
WildFly 10

JBoss Community Documentation Page of 1 56

Getting Started

Developing Applications

Guide

Exported from at 2017-06-19 14:15:30 EDTJBoss Community Documentation Editor

Copyright 2017 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY10

WildFly 10

JBoss Community Documentation Page of 2 56

Table of Contents

1 Introduction __ 4

2 Getting started with WildFly __ 5

3 Helloworld quickstart ___ 6

3.1 Deploying the Helloworld example using Eclipse _______________________________________ 6

3.2 The helloworld example in depth __ 8

4 Numberguess quickstart __ 9

4.1 Deploying the Numberguess example using Eclipse ____________________________________ 9

4.2 The numberguess example in depth ___ 9

5 Greeter quickstart __ 10

5.1 Deploying the Login example using Eclipse __ 10

5.2 The login example in depth ___ 10

6 Kitchensink quickstart ___ 11

6.1 Deploying the Kitchensink example using Eclipse _____________________________________ 11

6.2 The kitchensink example in depth __ 11

7 Creating your own application ___ 12

7.1 Creating your own application using Eclipse __ 12

8 More Resources ___ 13

8.1 Developing JSF Project Using JBoss AS7, Maven and IntelliJ ____________________________ 13

8.1.1 Create a project using Maven ___ 15

8.1.2 Add JSF into project ___ 16

8.1.3 Writing Code __ 16

8.1.4 Add JBoss AS 7 deploy plugin into project _____________________________________ 16

8.1.5 Deploy project to JBoss AS 7 __ 17

8.1.6 Import project into IntelliJ ___ 19

8.1.7 Adding IntelliJ JSF support to project __ 25

8.1.8 Add JBoss AS7 to IntelliJ ___ 29

8.1.9 Debugging project with IntelliJ and AS7 __ 35

8.1.10 Conclusion __ 42

8.1.11 References __ 42

8.2 Getting Started Developing Applications Presentation & Demo ___________________________ 42

8.2.1 Introduction ___ 43

8.2.2 Prerequisites for using the script ___ 44

8.2.3 Import examples into Eclipse and set up JBoss AS _______________________________ 44

8.2.4 The Helloworld Quickstart __ 44

8.2.5 The numberguess quickstart __ 50

8.2.6 The login quickstart ___ 52

8.2.7 The kitchensink quickstart __ 54

WildFly 10

JBoss Community Documentation Page of 3 56

This guide has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

WildFly 10

JBoss