() {

 super(ThreadsExtension.SUBSYSTEM_NAME, new ThreadsExtension());

 }

 @Override

 protected String getSubsystemXml() throws IOException {

 return readResource("threads-subsystem-1_1.xml");

 }

So we say that this test is for the subsystem, and that it is implemented by .threads ThreadsExtension

This is the same test framework as we use in , but we will only talkExample subsystem#Testing the parsers

about the parts relevant to transformers here.

9.8.1 Testing a configuration that works

To test a configuration xxx

WildFly 10

JBoss Community Documentation Page of 113 226

@Test

 public void testTransformerAS712() throws Exception {

 testTransformer_1_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 /**

 * Tests transformation of model from 1.1.0 version into 1.0.0 version.

 *

 * @throws Exception

 */

 private void testTransformer_1_0(ModelTestControllerVersion controllerVersion) throws

Exception {

 String subsystemXml = "threads-transform-1_0.xml"; //This has no expressions not

understood by 1.0

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0); //The old model version

 //Use the non-runtime version of the extension which will happen on the HC

 KernelServicesBuilder builder =

createKernelServicesBuilder(AdditionalInitialization.MANAGEMENT)

 .setSubsystemXmlResource(subsystemXml);

 final PathAddress subsystemAddress =

PathAddress.pathAddress(PathElement.pathElement(SUBSYSTEM, mainSubsystemName));

 // Add legacy subsystems

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addOperationValidationResolve("add",

subsystemAddress.append(PathElement.pathElement("thread-factory")))

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(modelVersion);

 Assert.assertNotNull(legacyServices);

 checkSubsystemModelTransformation(mainServices, modelVersion);

 }

What this test does is get the builder to configure the test controller using .threads-transform-1_0.xml

This main builder works with the current subsystem version, and the jars in the WildFly checkout.

Next we configure a 'legacy' controller. This will run the version of the core libraries (e.g the controller

module) as found in the targeted legacy version of JBoss AS/Wildfly), and the subsystem. We need to pass

in that it is using the core AS version 7.1.2.Final (i.e. the

 part) and that that version is ModelVersion 1.0.0. NextModelTestControllerVersion.V7_1_2_FINAL

we have some calls passing in the Maven GAVs of the old version of theaddMavenResourceURL()

subsystem and any dependencies it has needed to boot up. Normally, specifying just the Maven GAV of the

old version of the subsystem is enough, but that depends on your subsystem. In this case the old subsystem

GAV is enough. When booting up the legacy controller the framework uses the parsed operations from the

main controller and transforms them using the 1.0.0 transformer in the threads subsystem. The

 and calls are not normally necessary,addOperationValidationResolve() excludeFromParent()

see the javadoc for more examples.

WildFly 10

JBoss Community Documentation Page of 114 226

The call to will build both the main controller and the legacyKernelServicesBuilder.build()

controller. As part of that it also boots up a second copy of the main controller using the transformed

operations to make sure that the 'old' ops to boot our subsystem will still work on the current controller, which

is important for backwards compatibility of CLI scripts. To tweak how that is done if you see failures there,

see and LegacyKernelServicesInitializer.skipReverseControllerCheck()

. The LegacyKernelServicesInitializer.configureReverseControllerCheck()

 is what gets returned by LegacyKernelServicesInitializer

.KernelServicesBuilder.createLegacyKernelServicesBuilder()

Finally we call which reads the full legacy subsystem model.checkSubsystemModelTransformation()

The legacy subsystem model will have been built up from the transformed boot operations from the parsed

xml. The operations get transformed by the operation transformers. Then it takes the model of the current

subsystem and transforms that using the resource transformers. Then it compares the two models, which

should be the same. In some rare cases it is not possible to get those two models exactly the same, so there

is a version of this method that takes a to make adjustments. The ModelFixer

 method also makes sure that the legacy model is validcheckSubsystemModelTransformation()

according to the legacy subsystem's resource definition.

The legacy subsystem resource definitions are read on demand from the legacy controller when the tests

run. In some older versions of subsystems (before we converted everything to use ResourceDefinition, and

DescriptionProvider implementations were coded by hand) there were occasional problems with the

resource definitions and they needed to be touched up. In this case you can generate a new one, touch it up

and store the result in a file in the test resources under

- . This will then prefer the/same/package/as/the/test/class/{{subsystem-name model-version

file read from the file system to the one read at runtime. To generate the .dmr file, you need to generate it by

adding a temporary test (make sure that you adjust and to what youcontrollerVersion modelVersion

want to generate):

@Test

 public void deleteMeWhenDone() throws Exception {

 ModelTestControllerVersion controllerVersion = ModelTestControllerVersion.V7_1_2_FINAL;

 ModelVersion modelVersion = ModelVersion.create(1, 0, 0);

 KernelServicesBuilder builder = createKernelServicesBuilder(null);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, modelVersion)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion());

 KernelServices services = builder.build();

 generateLegacySubsystemResourceRegistrationDmr(services, modelVersion);

 }

Now run the test and delete it. The legacy .dmr file should be in

target/test-classes/org/jboss/as/subsystem/test/<your-subsystem-name>-<your-version>.dmr

. Copy this .dmr file to the correct location in your project's test resources.

WildFly 10

JBoss Community Documentation Page of 115 226

9.8.2 Testing a configuration that does not work

The subsystem (like several others) did not support the use of expression values in the versionthreads

that came with JBoss AS 7.1.2.Final. So we have a test that attempts to use expressions, and then fixes

each resource and attribute where expressions were not allowed.

@Test

 public void testRejectExpressionsAS712() throws Exception {

 testRejectExpressions_1_0_0(ModelTestControllerVersion.V7_1_2_FINAL);

 }

 private void testRejectExpressions_1_0_0(ModelTestControllerVersion controllerVersion)

throws Exception {

 // create builder for current subsystem version

 KernelServicesBuilder builder =

createKernelServicesBuilder(createAdditionalInitialization());

 // create builder for legacy subsystem version

 ModelVersion version_1_0_0 = ModelVersion.create(1, 0, 0);

 builder.createLegacyKernelServicesBuilder(null, controllerVersion, version_1_0_0)

 .addMavenResourceURL("org.jboss.as:jboss-as-threads:" +

controllerVersion.getMavenGavVersion())

 .excludeFromParent(SingleClassFilter.createFilter(ThreadsLogger.class));

 KernelServices mainServices = builder.build();

 KernelServices legacyServices = mainServices.getLegacyServices(version_1_0_0);

 Assert.assertNotNull(legacyServices);

 Assert.assertTrue("main services did not boot", mainServices.isSuccessfulBoot());

 Assert.assertTrue(legacyServices.isSuccessfulBoot());

 List<ModelNode> xmlOps = builder.parseXmlResource("expressions.xml");

 ModelTestUtils.checkFailedTransformedBootOperations(mainServices, version_1_0_0, xmlOps,

getConfig());

 }

Again we boot up a current and a legacy controller. However, note in this case that they are both empty, no

xml was parsed on boot so there are no operations to boot up the model. Instead once the controllers have

been booted, we call which gets the operations from KernelServicesBuilder.parseXmlResource()

. uses expressions in all the places they were not allowed inexpressions.xml expressions.xml

7.1.2.Final. For each resource willModelTestUtils.checkFailedTransformedBootOperations()

check that the operation gets rejected, and then correct one attribute at a time until the resource hasadd

been totally corrected. Once the operation is totally correct, it will check that the add operation no longeradd

is rejected. The configuration for this is the returned by the FailedOperationTransformationConfig

 method:getConfig()

WildFly 10

JBoss Community Documentation Page of 116 226

private FailedOperationTransformationConfig getConfig() {

 PathAddress subsystemAddress = PathAddress.pathAddress(ThreadsExtension.SUBSYSTEM_PATH);

 FailedOperationTransformationConfig.RejectExpressionsConfig allowedAndKeepalive =

 new

FailedOperationTransformationConfig.RejectExpressionsConfig(PoolAttributeDefinitions.ALLOW_CORE_TIMEOUT,

PoolAttributeDefinitions.KEEPALIVE_TIME);

...

 return new FailedOperationTransformationConfig()

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BLOCKING_BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

.addFailedAttribute(subsystemAddress.append(PathElement.pathElement(CommonAttributes.BOUNDED_QUEUE_THREAD_POOL)),

allowedAndKeepalive)

 }

So what this means is that we expect the and attributes for the allow-core-timeout keepalive-time

 and add operations toblocking-bounded-queue-thread-pool=* bounded-queue-thread-pool=*

use expressions in the parsed xml. We then expect them to fail since there should be transformers in place

to reject expressions, and correct them one at a time until the add operation should pass. As well as doing

the operations the method willadd ModelTestUtils.checkFailedTransformedBootOperations()

also try calling for each attribute, correcting as it goes along. As well as allowing you towrite-attribute

test rejection of expressions also has some helper classesFailedOperationTransformationConfig

to help testing rejection of other scenarios.

9.9 Common transformation use-cases

Most transformations are quite similar, so this section covers some of the actual transformation patterns

found in the WildFly codebase. We will look at the output of CompareModelVersionsUtil, and see what can

be done to transform for the older slave HCs. The examples come from the WildFly codebase but are

stripped down to focus solely on the use-case being explained in an attempt to keep things as clear/simple

as possible.

WildFly 10

JBoss Community Documentation Page of 117 226

9.9.1 Child resource type does not exist in legacy model

Looking at the model comparison between WildFly and JBoss AS 7.2.0, there is a change to the remoting

subsystem. The relevant part of the output is:

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

Missing child types in current: []; missing in legacy [http-connector]

So our current model has added a child type called which was not there in 7.2.0. This ishttp-connector

configurable, and adds new behaviour, so it can not be part of a configuration sent across to a legacy slave

running version 1.2.0. So we add the following to to reject all instances of that childRemotingExtension

type against ModelVersion 1.2.0.

@Override

 public void initialize(ExtensionContext context) {

 if (context.isRegisterTransformers()) {

 registerTransformers_1_1(registration);

 registerTransformers_1_2(registration);

 }

 }

 private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

 builder.rejectChildResource(HttpConnectorResource.PATH);

 return builder.build();

 }

Since this child resource type also does not exist in ModelVersion 1.1.0 we need to reject it there as well

using a similar mechanism.

WildFly 10

JBoss Community Documentation Page of 118 226

9.9.2 Attribute does not exist in the legacy subsystem

Default value of the attribute is the same as legacy implied behaviour
This example also comes from the subsystem, and is probably the most common type ofremoting

transformation. The comparison tells us that there is now an attribute under

 called which did not exist in the/subsystem=remoting/remote-outbound-connection=* protocol

older version:

====== Resource root address: ["subsystem" => "remoting"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

--- Problems for relative address to root []:

....

--- Problems for relative address to root ["remote-outbound-connection" => "*"]:

Missing attributes in current: []; missing in legacy [protocol]

Missing parameters for operation 'add' in current: []; missing in legacy [protocol]

This difference also affects the operation. Looking at the current model the valid values for the add

 attribute are , and . The last two are new protocolsprotocol remote http-remoting https-remoting

introduced in WildFly 8, meaning that the in JBoss 7.2.0 and earlier is the implied behaviour remote

protocol. Since this attribute does not exist in the legacy model we want to discard this attribute if it is

 or if it has the value , both of which are in line with what the legacy slave HC isundefined remote

hardwired to use. Also we want to reject it if it has a value different from . So what we need to doremote

when registering transformers against ModelVersion 1.2.0 to handle this attribute:

private void registerTransformers_1_2(SubsystemRegistration registration) {

 TransformationDescription.Tools.register(get1_2_0_1_3_0Description(), registration,

VERSION_1_2);

 }

 private static TransformationDescription get1_2_0_1_3_0Description() {

 ResourceTransformationDescriptionBuilder builder =

ResourceTransformationDescriptionBuilder.Factory.createSubsystemInstance();

protocolTransform(builder.addChildResource(RemoteOutboundConnectionResourceDefinition.ADDRESS)

 .getAttributeBuilder());

 return builder.build();

 }

 private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(new

ModelNode(Protocol.REMOTE.toString())), RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

 }

WildFly 10

JBoss Community Documentation Page of 119 226

So the first thing to happens is that we register a

 which discards the attribute if it isDiscardAttributeChecker.DiscardAttributeValueChecker

either (the default value in the current model is), or and has the value undefined remote defined

. Remembering that the phase always happens before the phase, the rejectremote discard reject

checker checks that the attribute is defined, and rejects it if it is. The only reason it would be protocol

 in the reject check, is if it was not discarded by the discard check. Hopefully this example showsdefined

that the discard and reject checkers often work in pairs.

An alternative way to write the method would be:protocolTransform()

private static AttributeTransformationDescriptionBuilder

protocolTransform(AttributeTransformationDescriptionBuilder builder) {

 builder.setDiscard(new DiscardAttributeChecker.DefaultDiscardAttributeChecker() {

 @Override

 protected boolean isValueDiscardable(final PathAddress address, final String

attributeName, final ModelNode attributeValue, final TransformationCon

 return !attributeValue.isDefined() ||

attributeValue.asString().equals(Protocol.REMOTE.toString());

 }

 }, RemoteOutboundConnectionResourceDefinition.PROTOCOL)

 .addRejectCheck(RejectAttributeChecker.DEFINED,

RemoteOutboundConnectionResourceDefinition.PROTOCOL);

 return builder;

The reject check remains the same, but we have implemented the discard check by using

 instead. However, the effect of theDiscardAttributeChecker.DefaultDiscardAttributeChecker

discard check is exactly the same as when we used

.DiscardAttributeChecker.DiscardAttributeValueChecker

Default value of the attribute is different from legacy implied behaviour
We touched on this in the weld subsystem example we used earlier in this guide, but let's take a more

thorough look. Our comparison tells us that we have two new attributes and require-bean-descriptor

:non-portable-mode

====== Resource root address: ["subsystem" => "weld"] - Current version: 2.0.0; legacy version:

1.0.0 =======

--- Problems for relative address to root []:

Missing attributes in current: []; missing in legacy [require-bean-descriptor,

non-portable-mode]

Missing parameters for operation 'add' in current: []; missing in legacy

[require-bean-descriptor, non-portable-mode]

WildFly 10

JBoss Community Documentation Page of 120 226

Now when we look at this we see that the default value for both of the attributes in the current model is

, which allows us more flexible behaviour introduced in CDI 1.1 (which was introduced with thisfalse

version of the subsystem). The old model does not have these attributes, and implements CDI 1.0, which

under the hood (using our weld subsystem expertise knowledge) implies the values for both of these.true

So our transformer must reject anything that is not for these attributes. Let us look at the transformertrue

registered by the WeldExtension:

private void registerTransformers(SubsystemRegistration subsystem) {

 ResourceTransformationDescriptionBuilder builder =

TransformationDescriptionBuilder.Factory.createSubsystemInstance();

 //These new attributes are assumed to be 'true' in the old version but default to false

in the current version. So discard if 'true' and reject if 'undefined'.

 builder.getAttributeBuilder()

 .setDiscard(new DiscardAttributeChecker.DiscardAttributeValueChecker(false,

false, new ModelNode(true)),

 WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .addRejectCheck(new RejectAttributeChecker.DefaultRejectAttributeChecker() {

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

WeldMessages.MESSAGES.rejectAttributesMustBeTrue(attributes.keySet());

 }

 @Override

 protected boolean rejectAttribute(PathAddress address, String attributeName,

ModelNode attributeValue,

 TransformationContext context) {

 //This will not get called if it was discarded, so reject if it is

undefined (default==false) or if defined and != 'true'

 return !attributeValue.isDefined() ||

!attributeValue.asString().equals("true");

 }

 }, WeldResourceDefinition.NON_PORTABLE_MODE_ATTRIBUTE,

WeldResourceDefinition.REQUIRE_BEAN_DESCRIPTOR_ATTRIBUTE)

 .end();

 TransformationDescription.Tools.register(builder.build(), subsystem,

ModelVersion.create(1, 0, 0));

 }

This looks a bit more scary than the previous transformer we have seen, but isn't actually too bad. The first

thing we do is register a which willDiscardAttributeChecker.DiscardAttributeValueChecker

discard the attribute if it has the value . It will not discard if it is since that defaults to true undefined

. This is registered for both attributes.false

WildFly 10

JBoss Community Documentation Page of 121 226

If the attributes had the value they will get discarded we will not hit the reject checker since discardedtrue

attributes never get checked for rejection. If on the other hand they were an expression (since we are

interested in the actual value, but cannot evaluate what value an expression will resolve to on the target from

the DC running the transformers), , or (which will then default to) they will not getfalse undefined false

discarded and will need to be rejected. So our

 method willRejectAttributeChecker.DefaultRejectAttributeChecker.rejectAttribute()

return (i.e. reject) if the attribute value is (since that defaults to) or if it is definedtrue undefined false

and 'not equal to '. It is better to check for 'not equal to ' than to check for 'equal to ' since iftrue true false

an expression was used we still want to reject, and only the 'not equal to ' check would actually kick intrue

in that case.

The other thing we need in our is toDiscardAttributeChecker.DiscardAttributeValueChecker

override the method to get the message to be displayed when rejecting thegetRejectionLogMessage()

transformation. In this case it says something along the lines "These attributes must be 'true' for use with

CDI 1.0 '%s'", with the names of the attributes having been rejected substituting the .%s

9.9.3 Attribute has a different default value

– TODO

9.9.4 Attribute has a different type

Here the example comes from the parameter some way into the subsystem, andcapacity modcluster

the legacy version is AS 7.1.2.Final. There are quite a few differences, so I am only showing the ones

relevant for this example:

====== Resource root address: ["subsystem" => "modcluster"] - Current version: 2.0.0; legacy

version: 1.2.0 =======

...

--- Problems for relative address to root ["mod-cluster-config" =>

"configuration","dynamic-load-provider" => "configuration","custom-load-m

etric" => "*"]:

Different 'type' for attribute 'capacity'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for attribute 'capacity'. Current: true; legacy: false

...

Different 'type' for parameter 'capacity' of operation 'add'. Current: DOUBLE; legacy: INT

Different 'expressions-allowed' for parameter 'capacity' of operation 'add'. Current: true;

legacy: false

So as we can see expressions are not allowed for the attribute, and the current type is capacity double

while the legacy subsystem is . So this means that if the value is for example we can convert this to int 2.0

, but cannot be converted. The way this is solved in the ModClusterExtension is to register the2 2.5

following some other attributes are registered here, but hopefully it is clear anyway:

WildFly 10

JBoss Community Documentation Page of 122 226

dynamicLoadProvider.addChildResource(LOAD_METRIC_PATH)

 .getAttributeBuilder()

 .addRejectCheck(RejectAttributeChecker.SIMPLE_EXPRESSIONS, TYPE, WEIGHT,

CAPACITY, PROPERTY)

 .addRejectCheck(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 .setValueConverter(CapacityCheckerAndConverter.INSTANCE, CAPACITY)

 ...

 .end();

So we register that we should reject expressions, and we also register the

 for . extends theCapacityCheckerAndConverter capacity CapacityCheckerAndConverter

convenience class which implements the DefaultCheckersAndConverter

, , and interfaces. WeDiscardAttributeChecker RejectAttributeChecker AttributeConverter

have seen and in previous examples. SinceDiscardAttributeChecker RejectAttributeChecker

we now need to convert a value we need an instance of .AttributeConverter

static class CapacityCheckerAndConverter extends DefaultCheckersAndConverter {

 static final CapacityCheckerAndConverter INSTANCE = new CapacityCheckerAndConverter();

We should not discard so from always returns isValueDiscardable() DiscardAttributeChecker

:false

@Override

 protected boolean isValueDiscardable(PathAddress address, String attributeName,

ModelNode attributeValue, TransformationContext context) {

 //Not used for discard

 return false;

 }

 @Override

 public String getRejectionLogMessage(Map<String, ModelNode> attributes) {

 return

ModClusterMessages.MESSAGES.capacityIsExpressionOrGreaterThanIntegerMaxValue(attributes.get(CAPACITY.getName()));

}

Now we check to see if we can convert the attribute to an and reject if not. Note that if it is anint

expression, we have no idea what its value will resolve to on the target host, so we need to reject it. Then we

try to change it into an , and reject if that was not possible:int

WildFly 10

JBoss Community Documentation Page of 123 226

@Override

 protected boolean rejectAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 if (checkForExpression(attributeValue)

 || (attributeValue.isDefined() &&

!isIntegerValue(attributeValue.asDouble()))) {

 return true;

 }

 Long converted = convert(attributeValue);

 return (converted != null && (converted > Integer.MAX_VALUE || converted <

Integer.MIN_VALUE));

 }

And then finally we do the conversion:

@Override

 protected void convertAttribute(PathAddress address, String attributeName, ModelNode

attributeValue, TransformationContext context) {

 Long converted = convert(attributeValue);

 if (converted != null && converted <= Integer.MAX_VALUE && converted >=

Integer.MIN_VALUE) {

 attributeValue.set((int)converted.longValue());

 }

 }

 private Long convert(ModelNode attributeValue) {

 if (attributeValue.isDefined() && !checkForExpression(attributeValue)) {

 double raw = attributeValue.asDouble();

 if (isIntegerValue(raw)) {

 return Math.round(raw);

 }

 }

 return null;

 }

 private boolean isIntegerValue(double raw) {

 return raw == Double.valueOf(Math.round(raw)).doubleValue();

 }

 }

WildFly 10

JBoss Community Documentation Page of 124 226

10 Example subsystem
Our example subsystem will keep track of all deployments of certain types containing a special marker file,

and expose operations to see how long these deployments have been deployed.

10.1 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

WildFly 10

JBoss Community Documentation Page of 125 226

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

WildFly 10

JBoss Community Documentation Page of 126 226

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

https://docs.jboss.org/author/display/WFLY8/Creating+your+own+application
https://docs.jboss.org/author/download/attachments/91947463/acme-subsystem.zip?version=1&modificationDate=1332346374000

WildFly 10

JBoss Community Documentation Page of 127 226

10.2 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

WildFly 10

JBoss Community Documentation Page of 128 226

10.3 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The SubsystemExtension.initialize() method defines the model, currently it sets up the basics to add our

subsystem to the model:

WildFly 10

JBoss Community Documentation Page of 129 226

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

10.3.1 Registering the core subsystem model

Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

It's parameter is an implementation of the ResourceDefinition interface, which means that when you call

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by SubsystemDefinition.INSTANCE.

WildFly 10

JBoss Community Documentation Page of 130 226

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The ManagementResourceRegistration obtained in is then usedSubsystemExtension.initialize()

to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line insidemust ADD

registerOperations in your ResourceDefinition or by providing it in constructor of your

SimpleResourceDefinition just as we did in example above.

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

WildFly 10

JBoss Community Documentation Page of 131 226

There are two way to define DescriptionProvider, one is by defining it by hand using ModelNode, but as this

has show to be very error prone there are lots of helper methods to help you automatically describe the

model. Flowing example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

DefaultResourceAddDescriptionProvider and DefaultResourceRemoveDescriptionProvider that do work for

you. In case you use SimpleResourceDefinition even that part is hidden from you.

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use DefaultOperationDescriptionProvider that

takes additional parameter of what is the name of operation and optional array of parameters/attributes

operation takes. This is an example to register operation "add-mime" with two parameters:

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

WildFly 10

JBoss Community Documentation Page of 132 226

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

WildFly 10

JBoss Community Documentation Page of 133 226

10.3.2 Registering the subsystem child

The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it TypeDefinition and for ease of use let it extend

SimpleResourceDefinition instead just implement ResourceDefinition.

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

WildFly 10

JBoss Community Documentation Page of 134 226

Which will take care of describing the model for us. As you can see in example above we define

SimpleAttributeDefinition named TICK, this is a mechanism to define Attributes in more type safe way and to

add more common API to manipulate attributes. As you can see here we define default value of 1000 as

also other constraints and capabilities. There could be other properties set such as validators, alternate

names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation validateAndSet on AttributeDefinition that

helps us validate and set the model based on definition of the attribute.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

WildFly 10

JBoss Community Documentation Page of 135 226

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

WildFly 10

JBoss Community Documentation Page of 136 226

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

WildFly 10

JBoss Community Documentation Page of 137 226

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

WildFly 10

JBoss Community Documentation Page of 138 226

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

WildFly 10

JBoss Community Documentation Page of 139 226

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

WildFly 10

JBoss Community Documentation Page of 140 226

10.4 Parsing and marshalling of the subsystem xml

JBoss AS 7 uses the Stax API to parse the xml files. This is initialized in bySubsystemExtension

mapping our parser onto our namespace:

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

WildFly 10

JBoss Community Documentation Page of 141 226

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

WildFly 10

JBoss Community Documentation Page of 142 226

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

WildFly 10

JBoss Community Documentation Page of 143 226

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

10.4.1 Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

WildFly 10

JBoss Community Documentation Page of 144 226

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

WildFly 10

JBoss Community Documentation Page of 145 226

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

WildFly 10

JBoss Community Documentation Page of 146 226

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

WildFly 10

JBoss Community Documentation Page of 147 226

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

WildFly 10

JBoss Community Documentation Page of 148 226

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

WildFly 10

JBoss Community Documentation Page of 149 226

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

WildFly 10

JBoss Community Documentation Page of 150 226

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

10.5 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

WildFly 10

JBoss Community Documentation Page of 151 226

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

WildFly 10

JBoss Community Documentation Page of 152 226

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

10.5.1 Deployment phases and attachments

The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

WildFly 10

JBoss Community Documentation Page of 153 226

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

10.6 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

WildFly 10

JBoss Community Documentation Page of 154 226

This will have built our project and assembled a module for us that can be used for installing it into WildFly 8.

If you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

WildFly 10

JBoss Community Documentation Page of 155 226

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$AS7/domain/configuration/domain.xml

Now start up WildFly 8 by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

WildFly 10

JBoss Community Documentation Page of 156 226

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly 8 console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

https://docs.jboss.org/author/download/attachments/91947468/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/91947468/test2.zip?version=1&modificationDate=1311326215000

WildFly 10

JBoss Community Documentation Page of 157 226

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

WildFly 10

JBoss Community Documentation Page of 158 226

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

10.7 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

WildFly 10

JBoss Community Documentation Page of 159 226

10.7.1 What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

10.7.2 How to support expressions in subsystems

The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

WildFly 10

JBoss Community Documentation Page of 160 226

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type ModelType.EXPRESSION.

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation ModelNode, and if it isn't already

ModelType.EXPRESSION, it checks if the value is a string that contains the expression syntax. If so, the

value stored in the model will be of type ModelType.EXPRESSION. Doing this ensures that expressions are

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

WildFly 10

JBoss Community Documentation Page of 161 226

10.8 Add the deployers

When discussing we did not mention the work done to install the deployers, whichSubsystemAddHandler

is done in the following method:

@Override

 public void performBoottime(OperationContext context, ModelNode operation, ModelNode model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 log.info("Populating the model");

 //Add deployment processors here

 //Remove this if you don't need to hook into the deployers, or you can add as many as

you like

 //see SubDeploymentProcessor for explanation of the phases

 context.addStep(new AbstractDeploymentChainStep() {

 public void execute(DeploymentProcessorTarget processorTarget) {

 processorTarget.addDeploymentProcessor(SubsystemDeploymentProcessor.PHASE,

SubsystemDeploymentProcessor.priority, new SubsystemDeploymentProcessor());

 }

 }, OperationContext.Stage.RUNTIME);

 }

This adds an extra step which is responsible for installing deployment processors. You can add as many as

you like, or avoid adding any all together depending on your needs. Each processor has a and a Phase

. Phases are sequential, and a deployment passes through each phases deployment processors.priority

The specifies where within a phase the processor appears. See priority

 for more information about phases.org.jboss.as.server.deployment.Phase

In our case we are keeping it simple and staying with one deployment processor with the phase and priority

created for us by the maven archetype. The phases will be explained in the next section. The deployment

processor is as follows:

WildFly 10

JBoss Community Documentation Page of 162 226

public class SubsystemDeploymentProcessor implements DeploymentUnitProcessor {

 ...

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 String name = phaseContext.getDeploymentUnit().getName();

 TrackerService service = getTrackerService(phaseContext.getServiceRegistry(), name);

 if (service != null) {

 ResourceRoot root =

phaseContext.getDeploymentUnit().getAttachment(Attachments.DEPLOYMENT_ROOT);

 VirtualFile cool = root.getRoot().getChild("META-INF/cool.txt");

 service.addDeployment(name);

 if (cool.exists()) {

 service.addCoolDeployment(name);

 }

 }

 }

 @Override

 public void undeploy(DeploymentUnit context) {

 context.getServiceRegistry();

 String name = context.getName();

 TrackerService service = getTrackerService(context.getServiceRegistry(), name);

 if (service != null) {

 service.removeDeployment(name);

 }

 }

 private TrackerService getTrackerService(ServiceRegistry registry, String name) {

 int last = name.lastIndexOf(".");

 String suffix = name.substring(last + 1);

 ServiceController<?> container =

registry.getService(TrackerService.createServiceName(suffix));

 if (container != null) {

 TrackerService service = (TrackerService)container.getValue();

 return service;

 }

 return null;

 }

}

The method is called when a deployment is being deployed. In this case we look for the deploy()

 instance for the service name created from the deployment's suffix. If there is one itTrackerService

means that we are meant to be tracking deployments with this suffix (i.e. was called forTypeAddHandler

this suffix), and if we find one we add the deployment's name to it. Similarly is called when aundeploy()

deployment is being undeployed, and if there is a instance for the deployment's suffix,TrackerService

we remove the deployment's name from it.

WildFly 10

JBoss Community Documentation Page of 163 226

10.8.1 Deployment phases and attachments

The code in the SubsystemDeploymentProcessor uses an , which is the means ofattachment

communication between the individual deployment processors. A deployment processor belonging to a

phase may create an attachment which is then read further along the chain of deployment unit processors.

In the above example we look for the attachment, which is a view of theAttachments.DEPLOYMENT_ROOT

file structure of the deployment unit put in place before the chain of deployment unit processors is invoked.

As mentioned above, the deployment unit processors are organized in phases, and have a relative order

within each phase. A deployment unit passes through all the deployment unit processors in that order. A

deployment unit processor may choose to take action or not depending on what attachments are available.

Let's take a quick look at what the deployment unit processors for in the phases described in

.org.jboss.as.server.deployment.Phase

STRUCTURE
The deployment unit processors in this phase determine the structure of a deployment, and looks for sub

deployments and metadata files.

PARSE
In this phase the deployment unit processors parse the deployment descriptors and build up the annotation

index. entries from the META-INF/MANIFEST.MF are added.Class-Path

DEPENDENCIES
Extra class path dependencies are added. For example if deploying a file, the commonly neededwar

dependencies for a web application are added.

CONFIGURE_MODULE
In this phase the modular class loader for the deployment is created. No attempt should be made loading

classes from the deployment until this phase.after

POST_MODULE
Now that our class loader has been constructed we have access to the classes. In this stage deployment

processors may use the attachment which is a deployment indexAttachments.REFLECTION_INDEX

used to obtain members of classes in the deployment, and to invoke upon them, bypassing the inefficiencies

of using directly.java.lang.reflect

INSTALL
Install new services coming from the deployment.

WildFly 10

JBoss Community Documentation Page of 164 226

CLEANUP
Attachments put in place earlier in the deployment unit processor chain may be removed here.

10.9 Create the schema

First, let us define the schema for our subsystem. Rename

 to .src/main/resources/schema/mysubsystem.xsd src/main/resources/schema/acme.xsd

Then open and modify it to the followingacme.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:com.acme.corp.tracker:1.0"

 xmlns="urn:com.acme.corp.tracker:1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <!-- The subsystem root element -->

 <xs:element name="subsystem" type="subsystemType"/>

 <xs:complexType name="subsystemType">

 <xs:all>

 <xs:element name="deployment-types" type="deployment-typesType"/>

 </xs:all>

 </xs:complexType>

 <xs:complexType name="deployment-typesType">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="deployment-type" type="deployment-typeType"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="deployment-typeType">

 <xs:attribute name="suffix" use="required"/>

 <xs:attribute name="tick" type="xs:long" use="optional" default="10000"/>

 </xs:complexType>

</xs:schema>

Note that we modified the and values to .xmlns targetNamespace urn.com.acme.corp.tracker:1.0

Our new element has a child called , which in turn can have zero or moresubsystem deployment-types

children called . Each has a required attribute, and a deployment-type deployment-type suffix tick

attribute which defaults to true.

Now modify the class to contain thecom.acme.corp.tracker.extension.SubsystemExtension

new namespace.

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code substystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

WildFly 10

JBoss Community Documentation Page of 165 226

10.10 Create the skeleton project

To make your life easier we have provided a maven archetype which will create a skeleton project for

implementing subsystems.

mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

Maven will download the archetype and it's dependencies, and ask you some questions:

$ mvn archetype:generate \

 -DarchetypeArtifactId=wildfly-subsystem \

 -DarchetypeGroupId=org.wildfly.archetypes \

 -DarchetypeVersion=8.0.0.Final \

 -DarchetypeRepository=http://repository.jboss.org/nexus/content/groups/public

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

.........

Define value for property 'groupId': : com.acme.corp

Define value for property 'artifactId': : acme-subsystem

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.acme.corp: : com.acme.corp.tracker

Define value for property 'module': : com.acme.corp.tracker

[INFO] Using property: name = WildFly subsystem project

Confirm properties configuration:

groupId: com.acme.corp

artifactId: acme-subsystem

version: 1.0-SNAPSHOT

package: com.acme.corp.tracker

module: com.acme.corp.tracker

name: WildFly subsystem project

 Y: : Y

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:42.563s

[INFO] Finished at: Fri Jul 08 14:30:09 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

$

WildFly 10

JBoss Community Documentation Page of 166 226

 Instruction

1 Enter the groupId you wish to use

2 Enter the artifactId you wish to use

3 Enter the version you wish to use, or just hit Enter if you wish to accept the default 1.0-SNAPSHOT

4 Enter the java package you wish to use, or just hit Enter if you wish to accept the default (which is

copied from groupId).

5 Enter the module name you wish to use for your extension.

6 Finally, if you are happy with your choices, hit Enter and Maven will generate the project for you.

You can also do this in Eclipse, see for more details. We now have a skeletonCreating your own application

project that you can use to implement a subsystem. Import the project into your favouriteacme-subsystem

IDE. A nice side-effect of running this in the IDE is that you can see the javadoc of WildFly classes and

interfaces imported by the skeleton code. If you do a in the project it will work if we plug it intomvn install

WildFly, but before doing that we will change it to do something more useful.

The rest of this section modifies the skeleton project created by the archetype to do something more useful,

and the full code can be found in .acme-subsystem.zip

If you do a in the created project, you will see some tests being runmvn install

$mvn install

[INFO] Scanning for projects...

[...]

[INFO] Surefire report directory:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/surefire-reports

 T E S T S

Running com.acme.corp.tracker.extension.SubsystemBaseParsingTestCase

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.424 sec

Running com.acme.corp.tracker.extension.SubsystemParsingTestCase

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.074 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

[...]

We will talk about these later in the section.Testing the parsers

10.11 Design and define the model structure

The following example xml contains a valid subsystem configuration, we will see how to plug this in to

WildFly later in this tutorial.

https://docs.jboss.org/author/display/WFLY8/Creating+your+own+application
https://docs.jboss.org/author/download/attachments/91947463/acme-subsystem.zip?version=1&modificationDate=1332346374000

WildFly 10

JBoss Community Documentation Page of 167 226

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

</subsystem>

Now when designing our model, we can either do a one to one mapping between the schema and the model

or come up with something slightly or very different. To keep things simple, let us stay pretty true to the

schema so that when executing a against our subsystem we'll see:read-resource(recursive=true)

something like:

{

 "outcome" => "success",

 "result" => {"type" => {

 "sar" => {"tick" => "10000"},

 "war" => {"tick" => "10000"}

 }}

}

Each in the xml becomes in the model a child resource of the subsystem's rootdeployment-type

resource. The child resource's child-type is , and it is indexed by its . Each resource thentype suffix type

contains the attribute.tick

We also need a name for our subsystem, to do that change

:com.acme.corp.tracker.extension.SubsystemExtension

public class SubsystemExtension implements Extension {

 ...

 /** The name of our subsystem within the model. */

 public static final String SUBSYSTEM_NAME = "tracker";

 ...

Once we are finished our subsystem will be available under ./subsystem=tracker

The SubsystemExtension.initialize() method defines the model, currently it sets up the basics to add our

subsystem to the model:

WildFly 10

JBoss Community Documentation Page of 168 226

@Override

 public void initialize(ExtensionContext context) {

 //register subsystem with its model version

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 //register subsystem model with subsystem definition that defines all attributes and

operations

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

 //register describe operation, note that this can be also registered in

SubsystemDefinition

 registration.registerOperationHandler(DESCRIBE,

GenericSubsystemDescribeHandler.INSTANCE, GenericSubsystemDescribeHandler.INSTANCE, false,

OperationEntry.EntryType.PRIVATE);

 //we can register additional submodels here

 //

 subsystem.registerXMLElementWriter(parser);

 }

The call registers our subsystem with the extension context. At the end of theregisterSubsystem()

method we register our parser with the returned to be able to marshal ourSubsystemRegistration

subsystem's model back to the main configuration file when it is modified. We will add more functionality to

this method later.

10.11.1 Registering the core subsystem model

Next we obtain a by registering the subsystem model. This is a ManagementResourceRegistration

 step for every new subsystem.compulsory

final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(SubsystemDefinition.INSTANCE);

It's parameter is an implementation of the ResourceDefinition interface, which means that when you call

 the information you see comes from model that/subsystem=tracker:read-resource-description

is defined by SubsystemDefinition.INSTANCE.

WildFly 10

JBoss Community Documentation Page of 169 226

1.

2.

3.

4.

public class SubsystemDefinition extends SimpleResourceDefinition {

 public static final SubsystemDefinition INSTANCE = new SubsystemDefinition();

 private SubsystemDefinition() {

 super(SubsystemExtension.SUBSYSTEM_PATH,

 SubsystemExtension.getResourceDescriptionResolver(null),

 //We always need to add an 'add' operation

 SubsystemAdd.INSTANCE,

 //Every resource that is added, normally needs a remove operation

 SubsystemRemove.INSTANCE);

 }

 @Override

 public void registerOperations(ManagementResourceRegistration resourceRegistration) {

 super.registerOperations(resourceRegistration);

 //you can register aditional operations here

 }

 @Override

 public void registerAttributes(ManagementResourceRegistration resourceRegistration) {

 //you can register attributes here

 }

}

Since we need child resource we need to add new ResourceDefinition,type

The ManagementResourceRegistration obtained in is then usedSubsystemExtension.initialize()

to add additional operations or to register submodels to the address. Every/subsystem=tracker

subsystem and resource have an method which can be achieved by the following line insidemust ADD

registerOperations in your ResourceDefinition or by providing it in constructor of your

SimpleResourceDefinition just as we did in example above.

//We always need to add an 'add' operation

 resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

The parameters when registering an operation handler are:

 - i.e. .The name ADD

The handler instance - we will talk more about this below

The handler description provider - we will talk more about this below.

Whether this operation handler is inherited - means that this operation is not inherited, and willfalse

only apply to . The content for this operation handler will be provided by ./subsystem=tracker 3

Let us first look at the description provider which is quite simple since this operation takes no parameters.

The addition of children will be handled by another operation handler, as we will see later on.type

WildFly 10

JBoss Community Documentation Page of 170 226

There are two way to define DescriptionProvider, one is by defining it by hand using ModelNode, but as this

has show to be very error prone there are lots of helper methods to help you automatically describe the

model. Flowing example is done by manually defining Description provider for ADD operation handler

/**

 * Used to create the description of the subsystem add method

 */

 public static DescriptionProvider SUBSYSTEM_ADD = new DescriptionProvider() {

 public ModelNode getModelDescription(Locale locale) {

 //The locale is passed in so you can internationalize the strings used in the

descriptions

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OPERATION_NAME).set(ADD);

 subsystem.get(DESCRIPTION).set("Adds the tracker subsystem");

 return subsystem;

 }

 };

Or you can use API that helps you do that for you. For Add and Remove methods there are classes

DefaultResourceAddDescriptionProvider and DefaultResourceRemoveDescriptionProvider that do work for

you. In case you use SimpleResourceDefinition even that part is hidden from you.

resourceRegistration.registerOperationHandler(ADD, SubsystemAdd.INSTANCE, new

DefaultResourceAddDescriptionProvider(resourceRegistration,descriptionResolver), false);

resourceRegistration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE, new

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver), false);

For other operation handlers that are not add/remove you can use DefaultOperationDescriptionProvider that

takes additional parameter of what is the name of operation and optional array of parameters/attributes

operation takes. This is an example to register operation "add-mime" with two parameters:

container.registerOperationHandler("add-mime",

 MimeMappingAdd.INSTANCE,

 new DefaultOperationDescriptionProvider("add-mime",

Extension.getResourceDescriptionResolver("container.mime-mapping"), MIME_NAME, MIME_VALUE));

When descriping an operation its description provider's must match the nameOPERATION_NAME

used when calling ManagementResourceRegistration.registerOperationHandler()

Next we have the actual operation handler instance, note that we have changed its populateModel()

method to initialize the child of the model.type

WildFly 10

JBoss Community Documentation Page of 171 226

class SubsystemAdd extends AbstractBoottimeAddStepHandler {

 static final SubsystemAdd INSTANCE = new SubsystemAdd();

 private SubsystemAdd() {

 }

 /** {@inheritDoc} */

 @Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 log.info("Populating the model");

 //Initialize the 'type' child node

 model.get("type").setEmptyObject();

 }

 also has a method which is used for initializing the deployer chainSubsystemAdd performBoottime()

associated with this subsystem. We will talk about the deployers later on. However, the basic idea for all

operation handlers is that we do any model updates before changing the actual runtime state.

The rule of thumb is that every thing that can be added, can also be removed so we have a remove handler

for the subsystem registered

in or just provide the operation handler in constructor.SubsystemDefinition.registerOperations

//Every resource that is added, normally needs a remove operation

 registration.registerOperationHandler(REMOVE, SubsystemRemove.INSTANCE,

DefaultResourceRemoveDescriptionProvider(resourceRegistration,descriptionResolver) , false);

 extends which takes care of removing the resourceSubsystemRemove AbstractRemoveStepHandler

from the model so we don't need to override its operation, also the add handler did notperformRemove()

install any services (services will be discussed later) so we can delete the methodperformRuntime()

generated by the archetype.

class SubsystemRemove extends AbstractRemoveStepHandler {

 static final SubsystemRemove INSTANCE = new SubsystemRemove();

 private final Logger log = Logger.getLogger(SubsystemRemove.class);

 private SubsystemRemove() {

 }

}

The description provider for the remove operation is simple and quite similar to that of the add handler where

just name of the method changes.

WildFly 10

JBoss Community Documentation Page of 172 226

10.11.2 Registering the subsystem child

The child does not exist in our skeleton project so we need to implement the operations to add andtype

remove them from the model.

First we need an add operation to add the child, create a class called type

. In this case we extend the com.acme.corp.tracker.extension.TypeAddHandler

 class and implement the org.jboss.as.controller.AbstractAddStepHandler

 interface. org.jboss.as.controller.descriptions.DescriptionProvider

 is the main interface for the operation handlers,org.jboss.as.controller.OperationStepHandler

and is an implementation of that which does the plumbing work for adding aAbstractAddStepHandler

resource to the model.

class TypeAddHandler extends AbstractAddStepHandler implements DescriptionProvider {

 public static final TypeAddHandler INSTANCE = new TypeAddHandler();

 private TypeAddHandler() {

 }

Then we define subsystem model. Lets call it TypeDefinition and for ease of use let it extend

SimpleResourceDefinition instead just implement ResourceDefinition.

public class TypeDefinition extends SimpleResourceDefinition {

 public static final TypeDefinition INSTANCE = new TypeDefinition();

 //we define attribute named tick

protected static final SimpleAttributeDefinition TICK =

new SimpleAttributeDefinitionBuilder(TrackerExtension.TICK, ModelType.LONG)

 .setAllowExpression(true)

 .setXmlName(TrackerExtension.TICK)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1000))

 .setAllowNull(false)

 .build();

private TypeDefinition(){

 super(TYPE_PATH,

TrackerExtension.getResourceDescriptionResolver(TYPE),TypeAdd.INSTANCE,TypeRemove.INSTANCE);

}

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

WildFly 10

JBoss Community Documentation Page of 173 226

Which will take care of describing the model for us. As you can see in example above we define

SimpleAttributeDefinition named TICK, this is a mechanism to define Attributes in more type safe way and to

add more common API to manipulate attributes. As you can see here we define default value of 1000 as

also other constraints and capabilities. There could be other properties set such as validators, alternate

names, xml name, flags for marking it attribute allows expressions and more.

Then we do the work of updating the model by implementing the method from the populateModel()

, which populates the model's attribute from the operation parameters. First weAbstractAddStepHandler

get hold of the model relative to the address of this operation (we will see later that we will register it against

), so we just specify an empty relative address, and we then populate our/subsystem=tracker/type=*

model with the parameters from the operation. There is operation validateAndSet on AttributeDefinition that

helps us validate and set the model based on definition of the attribute.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 TICK.validateAndSet(operation,model);

 }

We then override the method to perform our runtime changes, which in this caseperformRuntime()

involves installing a service into the controller at the heart of WildFly. (

 is similar to AbstractAddStepHandler.performRuntime()

 in that the model is updated before runtimeAbstractBoottimeAddStepHandler.performBoottime()

changes are made.

@Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model,

 ServiceVerificationHandler verificationHandler, List<ServiceController<?>>

newControllers)

 throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

long tick = TICK.resolveModelAttribute(context,model).asLong();

 TrackerService service = new TrackerService(suffix, tick);

 ServiceName name = TrackerService.createServiceName(suffix);

 ServiceController<TrackerService> controller = context.getServiceTarget()

 .addService(name, service)

 .addListener(verificationHandler)

 .setInitialMode(Mode.ACTIVE)

 .install();

 newControllers.add(controller);

 }

}

Since the add methods will be of the format , we/subsystem=tracker/suffix=war:add(tick=1234)

look for the last element of the operation address, which is in the example just given and use that as ourwar

suffix. We then create an instance of TrackerService and install that into the of theservice target

context and add the created to the list.service controller newControllers

WildFly 10

JBoss Community Documentation Page of 174 226

The tracker service is quite simple. All services installed into WildFly must implement the

 interface.org.jboss.msc.service.Service

public class TrackerService implements Service<TrackerService>{

We then have some fields to keep the tick count and a thread which when run outputs all the deployments

registered with our service.

private AtomicLong tick = new AtomicLong(10000);

 private Set<String> deployments = Collections.synchronizedSet(new HashSet<String>());

 private Set<String> coolDeployments = Collections.synchronizedSet(new HashSet<String>());

 private final String suffix;

 private Thread OUTPUT = new Thread() {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(tick.get());

 System.out.println("Current deployments deployed while " + suffix + "

tracking active:\n" + deployments

 + "\nCool: " + coolDeployments.size());

 } catch (InterruptedException e) {

 interrupted();

 break;

 }

 }

 }

 };

 public TrackerService(String suffix, long tick) {

 this.suffix = suffix;

 this.tick.set(tick);

 }

Next we have three methods which come from the interface. returns this service, Service getValue()

 is called when the service is started by the controller, is called when the service is stoppedstart() stop

by the controller, and they start and stop the thread outputting the deployments.

WildFly 10

JBoss Community Documentation Page of 175 226

@Override

 public TrackerService getValue() throws IllegalStateException, IllegalArgumentException {

 return this;

 }

 @Override

 public void start(StartContext context) throws StartException {

 OUTPUT.start();

 }

 @Override

 public void stop(StopContext context) {

 OUTPUT.interrupt();

 }

Next we have a utility method to create the which is used to register the service in theServiceName

controller.

public static ServiceName createServiceName(String suffix) {

 return ServiceName.JBOSS.append("tracker", suffix);

}

Finally we have some methods to add and remove deployments, and to set and read the . The 'cool'tick

deployments will be explained later.

public void addDeployment(String name) {

 deployments.add(name);

 }

 public void addCoolDeployment(String name) {

 coolDeployments.add(name);

 }

 public void removeDeployment(String name) {

 deployments.remove(name);

 coolDeployments.remove(name);

 }

 void setTick(long tick) {

 this.tick.set(tick);

 }

 public long getTick() {

 return this.tick.get();

 }

}//TrackerService - end

WildFly 10

JBoss Community Documentation Page of 176 226

Since we are able to add children, we need a way to be able to remove them, so we create a type

. In this case we extend com.acme.corp.tracker.extension.TypeRemoveHandler

 which takes care of removing the resource from the model so we don'tAbstractRemoveStepHandler

need to override its operationa. But we need to implement the performRemove()

 method to provide the model description, and since the add handler installs theDescriptionProvider

TrackerService, we need to remove that in the method.performRuntime()

public class TypeRemoveHandler extends AbstractRemoveStepHandler {

 public static final TypeRemoveHandler INSTANCE = new TypeRemoveHandler();

 private TypeRemoveHandler() {

 }

 @Override

 protected void performRuntime(OperationContext context, ModelNode operation, ModelNode

model) throws OperationFailedException {

 String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

ServiceName name = TrackerService.createServiceName(suffix);

 context.removeService(name);

 }

}

We then need a description provider for the part of the model itself, so we modify TypeDefinitnion totype

registerAttribute

class TypeDefinition{

...

@Override

public void registerAttributes(ManagementResourceRegistration resourceRegistration){

 resourceRegistration.registerReadWriteAttribute(TICK, null, TrackerTickHandler.INSTANCE);

}

}

Then finally we need to specify that our new child and associated handlers go under type

 in the model by adding registering it with the model in /subsystem=tracker/type=*

. So we add the following just before the end of the method.SubsystemExtension.initialize()

WildFly 10

JBoss Community Documentation Page of 177 226

@Override

public void initialize(ExtensionContext context)

{

 final SubsystemRegistration subsystem = context.registerSubsystem(SUBSYSTEM_NAME, 1, 0);

 final ManagementResourceRegistration registration =

subsystem.registerSubsystemModel(TrackerSubsystemDefinition.INSTANCE);

 //Add the type child

 ManagementResourceRegistration typeChild =

registration.registerSubModel(TypeDefinition.INSTANCE);

 subsystem.registerXMLElementWriter(parser);

}

The above first creates a child of our main subsystem registration for the relative address , and getstype=*

the registration.typeChild

To this we add the and .TypeAddHandler TypeRemoveHandler

The add variety is added under the name and the remove handler under the name , and foradd remove

each registered operation handler we use the handler singleton instance as both the handler parameter and

as the .DescriptionProvider

Finally, we register as a read/write attribute, the null parameter means we don't do anything specialtick

with regards to reading it, for the write handler we supply it with an operation handler called

.TrackerTickHandler

Registering it as a read/write attribute means we can use the operation to modify the:write-attribute

value of the parameter, and it will be handled by .TrackerTickHandler

Not registering a write attribute handler makes the attribute read only.

 extends TrackerTickHandler AbstractWriteAttributeHandler

directly, and so must implement its and method.applyUpdateToRuntime revertUpdateToRuntime

This takes care of model manipulation (validation, setting) but leaves us to do just to deal with what we need

to do.

WildFly 10

JBoss Community Documentation Page of 178 226

class TrackerTickHandler extends AbstractWriteAttributeHandler<Void> {

 public static final TrackerTickHandler INSTANCE = new TrackerTickHandler();

 private TrackerTickHandler() {

 super(TypeDefinition.TICK);

 }

 protected boolean applyUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName,

 ModelNode resolvedValue, ModelNode currentValue, HandbackHolder<Void>

handbackHolder) throws OperationFailedException {

 modifyTick(context, operation, resolvedValue.asLong());

 return false;

 }

 protected void revertUpdateToRuntime(OperationContext context, ModelNode operation, String

attributeName, ModelNode valueToRestore, ModelNode valueToRevert, Void handback){

 modifyTick(context, operation, valueToRestore.asLong());

 }

 private void modifyTick(OperationContext context, ModelNode operation, long value) throws

OperationFailedException {

 final String suffix =

PathAddress.pathAddress(operation.get(ModelDescriptionConstants.ADDRESS)).getLastElement().getValue();

TrackerService service = (TrackerService)

context.getServiceRegistry(true).getRequiredService(TrackerService.createServiceName(suffix)).getValue();

service.setTick(value);

 }

}

The operation used to execute this will be of the form

) so we first get the /subsystem=tracker/type=war:write-attribute(name=tick,value=12345

 from the operation address, and the value from the operation parameter's suffix tick resolvedValue

parameter, and use that to update the model.

We then add a new step associated with the stage to update the tick of the TrackerService for ourRUNTIME

suffix. This is essential since the call to will fail unless the stepcontext.getServiceRegistry()

accessing it belongs to the stage.RUNTIME

When implementing , you call when you are done.execute() must context.completeStep()

WildFly 10

JBoss Community Documentation Page of 179 226

10.12 Expressions

Expressions are mechanism that enables you to support variables in your attributes, for instance when you

want the value of attribute to be resolved using system / environment properties.

An example expression is

${jboss.bind.address.management:127.0.0.1}

which means that the value should be taken from a system property named

 and if it is not defined use .jboss.bind.address.management 127.0.0.1

10.12.1 What expression types are supported

System properties, which are resolved using java.lang.System.getProperty(String key)

Environment properties, which are resolved using .java.lang.System.getEnv(String name)

Security vault expressions, resolved against the security vault configured for the server or Host

Controller that needs to resolve the expression.

In all cases, the syntax for the expression is

${expression_to_resolve}

For an expression meant to be resolved against environment properties, the expression_to_resolve

must be prefixed with . The portion after will be the name passed to env. env.

.java.lang.System.getEnv(String name)

Security vault expressions do not support default values (i.e. the in the 127.0.0.1

 example above.)jboss.bind.address.management:127.0.0.1

10.12.2 How to support expressions in subsystems

The easiest way is by using AttributeDefinition, which provides support for expressions just by using it

correctly.

When we create an AttributeDefinition all we need to do is mark that is allows expressions. Here is an

example how to define an attribute that allows expressions to be used.

WildFly 10

JBoss Community Documentation Page of 180 226

SimpleAttributeDefinition MY_ATTRIBUTE =

 new SimpleAttributeDefinitionBuilder("my-attribute", ModelType.INT, true)

 .setAllowExpression(true)

 .setFlags(AttributeAccess.Flag.RESTART_ALL_SERVICES)

 .setDefaultValue(new ModelNode(1))

 .build();

Then later when you are parsing the xml configuration you should use the MY_ATTRIBUTE attribute

definition to set the value to the management operation ModelNode you are creating.

....

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("my-attribute")) {

 MY_ATTRIBUTE.parseAndSetParameter(value, operation, reader);

 } else if (attr.equals("suffix")) {

.....

Note that this just helps you to properly set the value to the model node you are working on, so no need to

additionally set anything to the model for this attribute. Method parseAndSetParameter parses the value that

was read from xml for possible expressions in it and if it finds any it creates special model node that defines

that node is of type ModelType.EXPRESSION.

Later in your operation handlers where you implement populateModel and have to store the value from the

operation to the configuration model you also use this MY_ATTRIBUTE attribute definition.

@Override

 protected void populateModel(ModelNode operation, ModelNode model) throws

OperationFailedException {

 MY_ATTRIBUTE.validateAndSet(operation,model);

 }

This will make sure that the attribute that is stored from the operation to the model is valid and nothing is

lost. It also checks the value stored in the operation ModelNode, and if it isn't already

ModelType.EXPRESSION, it checks if the value is a string that contains the expression syntax. If so, the

value stored in the model will be of type ModelType.EXPRESSION. Doing this ensures that expressions are

properly handled when they appear in operations that weren't created by the subsystem parser, but are

instead passed in from CLI or admin console users.

As last step we need to use the value of the attribute. This is usually needed inside of the performRuntime

method

WildFly 10

JBoss Community Documentation Page of 181 226

protected void performRuntime(OperationContext context, ModelNode operation, ModelNode model,

ServiceVerificationHandler verificationHandler, List<ServiceController<?>> newControllers)

throws OperationFailedException {

 final int attributeValue = MY_ATTRIBUTE.resolveModelAttribute(context,

model).asInt();

 ...

 }

As you can see resolving of attribute's value is not done until it is needed for use in the subsystem's runtime

services. The resolved value is not stored in the configuration model, the unresolved expression is. That way

we do not lose any information in the model and can assure that also marshalling is done properly, where we

must marshall back the unresolved value.

Attribute definitinon also helps you with that:

public void writeContent(XMLExtendedStreamWriter writer, SubsystemMarshallingContext context)

throws XMLStreamException {

 MY_ATTRIBUTE.marshallAsAttribute(sessionData, writer);

 MY_OTHER_ATTRIBUTE.marshallAsElement(sessionData, false, writer);

 ...

}

10.13 Integrate with WildFly

Now that we have all the code needed for our subsystem, we can build our project by running mvn

install

WildFly 10

JBoss Community Documentation Page of 182 226

[kabir ~/sourcecontrol/temp/archetype-test/acme-subsystem]

$mvn install

[INFO] Scanning for projects...

[...]

main:

 [delete] Deleting:

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/null1004283288

 [delete] Deleting directory

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module

 [copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[copy] Copying 1 file to

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/module/com/acme/corp/tracker/main

[echo] Module com.acme.corp.tracker has been created in the target/module directory. Copy to

your JBoss AS 7 installation.

[INFO] Executed tasks

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ acme-subsystem ---

[INFO] Installing

/Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/target/acme-subsystem.jar to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.jar
[INFO]

Installing /Users/kabir/sourcecontrol/temp/archetype-test/acme-subsystem/pom.xml to

/Users/kabir/.m2/repository/com/acme/corp/acme-subsystem/1.0-SNAPSHOT/acme-subsystem-1.0-SNAPSHOT.pom
[INFO]

--

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.851s

[INFO] Finished at: Mon Jul 11 23:24:58 BST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

This will have built our project and assembled a module for us that can be used for installing it into WildFly 8.

If you go to the folder where you built the project you will see the moduletarget/module

$ls target/module/com/acme/corp/tracker/main/

acme-subsystem.jar module.xml

The comes from and is used to definemodule.xml src/main/resources/module/main/module.xml

your module. It says that it contains the :acme-subsystem.jar

<module xmlns="urn:jboss:module:1.0" name="com.acme.corp.tracker">

 <resources>

 <resource-root path="acme-subsystem.jar"/>

 </resources>

And has a default set of dependencies needed by every subsystem created. If your subsystem requires

additional module dependencies you can add them here before building and installing.

WildFly 10

JBoss Community Documentation Page of 183 226

<dependencies>

 <module name="javax.api"/>

 <module name="org.jboss.staxmapper"/>

 <module name="org.jboss.as.controller"/>

 <module name="org.jboss.as.server"/>

 <module name="org.jboss.modules"/>

 <module name="org.jboss.msc"/>

 <module name="org.jboss.logging"/>

 <module name="org.jboss.vfs"/>

 </dependencies>

</module>

Note that the name of the module corresponds to the directory structure containing it. Now copy the

 directory and its contents to target/module/com/acme/corp/tracker/main/

 (where is the root of your WildFly install).$WFLY/modules/com/acme/corp/tracker/main/ $WFLY

Next we need to modify . First we need to add$WFLY/standalone/configuration/standalone.xml

our new module to the section:<extensions>

<extensions>

 ...

 <extension module="org.jboss.as.weld"/>

 <extension module="com.acme.corp.tracker"/>

 </extensions>

And then we have to add our subsystem to the section:<profile>

<profile>

 ...

 <subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="sar" tick="10000"/>

 <deployment-type suffix="war" tick="10000"/>

 </deployment-types>

 </subsystem>

 ...

 </profile>

Adding this to a managed domain works exactly the same apart from in this case you need to modify

.$AS7/domain/configuration/domain.xml

Now start up WildFly 8 by running and you should see messages like these$WFLY/bin/standalone.sh

after the server has started, which means our subsystem has been added and our isTrackerService

working:

WildFly 10

JBoss Community Documentation Page of 184 226

15:27:33,838 INFO [org.jboss.as] (Controller Boot Thread) JBoss AS 7.0.0.Final "Lightning"

started in 2861ms - Started 94 of 149 services (55 services are passive or on-demand)

15:27:42,966 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:42,966 INFO [stdout] (Thread-8) []

15:27:42,967 INFO [stdout] (Thread-8) Cool: 0

15:27:42,967 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:27:42,967 INFO [stdout] (Thread-9) []

15:27:42,967 INFO [stdout] (Thread-9) Cool: 0

15:27:52,967 INFO [stdout] (Thread-8) Current deployments deployed while sar tracking active:

15:27:52,967 INFO [stdout] (Thread-8) []

15:27:52,967 INFO [stdout] (Thread-8) Cool: 0

If you run the command line interface you can execute some commands to see more about the subsystem.

For example

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource-description(recursive=true,

operations=true)

will return a lot of information, including what we provided in the s we created toDescriptionProvider

document our subsystem.

To see the current subsystem state you can execute

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {

 "war" => {"tick" => 10000L},

 "sar" => {"tick" => 10000L}

 }}

}

We can remove both the deployment types which removes them from the model:

[standalone@localhost:9999 /] /subsystem=tracker/type=sar:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/type=war:remove

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => undefined}

}

You should now see the output from the instances having stopped.TrackerService

Now, let's add the war tracker again:

WildFly 10

JBoss Community Documentation Page of 185 226

[standalone@localhost:9999 /] /subsystem=tracker/type=war:add

{"outcome" => "success"}

[standalone@localhost:9999 /] /subsystem=tracker/:read-resource(recursive=true)

{

 "outcome" => "success",

 "result" => {"type" => {"war" => {"tick" => 10000L}}}

}

and the WildFly 8 console should show the messages coming from the war again.TrackerService

Now let us deploy something. You can find two maven projects for test wars already built at and test1.zip

. If you download them and extract them to and , youtest2.zip /Downloads/test1 /Downloads/test2

can see that contains a while /Downloads/test1/target/test1.war META-INF/cool.txt

 does not contain that file. From CLI deploy first:/Downloads/test2/target/test2.war test1.war

[standalone@localhost:9999 /] deploy ~/Downloads/test1/target/test1.war

'test1.war' deployed successfully.

And you should now see the output from the war list the deployments:TrackerService

15:35:03,712 INFO [org.jboss.as.server.deployment] (MSC service thread 1-2) Starting deployment

of "test1.war"

15:35:03,988 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test1

15:35:03,996 INFO [org.jboss.as.server.controller] (pool-2-thread-9) Deployed "test1.war"

15:35:13,056 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:35:13,056 INFO [stdout] (Thread-9) [test1.war]

15:35:13,057 INFO [stdout] (Thread-9) Cool: 1

So our got picked up as a 'cool' deployment. Now if we deploy test1.war test2.war

[standalone@localhost:9999 /] deploy ~/sourcecontrol/temp/archetype-test/test2/target/test2.war

'test2.war' deployed successfully.

You will see that deployment get picked up as well but since there is no it is notMETA-INF/cool.txt

marked as a 'cool' deployment:

15:37:05,634 INFO [org.jboss.as.server.deployment] (MSC service thread 1-4) Starting deployment

of "test2.war"

15:37:05,699 INFO [org.jboss.web] (MSC service thread 1-1) registering web context: /test2

15:37:05,982 INFO [org.jboss.as.server.controller] (pool-2-thread-15) Deployed "test2.war"

15:37:13,075 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:37:13,075 INFO [stdout] (Thread-9) [test1.war, test2.war]

15:37:13,076 INFO [stdout] (Thread-9) Cool: 1

An undeploy

https://docs.jboss.org/author/download/attachments/91947468/test1.zip?version=1&modificationDate=1311326317000
https://docs.jboss.org/author/download/attachments/91947468/test2.zip?version=1&modificationDate=1311326215000

WildFly 10

JBoss Community Documentation Page of 186 226

[standalone@localhost:9999 /] undeploy test1.war

Successfully undeployed test1.war.

is also reflected in the output:TrackerService

15:38:47,901 INFO [org.jboss.as.server.controller] (pool-2-thread-21) Undeployed "test1.war"

15:38:47,934 INFO [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment

test1.war in 40ms

15:38:53,091 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:38:53,092 INFO [stdout] (Thread-9) [test2.war]

15:38:53,092 INFO [stdout] (Thread-9) Cool: 0

Finally, we registered a write attribute handler for the property of the so we can change thetick type

frequency

[standalone@localhost:9999 /] /subsystem=tracker/type=war:write-attribute(name=tick,value=1000)

{"outcome" => "success"}

You should now see the output from the happen every secondTrackerService

15:39:43,100 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:43,100 INFO [stdout] (Thread-9) [test2.war]

15:39:43,101 INFO [stdout] (Thread-9) Cool: 0

15:39:44,101 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:44,102 INFO [stdout] (Thread-9) [test2.war]

15:39:44,105 INFO [stdout] (Thread-9) Cool: 0

15:39:45,106 INFO [stdout] (Thread-9) Current deployments deployed while war tracking active:

15:39:45,106 INFO [stdout] (Thread-9) [test2.war]

If you open you can see that our subsystem$WFLY/standalone/configuration/standalone.xml

entry reflects the current state of the subsystem:

<subsystem xmlns="urn:com.acme.corp.tracker:1.0">

 <deployment-types>

 <deployment-type suffix="war" tick="1000"/>

 </deployment-types>

 </subsystem>

10.14 Parsing and marshalling of the subsystem xml

JBoss AS 7 uses the Stax API to parse the xml files. This is initialized in bySubsystemExtension

mapping our parser onto our namespace:

WildFly 10

JBoss Community Documentation Page of 187 226

public class SubsystemExtension implements Extension {

 /** The name space used for the {@code subsystem} element */

 public static final String NAMESPACE = "urn:com.acme.corp.tracker:1.0";

 ...

 protected static final PathElement SUBSYSTEM_PATH = PathElement.pathElement(SUBSYSTEM,

SUBSYSTEM_NAME);

 protected static final PathElement TYPE_PATH = PathElement.pathElement(TYPE);

 /** The parser used for parsing our subsystem */

 private final SubsystemParser parser = new SubsystemParser();

 @Override

 public void initializeParsers(ExtensionParsingContext context) {

 context.setSubsystemXmlMapping(NAMESPACE, parser);

 }

 ...

We then need to write the parser. The contract is that we read our subsystem's xml and create the

operations that will populate the model with the state contained in the xml. These operations will then be

executed on our behalf as part of the parsing process. The entry point is the method.readElement()

public class SubsystemExtension implements Extension {

 /**

 * The subsystem parser, which uses stax to read and write to and from xml

 */

 private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 /** {@inheritDoc} */

 @Override

 public void readElement(XMLExtendedStreamReader reader, List<ModelNode> list) throws

XMLStreamException {

 // Require no attributes

 ParseUtils.requireNoAttributes(reader);

 //Add the main subsystem 'add' operation

 final ModelNode subsystem = new ModelNode();

 subsystem.get(OP).set(ADD);

 subsystem.get(OP_ADDR).set(PathAddress.pathAddress(SUBSYSTEM_PATH).toModelNode());

 list.add(subsystem);

 //Read the children

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (!reader.getLocalName().equals("deployment-types")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 while (reader.hasNext() && reader.nextTag() != END_ELEMENT) {

 if (reader.isStartElement()) {

 readDeploymentType(reader, list);

 }

 }

 }

WildFly 10

JBoss Community Documentation Page of 188 226

 }

 private void readDeploymentType(XMLExtendedStreamReader reader, List<ModelNode> list)

throws XMLStreamException {

 if (!reader.getLocalName().equals("deployment-type")) {

 throw ParseUtils.unexpectedElement(reader);

 }

 ModelNode addTypeOperation = new ModelNode();

 addTypeOperation.get(OP).set(ModelDescriptionConstants.ADD);

 String suffix = null;

 for (int i = 0; i < reader.getAttributeCount(); i++) {

 String attr = reader.getAttributeLocalName(i);

 String value = reader.getAttributeValue(i);

 if (attr.equals("tick")) {

 TypeDefinition.TICK.parseAndSetParameter(value, addTypeOperation, reader);

 } else if (attr.equals("suffix")) {

 suffix = value;

 } else {

 throw ParseUtils.unexpectedAttribute(reader, i);

 }

 }

 ParseUtils.requireNoContent(reader);

 if (suffix == null) {

 throw ParseUtils.missingRequiredElement(reader,

Collections.singleton("suffix"));

 }

 //Add the 'add' operation for each 'type' child

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement(TYPE, suffix));

 addTypeOperation.get(OP_ADDR).set(addr.toModelNode());

 list.add(addTypeOperation);

 }

 ...

So in the above we always create the add operation for our subsystem. Due to its address

 defined by this will trigger the we/subsystem=tracker SUBSYSTEM_PATH SubsystemAddHandler

created earlier when we invoke . We then parse the child elements and create/subsystem=tracker:add

an add operation for the child address for each child. Since the address will for example be type

 (defined by) and is registered for all /subsystem=tracker/type=sar TYPE_PATH TypeAddHandler

 subaddresses the will get invoked for those operations. Note that when we aretype TypeAddHandler

parsing attribute we are using definition of attribute that we defined in TypeDefintion to parse attributetick

value and apply all rules that we specified for this attribute, this also enables us to property support

expressions on attributes.

The parser is also used to marshal the model to xml whenever something modifies the model, for which the

entry point is the method:writeContent()

WildFly 10

JBoss Community Documentation Page of 189 226

private static class SubsystemParser implements XMLStreamConstants,

XMLElementReader<List<ModelNode>>, XMLElementWriter<SubsystemMarshallingContext> {

 ...

 /** {@inheritDoc} */

 @Override

 public void writeContent(final XMLExtendedStreamWriter writer, final

SubsystemMarshallingContext context) throws XMLStreamException {

 //Write out the main subsystem element

 context.startSubsystemElement(TrackerExtension.NAMESPACE, false);

 writer.writeStartElement("deployment-types");

 ModelNode node = context.getModelNode();

 ModelNode type = node.get(TYPE);

 for (Property property : type.asPropertyList()) {

 //write each child element to xml

 writer.writeStartElement("deployment-type");

 writer.writeAttribute("suffix", property.getName());

 ModelNode entry = property.getValue();

 TypeDefinition.TICK.marshallAsAttribute(entry, true, writer);

 writer.writeEndElement();

 }

 //End deployment-types

 writer.writeEndElement();

 //End subsystem

 writer.writeEndElement();

 }

 }

Then we have to implement the which translates the current state of theSubsystemDescribeHandler

model into operations similar to the ones created by the parser. The is onlySubsystemDescribeHandler

used when running in a managed domain, and is used when the host controller queries the domain controller

for the configuration of the profile used to start up each server. In our case the

 adds the operation to add the subsystem and then adds the operation toSubsystemDescribeHandler

add each child. Since we are using ResourceDefinitinon for defining subsystem all that is generatedtype

for us, but if you want to customize that you can do it by implementing it like this.

WildFly 10

JBoss Community Documentation Page of 190 226

private static class SubsystemDescribeHandler implements OperationStepHandler,

DescriptionProvider {

 static final SubsystemDescribeHandler INSTANCE = new SubsystemDescribeHandler();

 public void execute(OperationContext context, ModelNode operation) throws

OperationFailedException {

 //Add the main operation

 context.getResult().add(createAddSubsystemOperation());

 //Add the operations to create each child

 ModelNode node = context.readModel(PathAddress.EMPTY_ADDRESS);

 for (Property property : node.get("type").asPropertyList()) {

 ModelNode addType = new ModelNode();

 addType.get(OP).set(ModelDescriptionConstants.ADD);

 PathAddress addr = PathAddress.pathAddress(SUBSYSTEM_PATH,

PathElement.pathElement("type", property.getName()));

 addType.get(OP_ADDR).set(addr.toModelNode());

 if (property.getValue().hasDefined("tick")) {

 TypeDefinition.TICK.validateAndSet(property,addType);

 }

 context.getResult().add(addType);

 }

 context.completeStep();

 }

}

10.14.1 Testing the parsers

Changes to tests between 7.0.0 and 7.0.1

The testing framework was moved from the archetype into the core JBoss AS 7 sources between

JBoss AS 7.0.0 and JBoss AS 7.0.1, and has been improved upon and is used internally for testing

JBoss AS 7's subsystems. The differences between the two versions is that in 7.0.0.Final the

testing framework is bundled with the code generated by the archetype (in a sub-package of the

package specified for your subsystem, e.g.), and the testcom.acme.corp.tracker.support

extends the class.AbstractParsingTest

From 7.0.1 the testing framework is now brought in via the

 maven artifact, and the test's superclass is org.jboss.as:jboss-as-subsystem-test

. The concepts are the same butorg.jboss.as.subsystem.test.AbstractSubsystemTest

more and more functionality will be available as JBoss AS 7 is developed.

WildFly 10

JBoss Community Documentation Page of 191 226

Now that we have modified our parsers we need to update our tests to reflect the new model. There are

currently three tests testing the basic functionality, something which is a lot easier to debug from your IDE

before you plug it into the application server. We will talk about these tests in turn and they all live in

. com.acme.corp.tracker.extension.SubsystemParsingTestCase

 extends which does a lot of the setup for youSubsystemParsingTestCase AbstractSubsystemTest

and contains utility methods for verifying things from your test. See the javadoc of that class for more

information about the functionality available to you. And by all means feel free to add more tests for your

subsystem, here we are only testing for the best case scenario while you will probably want to throw in a few

tests for edge cases.

The first test we need to modify is . It tests that the parsed xml becomes thetestParseSubsystem()

expected operations that will be parsed into the server, so let us tweak this test to match our subsystem.

First we tell the test to parse the xml into operations

@Test

 public void testParseSubsystem() throws Exception {

 //Parse the subsystem xml into operations

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 List<ModelNode> operations = super.parse(subsystemXml);

There should be one operation for adding the subsystem itself and an operation for adding the

, so check we got two operationsdeployment-type

///Check that we have the expected number of operations

 Assert.assertEquals(2, operations.size());

Now check that the first operation is for the address :add /subsystem=tracker

//Check that each operation has the correct content

 //The add subsystem operation will happen first

 ModelNode addSubsystem = operations.get(0);

 Assert.assertEquals(ADD, addSubsystem.get(OP).asString());

 PathAddress addr = PathAddress.pathAddress(addSubsystem.get(OP_ADDR));

 Assert.assertEquals(1, addr.size());

 PathElement element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

Then check that the second operation is for the address , and that wasadd /subsystem=tracker 12345

picked up for the value of the parameter:tick

WildFly 10

JBoss Community Documentation Page of 192 226

//Then we will get the add type operation

 ModelNode addType = operations.get(1);

 Assert.assertEquals(ADD, addType.get(OP).asString());

 Assert.assertEquals(12345, addType.get("tick").asLong());

 addr = PathAddress.pathAddress(addType.get(OP_ADDR));

 Assert.assertEquals(2, addr.size());

 element = addr.getElement(0);

 Assert.assertEquals(SUBSYSTEM, element.getKey());

 Assert.assertEquals(SubsystemExtension.SUBSYSTEM_NAME, element.getValue());

 element = addr.getElement(1);

 Assert.assertEquals("type", element.getKey());

 Assert.assertEquals("tst", element.getValue());

 }

The second test we need to modify is which tests that the xml installstestInstallIntoController()

properly into the controller. In other words we are making sure that the operations we created earlieradd

work properly. First we create the xml and install it into the controller. Behind the scenes this will parse the

xml into operations as we saw in the last test, but it will also create a new controller and boot that up using

the created operations

@Test

 public void testInstallIntoController() throws Exception {

 //Parse the subsystem xml and install into the controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

The returned allow us to execute operations on the controller, and to read the wholeKernelServices

model.

//Read the whole model and make sure it looks as expected

 ModelNode model = services.readWholeModel();

 //Useful for debugging :-)

 //System.out.println(model);

Now we make sure that the structure of the model within the controller has the expected format and values

WildFly 10

JBoss Community Documentation Page of 193 226

Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

 }

The last test provided is called . It's main purpose is to make sure thattestParseAndMarshalModel()

our works as expected. This is achieved by starting a controller inSubsystemParser.writeContent()

the same way as before

@Test

 public void testParseAndMarshalModel() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

Now we read the model and the xml that was persisted from the first controller, and use that xml to start a

second controller

//Get the model and the persisted xml from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 String marshalled = servicesA.getPersistedSubsystemXml();

 //Install the persisted xml from the first controller into a second controller

 KernelServices servicesB = super.installInController(marshalled);

Finally we read the model from the second controller, and make sure that the models are identical by calling

 on the test superclass.compare()

ModelNode modelB = servicesB.readWholeModel();

 //Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

We then have a test that needs no changing from what the archetype provides us with. As we have seen

before we start a controller

WildFly 10

JBoss Community Documentation Page of 194 226

@Test

 public void testDescribeHandler() throws Exception {

 //Parse the subsystem xml and install into the first controller

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 "</subsystem>";

 KernelServices servicesA = super.installInController(subsystemXml);

We then call which outputs the subsystem as operations needed to/subsystem=tracker:describe

reach the current state (Done by our)SubsystemDescribeHandler

//Get the model and the describe operations from the first controller

 ModelNode modelA = servicesA.readWholeModel();

 ModelNode describeOp = new ModelNode();

 describeOp.get(OP).set(DESCRIBE);

 describeOp.get(OP_ADDR).set(

 PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME)).toModelNode());

 List<ModelNode> operations =

super.checkResultAndGetContents(servicesA.executeOperation(describeOp)).asList();

Then we create a new controller using those operations

//Install the describe options from the first controller into a second controller

 KernelServices servicesB = super.installInController(operations);

And then we read the model from the second controller and make sure that the two subsystems are identical

ModelNode modelB = servicesB.readWholeModel();

//Make sure the models from the two controllers are identical

 super.compare(modelA, modelB);

 }

To test the removal of the the subsystem and child resources we modify the testSubsystemRemoval()

test provided by the archetype:

/**

 * Tests that the subsystem can be removed

 */

 @Test

 public void testSubsystemRemoval() throws Exception {

 //Parse the subsystem xml and install into the first controller

We provide xml for the subsystem installing a child, which in turn installs a TrackerService

WildFly 10

JBoss Community Documentation Page of 195 226

String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Having installed the xml into the controller we make sure the TrackerService is there

//Sanity check to test the service for 'tst' was there

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

This call from the subsystem test harness will call remove for each level in our subsystem, children first and

validate

that the subsystem model is empty at the end.

//Checks that the subsystem was removed from the model

 super.assertRemoveSubsystemResources(services);

Finally we check that all the services were removed by the remove handlers

//Check that any services that were installed were removed here

 try {

 services.getContainer().getRequiredService(TrackerService.createServiceName("tst"));

 Assert.fail("Should have removed services");

 } catch (Exception expected) {

 }

 }

For good measure let us throw in another test which adds a and also changes itsdeployment-type

attribute at runtime. So first of all boot up the controller with the same xml we have been using so far

@Test

 public void testExecuteOperations() throws Exception {

 String subsystemXml =

 "<subsystem xmlns=\"" + SubsystemExtension.NAMESPACE + "\">" +

 " <deployment-types>" +

 " <deployment-type suffix=\"tst\" tick=\"12345\"/>" +

 " </deployment-types>" +

 "</subsystem>";

 KernelServices services = super.installInController(subsystemXml);

Now create an operation which does the same as the following CLI command

/subsystem=tracker/type=foo:add(tick=1000)

WildFly 10

JBoss Community Documentation Page of 196 226

//Add another type

 PathAddress fooTypeAddr = PathAddress.pathAddress(

 PathElement.pathElement(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME),

 PathElement.pathElement("type", "foo"));

 ModelNode addOp = new ModelNode();

 addOp.get(OP).set(ADD);

 addOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 addOp.get("tick").set(1000);

Execute the operation and make sure it was successful

ModelNode result = services.executeOperation(addOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

Read the whole model and make sure that the original data is still there (i.e. the same as what was done by

testInstallIntoController()

ModelNode model = services.readWholeModel();

 Assert.assertTrue(model.get(SUBSYSTEM).hasDefined(SubsystemExtension.SUBSYSTEM_NAME));

 Assert.assertTrue(model.get(SUBSYSTEM,

SubsystemExtension.SUBSYSTEM_NAME).hasDefined("type"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("tst"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"tst").hasDefined("tick"));

 Assert.assertEquals(12345, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "tst", "tick").asLong());

Then make sure our new has been added:type

Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type").hasDefined("foo"));

 Assert.assertTrue(model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME, "type",

"foo").hasDefined("tick"));

 Assert.assertEquals(1000, model.get(SUBSYSTEM, SubsystemExtension.SUBSYSTEM_NAME,

"type", "foo", "tick").asLong());

Then we call to change the value of :write-attribute tick /subsystem=tracker/type=foo

//Call write-attribute

 ModelNode writeOp = new ModelNode();

 writeOp.get(OP).set(WRITE_ATTRIBUTE_OPERATION);

 writeOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 writeOp.get(NAME).set("tick");

 writeOp.get(VALUE).set(3456);

 result = services.executeOperation(writeOp);

 Assert.assertEquals(SUCCESS, result.get(OUTCOME).asString());

WildFly 10

JBoss Community Documentation Page of 197 226

To give you exposure to other ways of doing things, now instead of reading the whole model to check the

attribute, we call instead, and make sure it has the value we set it to.read-attribute

//Check that write attribute took effect, this time by calling read-attribute instead of reading

the whole model

 ModelNode readOp = new ModelNode();

 readOp.get(OP).set(READ_ATTRIBUTE_OPERATION);

 readOp.get(OP_ADDR).set(fooTypeAddr.toModelNode());

 readOp.get(NAME).set("tick");

 result = services.executeOperation(readOp);

 Assert.assertEquals(3456, checkResultAndGetContents(result).asLong());

Since each installs its own copy of , we get the for type TrackerService TrackerService type=foo

from the service container exposed by the kernel services and make sure it has the right value

TrackerService service =

(TrackerService)services.getContainer().getService(TrackerService.createServiceName("foo")).getValue();

Assert.assertEquals(3456, service.getTick());

 }

TypeDefinition.TICK.

WildFly 10

JBoss Community Documentation Page of 198 226

11 Key Interfaces and Classes Relevant to

Extension Developers
In the first major section of this guide, we provided an example of how to implement an extension to the AS.

The emphasis there was learning by doing. In this section, we'll focus a bit more on the major WildFly

interfaces and classes that most are relevant to extension developers. The best way to learn about these

interfaces and classes in detail is to look at their javadoc. What we'll try to do here is provide a brief

introduction of the key items and how they relate to each other.

Before digging into this section, readers are encouraged to read the "Core Management Concepts" section

of the Admin Guide.

WildFly 10

JBoss Community Documentation Page of 199 226

11.1 Extension Interface

The interface is the hook by which your extension to the coreorg.jboss.as.controller.Extension

AS is able to integrate with the AS. During boot of the AS, when the element in the AS's xml<extension>

configuration file naming your extension is parsed, the JBoss Modules module named in the element's name

attribute is loaded. The standard JDK mechanism is then used to load yourjava.lang.ServiceLoader

module's implementation of this interface.

The function of an implementation is to register with the core AS the management API, xmlExtension

parsers and xml marshallers associated with the extension module's subsystems. An canExtension

register multiple subsystems, although the usual practice is to register just one per extension.

Once the is loaded, the core AS will make two invocations upon it:Extension

void initializeParsers(ExtensionParsingContext context)

When this is invoked, it is the implementation's responsibility to initialize the XML parsers forExtension

this extension's subsystems and register them with the given . The parser'sExtensionParsingContext

job when it is later called is to create objects representing WildFlyorg.jboss.dmr.ModelNode

management API operations needed make the AS's running configuration match what is described in the

xml. Those management operation {{ModelNode}}s are added to a list passed in to the parser.

A parser for each version of the xml schema used by a subsystem should be registered. A well behaved

subsystem should be able to parse any version of its schema that it has ever published in a final release.

void initialize(ExtensionContext context)

When this is invoked, it is the implementation's responsibility to register with the core AS theExtension

management API for its subsystems, and to register the object that is capable of marshalling the

subsystem's in-memory configuration back to XML. Only one XML marshaller is registered per subsystem,

even though multiple XML parsers can be registered. The subsystem should always write documents that

conform to the latest version of its XML schema.

The registration of a subsystem's management API is done via the ManagementResourceRegistration

interface. Before discussing that interface in detail, let's describe how it (and the related Resource

interface) relate to the notion of managed resources in the AS.

WildFly 10

JBoss Community Documentation Page of 200 226

11.2 WildFly Managed Resources

Each subsystem is responsible for managing one or more management resources. The conceptual

characteristics of a management resource are covered in some detail in the ; here we'll justAdmin Guide

summarize the main points. A management resource has

An consisting of a list of key/value pairs that uniquely identifies a resourceaddress

Zero or more , the value of which is some sort of attributes org.jboss.dmr.ModelNode

Zero or more supported . An operation has a string name and zero or more parameters,operations

each of which is a key/value pair where the key is a string naming the parameter and the value is

some sort of ModelNode

Zero or , each of which in turn is a managed resourcechildren

The implementation of a managed resource is somewhat analogous to the implementation of a Java object.

A managed resource will have a "type", which encapsulates API information about that resource and logic

used to implement that API. And then there are actual instances of the resource, which primarily store data

representing the current state of a particular resource. This is somewhat analogous to the "class" and

"object" notions in Java.

A managed resource's type is encapsulated by the

 the core AS createsorg.jboss.as.controller.registry.ManagementResourceRegistration

when the type is registered. The data for a particular instance is encapsulated in an implementation of the

 interface.org.jboss.as.controller.registry.Resource

11.3 ManagementResourceRegistration Interface

TODO

11.4 ResourceDefinition Interface

TODO

Most commonly used implementation: SimpleResourceDefinition

11.4.1 ResourceDescriptionResolver

TODO

Most commonly used implementation: StandardResourceDescriptionResolver

https://docs.jboss.org/author/display/WFLY10/Management+resources

WildFly 10

JBoss Community Documentation Page of 201 226

11.5 AttributeDefinition Interface

TODO

Most commmonly used implementation: . Use SimpleAttributeDefinition

 to build.SimpleAttributeDefinitionBuilder

11.6 OperationDefinition and OperationStepHandler

Interfaces

TODO

11.7 Operation Execution and the OperationContext

TODO

11.8 Resource Interface

TODO

11.9 DeploymentUnitProcessor Interface

TODO

11.10 Useful classes for implementing

OperationStepHandler

TODO

WildFly 10

JBoss Community Documentation Page of 202 226

1.

2.

3.

4.

5.

12 Transformers
This guide is work in progress

12.1 What are transformers

Transformers are mechanism used in domain mode, to support scenarios where you have host controllers

(HC) joined to domain controller (DC) running different version of subsystem (server).

When HC registers itself against DC and it is running different version of some subsystem that is present on

DC, DC performs transformation of model (ModelTransformer) and sends it back to HC as configuration it

has too run.

Also when operations are performed on DC, for example call ADD for some resource, DC also transforms

that operation (OperationTransformer) into target version of HC.

Transformers are primarily used for upgrade migration paths. General idea behind this migration period is

that there are numerous HC and one DC deployed. First, DC is upgraded. Afterwards, HC are upgraded in

steps as needed without breaking configuration.

12.1.1 When are they invoked

When Host controller registers to Domain Controller. HC does not know about conversions, they are done on

DC as follows:

HC -> connect -> DC

HC <- list of subsystems to sent supported versions for <- DC

HC -> list of supported versions for requested subsystems -> DC

transformations happen on DC

HC <- complete model in supported model versions <- DC

12.1.2 When should they be implemented

When model in your subsystem has changed in incompatible way.

Rule of thumb would be if current model is applied to previous version of subsystem model would it work? If

not, model version must be increased and transformers implemented.

12.1.3 Model Transformer

Model transformer, works on top of current model and transforms its model to target version.

WildFly 10

JBoss Community Documentation Page of 203 226

12.1.4 Operation Transformer

Operation transformer works on top of operations instead of model.

12.1.5 Testing transformers

There is testing framework in place for testing proper behavior of transformers

WildFly 10

JBoss Community Documentation Page of 204 226

13 WildFly 9 JNDI Implementation

13.1 Introduction

This page proposes a reworked WildFly JNDI implementation, and new/updated APIs for WildFly subsystem

and EE deployment processors developers to bind new resources easier.

To support discussion in the community, the content includes a big focus on comparing WildFly 8 JNDI

implementation with the new proposal, and should later evolve to the prime guide for WildFly developers

needing to interact with JNDI at subsystem level.

13.2 Architecture

WildFly relies on MSC to provide the data source for the JNDI tree. Each resource bound in JNDI is stored in

a MSC service (BinderService), and such services are installed as children of subsystem/deployment

services, for an automatically unbound as consequence of uninstall of the parent services.

Since there is the need to know what entries are bound, and MSC does not provides that, there is also the

(ServiceBased)NamingStore concept, which internally manage the set of service names bound. There are

multiple naming stores in every WildFly instance, serving different JNDI namespaces:

java:comp - the standard EE namespace for entries scoped to a specific component, such as an EJB

java:module - the standard EE namespace for entries scoped to specific module, such as an EJB jar,

and shared by all components in it

java:app - the standard EE namespace for entries scoped to a specific application, i.e. EAR, and

shared by all modules in it

java:global - the standard EE namespace for entries shared by all deployments

java:jboss - a proprietary namespace "global" namespace

java:jboss/exported - a proprietary "global" namespace which entries are exposed to remote JNDI

java: - any entries not in the other namespaces

One particular implementation choice, to save resources, is that JNDI contexts by default are not bound, the

naming stores will search for any entry bound with a name that is a child of the context name, if found then

its assumed the context exists.

The reworked implementation introduces shared/global java:comp, java:module and java:app namespaces.

Any entry bound on these will automatically be available to every EE deployment scoped instance of these

namespaces, what should result in a significant reduction of binder services, and also of EE deployment

processors. Also, the Naming subsystem may now configure bind on these shared contexts, and these

contexts will be available when there is no EE component in the invocation, which means that entries such

as java:comp/DefaultDatasource will always be available.

WildFly 10

JBoss Community Documentation Page of 205 226

13.3 Binding APIs

WildFly Naming subsystem exposes high level APIs to bind new JNDI resources, there is no need to deal

with the low level BinderService type anymore.

13.3.1 Subsystem

At the lowest level a JNDI entry is bound by installing a BinderService to a ServiceTarget:

 /**

 * Binds a new entry to JNDI.

 * @param serviceTarget the binder service's target

 * @param name the new JNDI entry's name

 * @param value the new JNDI entry's value

 */

 private ServiceController<?> bind(ServiceTarget serviceTarget, String name, Object value) {

 // the bind info object provides MSC service names to use when creating the binder service

 final ContextNames.BindInfo bindInfo = ContextNames.bindInfoFor(name);

 final BinderService binderService = new BinderService(bindInfo.getBindName());

 // the entry's value is provided by a managed reference factory,

 // since the value may need to be obtained on lookup (e.g. EJB reference)

 final ManagedReferenceFactory managedReferenceFactory = new

ImmediateManagedReferenceFactory(value);

 return serviceTarget

 // add binder service to specified target

 .addService(bindInfo.getBinderServiceName(), binderService)

 // when started the service will be injected with the factory

 .addInjection(binderService.getManagedObjectInjector(), managedReferenceFactory)

 // the binder service depends on the related naming store service,

 // and on start/stop will add/remove its service name

 .addDependency(bindInfo.getParentContextServiceName(),

 ServiceBasedNamingStore.class,

 binderService.getNamingStoreInjector())

 .install();

 }

But the example above is the simplest usage possible, it may become quite complicated if the entry's value

is not immediately available, for instance it is a value in another MSC service, or is a value in another JNDI

entry. It's also quite easy to introduce bugs when working with the service names, or incorrectly assume that

other MSC functionality, such as alias names, may be used.

Using the new high level API, it's as simple as:

WildFly 10

JBoss Community Documentation Page of 206 226

// bind an immediate value

ContextNames.bindInfoFor("java:comp/ORB").bind(serviceTarget, this.orb);

// bind value from another JNDI entry (an alias/linkref)

ContextNames.bindInfoFor(“java:global/x").bind(serviceTarget, new JndiName(“java:jboss/x"));

// bind value obtained from a MSC service

ContextNames.bindInfoFor(“java:global/z").bind(serviceTarget, serviceName);

If there is the need to access the binder's service builder, perhaps to add a service verification handler or

simply not install the binder service right away:

ContextNames.bindInfoFor("java:comp/ORB").builder(serviceTarget, verificationHandler,

ServiceController.Mode.ON_DEMAND).installService(this.orb);

13.3.2 EE Deployment

With respect to EE deployments, the subsystem API should not be used, since bindings may need to be

discarded/overridden, thus a EE deployment processor should add a new binding in the form of a

BindingConfiguration, to the EeModuleDescription or ComponentDescription, depending if the bind is

specific to a component or not. An example of a deployment processor adding a binding:

WildFly 10

JBoss Community Documentation Page of 207 226

public class ModuleNameBindingProcessor implements DeploymentUnitProcessor {

 // jndi name objects are immutable

 private static final JndiName JNDI_NAME_java_module_ModuleName = new

JndiName("java:module/ModuleName");

 @Override

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 final DeploymentUnit deploymentUnit = phaseContext.getDeploymentUnit();

 // skip deployment unit if it's the top level EAR

 if (DeploymentTypeMarker.isType(DeploymentType.EAR, deploymentUnit)) {

 return;

 }

 // the module's description is in the DUs attachments

 final EEModuleDescription moduleDescription = deploymentUnit

 .getAttachment(org.jboss.as.ee.component.Attachments.EE_MODULE_DESCRIPTION);

 if (moduleDescription == null) {

 return;

 }

 // add the java:module/ModuleName binding

 // the value's injection source for an immediate available value

 final InjectionSource injectionSource = new

ImmediateInjectionSource(moduleDescription.getModuleName());

 // add the binding configuration to the module's description bindings configurations

 moduleDescription.getBindingConfigurations()

 .addDeploymentBinding(new BindingConfiguration(JNDI_NAME_java_module_ModuleName,

injectionSource));

 }

 //...

}

When adding the binding configuration use:

addDeploymentBinding() for a binding that may not be overriden, such as the ones found in

xml descriptors

addPlatformBinding() for a binding which may be overriden by a deployment descriptor bind

or annotation, for instance java:comp/DefaultDatasource

A deployment processor may now also add a binding configuration to all components in a module:

moduleDescription.getBindingConfigurations().addPlatformBindingToAllComponents(bindingConfiguration);

WildFly 10

JBoss Community Documentation Page of 208 226

In the reworked implementation there is now no need to behave differently considering the

deployment type, for instance if deployment is a WAR or app client, the Module/Component

BindingConfigurations objects handle all of that. The processor should simply go for the 3 use

cases: module binding, component binding or binding shared by all components.

All deployment binding configurations MUST be added before INSTALL phase, this is needed

because on such phase, when the bindings are actually done, there must be a final set of

deployment binding names known, such information is need to understand if a resource injection

targets entries in the global or scoped EE namespaces.

Most cases for adding bindings to EE deployments are in the context of a processor deploying a XML

descriptor, or scanning deployment classes for annotations, and there abstract types, such as the

AbstractDeploymentDescriptorBindingsProcessor, which simplifies greatly the processor code for such use

cases.

One particular use case is the parsing of EE Resource Definitions, and the reworked implementation

provides high level abstract deployment processors for both XML descriptor and annotations, an example for

each:

WildFly 10

JBoss Community Documentation Page of 209 226

/**

 * Deployment processor responsible for processing administered-object deployment descriptor

elements

 *

 * @author Eduardo Martins

 */

public class AdministeredObjectDefinitionDescriptorProcessor extends

ResourceDefinitionDescriptorProcessor {

 @Override

 protected void processEnvironment(RemoteEnvironment environment,

ResourceDefinitionInjectionSources injectionSources) throws DeploymentUnitProcessingException {

 final AdministeredObjectsMetaData metaDatas = environment.getAdministeredObjects();

 if (metaDatas != null) {

 for(AdministeredObjectMetaData metaData : metaDatas) {

injectionSources.addResourceDefinitionInjectionSource(getResourceDefinitionInjectionSource(metaData));

}

 }

 }

 private ResourceDefinitionInjectionSource getResourceDefinitionInjectionSource(final

AdministeredObjectMetaData metaData) {

 final String name = metaData.getName();

 final String className = metaData.getClassName();

 final String resourceAdapter = metaData.getResourceAdapter();

 final AdministeredObjectDefinitionInjectionSource resourceDefinitionInjectionSource =

new AdministeredObjectDefinitionInjectionSource(name, className, resourceAdapter);

 resourceDefinitionInjectionSource.setInterface(metaData.getInterfaceName());

 if (metaData.getDescriptions() != null) {

resourceDefinitionInjectionSource.setDescription(metaData.getDescriptions().toString());

 }

 resourceDefinitionInjectionSource.addProperties(metaData.getProperties());

 return resourceDefinitionInjectionSource;

 }

}

and

WildFly 10

JBoss Community Documentation Page of 210 226

/**

 * Deployment processor responsible for processing {@link

javax.resource.AdministeredObjectDefinition} and {@link

javax.resource.AdministeredObjectDefinitions}.

 *

 * @author Jesper Pedersen

 * @author Eduardo Martins

 */

public class AdministeredObjectDefinitionAnnotationProcessor extends

ResourceDefinitionAnnotationProcessor {

 private static final DotName ANNOTATION_NAME =

DotName.createSimple(AdministeredObjectDefinition.class.getName());

 private static final DotName COLLECTION_ANNOTATION_NAME =

DotName.createSimple(AdministeredObjectDefinitions.class.getName());

 @Override

 protected DotName getAnnotationDotName() {

 return ANNOTATION_NAME;

 }

 @Override

 protected DotName getAnnotationCollectionDotName() {

 return COLLECTION_ANNOTATION_NAME;

 }

 @Override

 protected ResourceDefinitionInjectionSource processAnnotation(AnnotationInstance

annotationInstance) throws DeploymentUnitProcessingException {

 final String name = AnnotationElement.asRequiredString(annotationInstance,

AnnotationElement.NAME);

 final String className = AnnotationElement.asRequiredString(annotationInstance,

"className");

 final String ra = AnnotationElement.asRequiredString(annotationInstance,

"resourceAdapter");

 final AdministeredObjectDefinitionInjectionSource

directAdministeredObjectInjectionSource =

 new AdministeredObjectDefinitionInjectionSource(name, className, ra);

directAdministeredObjectInjectionSource.setDescription(AnnotationElement.asOptionalString(annotationInstance,

AdministeredObjectDefinitionInjectionSource.DESCRIPTION));

directAdministeredObjectInjectionSource.setInterface(AnnotationElement.asOptionalString(annotationInstance,

AdministeredObjectDefinitionInjectionSource.INTERFACE));

directAdministeredObjectInjectionSource.addProperties(AnnotationElement.asOptionalStringArray(annotationInstance,

AdministeredObjectDefinitionInjectionSource.PROPERTIES));

 return directAdministeredObjectInjectionSource;

 }

}

WildFly 10

JBoss Community Documentation Page of 211 226

The abstract processors with respect to Resource Definitions are already submitted through

WFLY-3292's PR.

13.4 Resource Ref Processing

 TODO for now no changes on this in the reworked WildFly Naming.

WildFly 10

JBoss Community Documentation Page of 212 226

1.

2.

3.

1.

2.

3.

4.

14 Working with WildFly Capabilities
An extension to WildFly will likely want to make use of services provided by the WildFly kernel, may want to

make use of services provided by other subsystems, and may wish to make functionality available to other

extensions. Each of these cases involves integration between different parts of the system. In releases prior

to WildFly 10, this kind of integration was done on an ad-hoc basis, resulting in overly tight coupling between

different parts of the system and overly weak integration contracts. For example, a service installed by

subsystem A might depend on a service installed by subsystem B, and to record that dependency A's

authors copy a ServiceName from B's code, or even refer to a constant or static method from B's code. The

result is B's code cannot evolve without risking breaking A. And the authors of B may not even intend for

other subsystems to use its services. There is no proper integration contract between the two subsystems.

Beginning with WildFly Core 2 and WildFly 10 the WildFly kernel's management layer provides a mechanism

for allowing different parts of the system to integrate with each other in a loosely coupled manner. This is

done via WildFly Capabilities. Use of capabilities provides the following benefits:

A standard way for system components to define integration contracts for their use by other system

components.

A standard way for system components to access integration contracts provided by other system

components.

A mechanism for configuration model referential integrity checking, such that if one component's

configuration has an attribute that refers to an other component (e.g. a attribute insocket-binding

a subsystem that opens a socket referring to that socket's configuration), the validity of that reference

can be checked when validating the configuration model.

14.1 Capabilities

A capability is a piece of functionality used in a WildFly Core based process that is exposed via the WildFly

Core management layer. Capabilities may depend on other capabilities, and this interaction between

capabilities is mediated by the WildFly Core management layer.

Some capabilities are automatically part of a WildFly Core based process, but in most cases the

configuration provided by the end user (i.e. in standalone.xml, domain.xml and host.xml) determines what

capabilities are present at runtime. It is the responsibility of the handlers for management operations to

register capabilities and to register any requirements those capabilities may have for the presence of other

capabilities. This registration is done during the MODEL stage of operation execution

A capability has the following basic characteristics:

It has a name.

It may install an MSC service that can be depended upon by services installed by other capabilities. If

it does, it provides a mechanism for discovering the name of that service.

It may expose some other API not based on service dependencies allowing other capabilities to

integrate with it at runtime.

It may depend on, or other capabilities.require

WildFly 10

JBoss Community Documentation Page of 213 226

During boot of the process, and thereafter whenever a management operation makes a change to the

process' configuration, at the end of the MODEL stage of operation execution the kernel management layer

will validate that all capabilities required by other capabilities are present, and will fail any management

operation step that introduced an unresolvable requirement. This will be done before execution of the

management operation proceeds to the RUNTIME stage, where interaction with the process' MSC Service

Container is done. As a result, in the RUNTIME stage the handler for an operation can safely assume that

the runtime services provided by a capability for which it has registered a requirement are available.

14.1.1 Comparison to other concepts

Capabilities vs modules
A JBoss Modules module is the means of making resources available to the classloading system of a

WildFly Core based process. To make a capability available, you must package its resources in one or more

modules and make them available to the classloading system. But a module is not a capability in and of

itself, and simply copying a module to a WildFly installation does not mean a capability is available. Modules

can include resources completely unrelated to management capabilities.

Capabilities vs Extensions
An extension is the means by which the WildFly Core management layer is made aware of manageable

functionality that is not part of the WildFly Core kernel. The extension registers with the kernel new

management resource types and handlers for operations on those resources. One of the things a handler

can do is register or unregister a capability and its requirements. An extension may register a single

capability, multiple capabilities, or possibly none at all. Further, not all capabilities are registered by

extensions; the WildFly Core kernel itself may register a number of different capabilities.

14.1.2 Capability Names

Capability names are simple strings, with the dot character serving as a separator to allow namespacing.

The 'org.wildfly' namespace is reserved for projects associated with the WildFly organization on github (

).https://github.com/wildfly

https://github.com/wildfly

WildFly 10

JBoss Community Documentation Page of 214 226

14.1.3 Statically vs Dynamically Named Capabilities

The full name of a capability is either statically known, or it may include a statically known base element and

then a dynamic element. The dynamic part of the name is determined at runtime based on the address of

the management resource that registers the capability. For example, the management resource at the

address '/socket-binding-group=standard-sockets/socket-binding=web' will register a dynamically named

capability named 'org.wildlfy.network.socket-binding.web'. The 'org.wildlfy.network.socket-binding' portion is

the static part of the name.

All dynamically named capabilities that have the same static portion of their name should provide a

consistent feature set and set of requirements.

14.1.4 Service provided by a capability

Typically a capability functions by registering a service with the WildFly process' MSC ServiceContainer, and

then dependent capabilities depend on that service. The WildFly Core management layer orchestrates

registration of those services and service dependencies by providing a means to discover service names.

14.1.5 Custom integration APIs provided by a capability

Instead of or in addition to providing MSC services, a capability may expose some other API to dependent

capabilities. This API must be encapsulated in a single class (although that class can use other non-JRE

classes as method parameters or return types).

WildFly 10

JBoss Community Documentation Page of 215 226

14.1.6 Capability Requirements

A capability may rely on other capabilities in order to provide its functionality at runtime. The management

operation handlers that register capabilities are also required to register their requirements.

There are three basic types of requirements a capability may have:

Hard requirements. The required capability must always be present for the dependent capability to

function.

Optional requirements. Some aspect of the configuration of the dependent capability controls whether

the depended on capability is actually necessary. So the requirement cannot be known until the

running configuration is analyzed.

Runtime-only requirements. The dependent capability will check for the presence of the depended

upon capability at runtime, and if present it will utilize it, but if it is not present it will function properly

without the capability. There is nothing in the dependent capability's configuration that controls

whether the depended on capability must be present. Only capabilities that declare themselves as

being suitable for use as a runtime-only requirement should be depended upon in this manner.

Hard and optional requirements may be for either statically named or dynamically named capabilities.

Runtime-only requirements can only be for statically named capabilities, as such a requirement cannot be

specified via configuration, and without configuration the dynamic part of the required capability name is

unknown.

Supporting runtime-only requirements
Not all capabilities are usable as a runtime-only requirement.

Any dynamically named capability is not usable as a runtime-only requirement.

For a capability to support use as a runtime-only requirement, it must guarantee that a configuration change

to a running process that removes the capability will not impact currently running capabilities that have a

runtime-only requirement for it. This means:

A capability that supports runtime-only usage must ensure that it never removes its runtime service

except via a full process reload.

A capability that exposes a custom integration API generally is not usable as a runtime-only

requirement. If such a capability does support use as a runtime-only requirement, it must ensure that

any functionality provided via its integration API remains available as long as a full process reload has

not occurred.

WildFly 10

JBoss Community Documentation Page of 216 226

14.2 Capability Contract

A capability provides a stable contract to users of the capability. The contract includes the following:

The name of the capability (including whether it is dynamically named).

Whether it installs an MSC Service, and if it does, the value type of the service. That value type then

becomes a stable API users of the capability can rely upon.

Whether it provides a custom integration API, and if it does, the type that represents that API. That

type then becomes a stable API users of the capability can rely upon.

Whether the capability supports use as a runtime-only requirement.

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

.capabilty registry

14.3 Capability Registry

The WildFly organization on github maintains a git repo where information about available capabilities is

published.

https://github.com/wildfly/wildfly-capabilities

Developers can learn about available capabilities and the contracts they provide by reading the WildFly

capabilty registry.

The README.md file at the root of that repo explains the how to find out information about the registry.

Developers of new capabilities are to document and register their capability bystrongly encouraged

submitting a pull request to the wildfly-capabilities github repo. This both allows others to learn about your

capability and helps prevent capability name collisions. Capabilities that are used in the WildFly or WildFly

Core code base itself have a registry entry before the code referencing them will be merged.must

External organizations that create capabilities should include an organization-specific namespace as part

their capability names to avoid name collisions.

14.4 Using Capabilities

Now that all the background information is presented, here are some specifics about how to use WildFly

capabilities in your code.

https://github.com/wildfly/wildfly-capabilities

WildFly 10

JBoss Community Documentation Page of 217 226

14.4.1 Basics of Using Your Own Capability

Creating your capability
A capability is an instance of the immutable

 class. A capability is usuallyorg.jboss.as.controller.capability.RuntimeCapability

registered by a resource, so the usual way to use one is to store it in constant in the resource's

. Use a to create one.ResourceDefinition RuntimeCapability.Builder

class MyResourceDefinition extends SimpleResourceDefinition {

 static final RuntimeCapability<Void> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo").build();

 . . .

}

That creates a statically named capability named .com.example.foo

If the capability is dynamically named, add the parameter to state this:dynamic

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true).build();

Most capabilities install a service that requiring capabilities can depend on. If your capability does this, you

need to declare the service's (the type of the object returned by value type

). For example, if FOO_CAPABILITY provides a org.jboss.msc.Service.getValue()

:Service<javax.sql.DataSource>

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", DataSource.class).build();

For a dynamic capability:

static final RuntimeCapability<Void> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", true, DataSource.class).build();

If the capability provides a custom integration API, you need to instantiate an instance of that API:

WildFly 10

JBoss Community Documentation Page of 218 226

public class JTSCapability {

 static final JTSCapability INSTANCE = new JTSCapability();

 private JTSCapability() {}

 /**

 * Gets the names of the {@link org.omg.PortableInterceptor.ORBInitializer} implementations

that should be included

 * as part of the {@link org.omg.CORBA.ORB#init(String[], java.util.Properties)

initialization of an ORB}.

 *

 * @return the names of the classes implementing {@code ORBInitializer}. Will not be {@code

null}.

 */

 public List<String> getORBInitializerClasses() {

 return Collections.unmodifiableList(Arrays.asList(

"com.arjuna.ats.jts.orbspecific.jacorb.interceptors.interposition.InterpositionORBInitializerImpl",

"com.arjuna.ats.jbossatx.jts.InboundTransactionCurrentInitializer"));

 }

}

and provide it to the builder:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE).build();

For a dynamic capability:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

RuntimeCapability.Builder.of("com.example.foo", true, JTSCapability.INSTANCE).build();

A capability can provide both a custom integration API and install a service:

static final RuntimeCapability<JTSCapability> FOO_CAPABILITY =

 RuntimeCapability.Builder.of("com.example.foo", JTSCapability.INSTANCE)

 .setServiceType(DataSource.class)

 .build();

WildFly 10

JBoss Community Documentation Page of 219 226

Registering and unregistering your capability
Once you have your capability, you need to ensure it gets registered with the WildFly Core kernel when your

resource is added. This is easily done simply by providing a reference to the capability to the resource's

. This assumes your add handler is a subclass of the standard ResourceDefinition

. providesorg.jboss.as.controller.SimpleResourceDefinition SimpleResourceDefinition

a class that provides a builder-style API for setting up all the data needed by your definition.Parameters

This includes a method that can be used to declare the capabilities provided bysetCapabilities

resources of this type.

class MyResourceDefinition extends SimpleResourceDefinition {

 . . .

 MyResourceDefinition() {

 super(new SimpleResourceDefinition.Parameters(PATH, RESOLVER)

 .setAddHandler(MyAddHandler.INSTANCE)

 .setRemoveHandler(MyRemoveHandler.INSTANCE)

 .setCapabilities(FOO_CAPABILITY)

);

 }

}

Your add handler needs to extend the standard

 class or one of its subclasses:org.jboss.as.controller.AbstractAddStepHandler

class MyAddHandler extends AbstractAddStepHandler() {

's logic will register the capability when it executes.AbstractAddStepHandler

Your remove handler must also extend of the standard

 or one of its subclasses.org.jboss.as.controller.AbstractRemoveStepHandler

class MyRemoveHandler extends AbstractRemoveStepHandler() {

's logic will deregister the capability when it executes.AbstractRemoveStepHandler

If for some reason you cannot base your on orResourceDefinition SimpleResourceDefinition

your handlers on and then you will need toAbstractAddStepHandler AbstractRemoveStepHandler

take responsibility for registering the capability yourself. This is not expected to be a common situation. See

the implementation of those classes to see how to do it.

WildFly 10

JBoss Community Documentation Page of 220 226

Installing, accessing and removing the service provided by your

capability
If your capability installs a service, you should use the when you need to determineRuntimeCapability

the service's name. For example in the handling of your "add" step handler. Here's anStage.RUNTIME

example for a statically named capability:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

If the capability is dynamically named, get the dynamic part of the name from the andOperationContext

use that when getting the service name:

class MyAddHandler extends AbstractAddStepHandler() {

 . . .

 @Override

 protected void performRuntime(final OperationContext context, final ModelNode operation,

 final Resource resource) throws OperationFailedException {

 String myName = context.getCurrentAddressValue();

 ServiceName serviceName = FOO_CAPABILITY.getCapabilityServiceName(myName);

 Service<DataSource> service = createDataSourceService(context, resource);

 context.getServiceTarget().addService(serviceName, service).install();

 }

The same patterns should be used when accessing or removing the service in handlers for , remove

 and custom operations.write-attribute

If you use for the operation, simply provide your ServiceRemoveStepHandler remove

 to the constructor and it will automatically removeRuntimeCapability ServiceRemoveStepHandler

your capability's service when it executes.

WildFly 10

JBoss Community Documentation Page of 221 226

14.4.2 Basics of Using Other Capabilities

When a capability needs another capability, it only refers to it by its string name. A capability should not

reference the object of another capability.RuntimeCapability

Before a capability can look up the service name for a required capability's service, or access its custom

integration API, it must first register a requirement for the capability. This must be done in Stage.MODEL,

while service name lookups and accessing the custom integration API is done in Stage.RUNTIME.

Registering a requirement for a capability is simple.

Registering a hard requirement for a static capability
If your capability has a hard requirement for a statically named capability, simply declare that to the builder

for your . For example, WildFly's JTS capability requires both a basic transactionRuntimeCapability

support capability and IIOP capabilities:

static final RuntimeCapability<JTSCapability> JTS_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.transactions.jts", new JTSCapability())

 .addRequirements("org.wildfly.transactions", "org.wildfly.iiop.orb",

"org.wildfly.iiop.corba-naming")

 .build();

When your capability is registered with the system, the WildFly Core kernel will automatically register any

static hard requirements declared this way.

WildFly 10

JBoss Community Documentation Page of 222 226

Registering a requirement for a dynamically named capability
If the capability you require is dynamically named, usually your capability's resource will include an attribute

whose value is the dynamic part of the required capability's name. You should declare this fact in the

 for the attribute using the AttributeDefinition

 method.SimpleAttributeDefinitionBuilder.setCapabilityReference

For example, the WildFly "remoting" subsystem's "org.wildfly.remoting.connector" capability has a

requirement for a dynamically named socket-binding capability:

public class ConnectorResource extends SimpleResourceDefinition {

 . . .

 static final String SOCKET_CAPABILITY_NAME = "org.wildfly.network.socket-binding";

 static final RuntimeCapability<Void> CONNECTOR_CAPABILITY =

 RuntimeCapability.Builder.of("org.wildfly.remoting.connector", true)

 .build();

 . . .

 static final SimpleAttributeDefinition SOCKET_BINDING =

 new SimpleAttributeDefinitionBuilder(CommonAttributes.SOCKET_BINDING,

ModelType.STRING, false)

.addAccessConstraint(SensitiveTargetAccessConstraintDefinition.SOCKET_BINDING_REF)

 .setCapabilityReference(SOCKET_CAPABILITY_NAME, CONNECTOR_CAPABILITY)

 .build();

If the "add" operation handler for your resource extends and the handler for AbstractAddStepHandler

 extends , the declaration above is sufficient towrite-attribute AbstractWriteAttributeHandler

ensure that the appropriate capability requirement will be registered when the attribute is modified.

WildFly 10

JBoss Community Documentation Page of 223 226

Depending upon a service provided by another capability
Once the requirement for the capability is registered, your OperationStepHandler}}s can use the

 to discover the name of the service provided by the required capability.{{OperationContext

For example, the "add" handler for a remoting connector uses the to find the name ofOperationContext

the needed {{SocketBinding} service:

final String socketName = ConnectorResource.SOCKET_BINDING.resolveModelAttribute(context,

fullModel).asString();

 final ServiceName socketBindingName =

context.getCapabilityServiceName(ConnectorResource.SOCKET_CAPABILITY_NAME, socketName,

SocketBinding.class);

That service name is then used to add a dependency on the service to the remotingSocketBinding

connector service.

If the required capability isn't dynamically named, exposes an overloaded OperationContext

 variant. For example, if a capability requires a remoting Endpoint:getCapabilityServiceName

ServiceName endpointService = context.getCapabilityServiceName("org.wildfly.remoting.endpoint",

Endpoint.class);

Using a custom integration API provided by another capability
In your handler, use to get aStage.RUNTIME OperationContext.getCapabilityRuntimeAPI

reference to the required capability's custom integration API. Then use it as necessary.

List<String> orbInitializers = new ArrayList<String>();

 . . .

 JTSCapability jtsCapability =

context.getCapabilityRuntimeAPI(IIOPExtension.JTS_CAPABILITY, JTSCapability.class);

 orbInitializers.addAll(jtsCapability.getORBInitializerClasses());

WildFly 10

JBoss Community Documentation Page of 224 226

Runtime-only requirements
If your capability has a runtime-only requirement for another capability, that means that if that capability is

present in you'll use it, and if not you won't. There is nothing about the configuration ofStage.RUNTIME

your capability that triggers the need for the other capability; you'll just use it if it's there.

In this case, use in your handler toOperationContext.hasOptionalCapability Stage.RUNTIME

check if the capability is present:

protected void performRuntime(final OperationContext context, final ModelNode operation, final

ModelNode model) throws OperationFailedException {

 ServiceName myServiceName = MyResource.FOO_CAPABILITY.getCapabilityServiceName();

 Service<DataSource> myService = createService(context, model);

 ServiceBuilder<DataSource> builder = context.getTarget().addService(myServiceName,

myService);

 // Inject a "Bar" into our "Foo" if bar capability is present

 if (context.hasOptionalCapability("com.example.bar",

MyResource.FOO_CAPABILITY.getName(), null) {

 ServiceName barServiceName = context.getCapabilityServiceName("com.example.bar",

Bar.class);

 builder.addDependency(barServiceName, Bar.class, myService.getBarInjector());

 }

 builder.install();

 }

The WildFly Core kernel will not register a requirement for the "com.example.bar" capability, so if a

configuration change occurs that means that capability will no longer be present, that change will not be

rolled back. Because of this, runtime-only requirements can only be used with capabilities that declare in

their contract that they support such use.

Using a capability in a DeploymentUnitProcessor
{{DeploymentUnitProcessor}}s are likely to have a need to interact with capabilities, in order to create service

dependencies from a deployment service to a capability provided service or to access some aspect of a

capability's custom integration API that relates to deployments.

If a associated with a capability implementation needs to utilize its ownDeploymentUnitProcessor

capability object, the authors should simply provide it with a reference to the DeploymentUnitProcessor

 instance. Service name lookups or access to the capabilities custom integration APIRuntimeCapability

can then be performed by invoking the methods on the .RuntimeCapability

If you need to access service names or a custom integration API associated with a different capability, you

will need to use the objectorg.jboss.as.controller.capability.CapabilityServiceSupport

associated with the deployment unit. This can be found as an attachment to the

:DeploymentPhaseContext

WildFly 10

JBoss Community Documentation Page of 225 226

class MyDUP implements DeploymentUntiProcessor {

 public void deploy(DeploymentPhaseContext phaseContext) throws

DeploymentUnitProcessingException {

 AttachmentKey<CapabilityServiceSupport> key =

org.jboss.as.server.deployment.Attachments.DEPLOYMENT_COMPLETE_SERVICES;

 CapabilityServiceSupport capSvcSupport = phaseContext.getAttachment(key);

Once you have the you can use it to look up service names:CapabilityServiceSupport

ServiceName barSvcName = capSvcSupport.getCapabilityServiceName("com.example.bar");

 // Determine what 'baz' the user specified in the deployment descriptor

 String bazDynamicName = getSelectedBaz(phaseContext);

 ServiceName bazSvcName = capSvcSupport.getCapabilityServiceName("com.example.baz",

bazDynamicName);

It's important to note that when you request a service name associated with a capability, the

 will give you one regardless of whether the capability is actuallyCapabilityServiceSupport

registered with the kernel. If the capability isn't present, any service dependency your DUP creates

using that service name will eventually result in a service start failure, due to the missing

dependency. This behavior of not failing immediately when the capability service name is

requested is deliberate. It allows deployment operations that use the

 header to successfully install (but not start) all of therollback-on-runtime-failure=false

services related to a deployment. If a subsequent operation adds the missing capability, the

missing service dependency problem will then be resolved and the MSC service container will

automatically start the deployment services.

You can also use the to obtain a reference to the capability's customCapabilityServiceSupport

integration API:

// We need custom integration with the baz capability beyond service injection

 BazIntegrator bazIntegrator;

 try {

 bazIntegrator = capSvcSupport.getCapabilityRuntimeAPI("com.example.baz",

bazDynamicName, BazIntegrator.class);

 } catch (NoSuchCapabilityException e) {

 //

 String msg = String.format("Deployment %s requires use of the 'bar' capability but

it is not currently registered",

 phaseContext.getDeploymentUnit().getName());

 throw new DeploymentUnitProcessingException(msg);

 }

WildFly 10

JBoss Community Documentation Page of 226 226

Note that here, unlike the case with service name lookups, the will throw aCapabilityServiceSupport

checked exception if the desired capability is not installed. This is because the kernel has no way to satisfy

the request for a custom integration API if the capability is not installed. The DeploymentUnitProcessor

will need to catch and handle the exception.

14.4.3 Detailed API

The WildFly Core kernel's API for using capabilities is covered in detail in the javadoc for the

 classes and the and RuntimeCapability and RuntimeCapability.Builder OperationContext

 interfaces.CapabilityServiceSupport

Many of the methods in related to capabilities have to do with registering capabilitiesOperationContext

or registering requirements for capabilities. Typically non-kernel developers won't need to worry about these,

as the abstract implementations provided by the kernel take care of this for you,OperationStepHandler

as described in the preceding sections. If you do find yourself in a situation where you need to use these in

an extension, please read the javadoc thoroughly.

https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/RuntimeCapability.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/OperationContext.java
https://github.com/wildfly/wildfly-core/blob/master/controller/src/main/java/org/jboss/as/controller/capability/CapabilityServiceSupport.java

	Target Audience
	Prerequisites
	Examples in this guide

	Overview
	Example subsystem
	Create the skeleton project
	Create the schema
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Integrate with WildFly
	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Working with WildFly Capabilities
	Capabilities
	Comparison to other concepts
	Capabilities vs modules
	Capabilities vs Extensions

	Capability Names
	Statically vs Dynamically Named Capabilities
	Service provided by a capability
	Custom integration APIs provided by a capability
	Capability Requirements
	Supporting runtime-only requirements

	Capability Contract
	Capability Registry
	Using Capabilities
	Basics of Using Your Own Capability
	Creating your capability
	Registering and unregistering your capability
	Installing, accessing and removing the service provided by your capability

	Basics of Using Other Capabilities
	Registering a hard requirement for a static capability
	Registering a requirement for a dynamically named capability
	Depending upon a service provided by another capability
	Using a custom integration API provided by another capability
	Runtime-only requirements
	Using a capability in a DeploymentUnitProcessor

	Detailed API

	Key Interfaces and Classes Relevant to Extension Developers
	Extension Interface
	WildFly Managed Resources
	ManagementResourceRegistration Interface
	ResourceDefinition Interface
	ResourceDescriptionResolver

	AttributeDefinition Interface
	OperationDefinition and OperationStepHandler Interfaces
	Operation Execution and the OperationContext
	Resource Interface
	DeploymentUnitProcessor Interface
	Useful classes for implementing OperationStepHandler

	 CLI Extensibility for Layered Products
	All WildFly documentation
	CLI extensibility for layered products
	Domain Mode Subsystem Transformers
	"Abstract"
	Background
	Getting the initial domain model
	An operation changes something in the domain configuration

	Versions and backward compatibility
	Versioning of subsystems

	The role of transformers
	Resource transformers
	Rejection in resource transformers

	Operation transformers
	Rejection in operation transformers

	Different profiles for different versions
	Ignoring resources on legacy hosts

	How do I know what needs to be transformed?
	Getting data for a previous version
	See what changed

	How do I write a transformer?
	ResourceTransformationDescriptionBuilder
	Silently discard child resources
	Reject child resource
	Redirect address for child resource
	Getting a child resource builder

	AttributeTransformationDescriptionBuilder
	Attribute transformation lifecycle
	Discarding attributes
	The DiscardAttributeChecker interface
	DiscardAttributeChecker helper classes/implementations
	DiscardAttributeChecker.DefaultDiscardAttributeChecker
	DiscardAttributeChecker.DiscardAttributeValueChecker
	DiscardAttributeChecker.ALWAYS
	DiscardAttributeChecker.UNDEFINED

	Rejecting attributes
	The RejectAttributeChecker interface
	RejectAttributeChecker helper classes/implementations
	RejectAttributeChecker.DefaultRejectAttributeChecker
	RejectAttributeChecker.DEFINED
	RejectAttributeChecker.SIMPLE_EXPRESSIONS
	RejectAttributeChecker.ListRejectAttributeChecker
	RejectAttributeChecker.ObjectFieldsRejectAttributeChecker

	Converting attributes
	The AttributeConverter interface
	Introducing attributes during transformation

	Renaming attributes

	OperationTransformationOverrideBuilder

	Evolving transformers with subsystem ModelVersions
	The old way
	Chained transformers

	Testing transformers
	Testing a configuration that works
	Testing a configuration that does not work

	Common transformation use-cases
	Child resource type does not exist in legacy model
	Attribute does not exist in the legacy subsystem
	Default value of the attribute is the same as legacy implied behaviour
	Default value of the attribute is different from legacy implied behaviour

	Attribute has a different default value
	Attribute has a different type

	Example subsystem
	Create the skeleton project
	Create the schema
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Integrate with WildFly
	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Add the deployers
	Deployment phases and attachments
	STRUCTURE
	PARSE
	DEPENDENCIES
	CONFIGURE_MODULE
	POST_MODULE
	INSTALL
	CLEANUP

	Create the schema
	Create the skeleton project
	Design and define the model structure
	Registering the core subsystem model
	Registering the subsystem child

	Expressions
	What expression types are supported
	How to support expressions in subsystems

	Integrate with WildFly
	Parsing and marshalling of the subsystem xml
	Testing the parsers

	Key Interfaces and Classes Relevant to Extension Developers
	Extension Interface
	WildFly Managed Resources
	ManagementResourceRegistration Interface
	ResourceDefinition Interface
	ResourceDescriptionResolver

	AttributeDefinition Interface
	OperationDefinition and OperationStepHandler Interfaces
	Operation Execution and the OperationContext
	Resource Interface
	DeploymentUnitProcessor Interface
	Useful classes for implementing OperationStepHandler

	Transformers
	What are transformers
	When are they invoked
	When should they be implemented
	Model Transformer
	Operation Transformer
	Testing transformers

	WildFly 9 JNDI Implementation
	Introduction
	Architecture
	Binding APIs
	Subsystem
	EE Deployment

	Resource Ref Processing

	Working with WildFly Capabilities
	Capabilities
	Comparison to other concepts
	Capabilities vs modules
	Capabilities vs Extensions

	Capability Names
	Statically vs Dynamically Named Capabilities
	Service provided by a capability
	Custom integration APIs provided by a capability
	Capability Requirements
	Supporting runtime-only requirements

	Capability Contract
	Capability Registry
	Using Capabilities
	Basics of Using Your Own Capability
	Creating your capability
	Registering and unregistering your capability
	Installing, accessing and removing the service provided by your capability

	Basics of Using Other Capabilities
	Registering a hard requirement for a static capability
	Registering a requirement for a dynamically named capability
	Depending upon a service provided by another capability
	Using a custom integration API provided by another capability
	Runtime-only requirements
	Using a capability in a DeploymentUnitProcessor

	Detailed API

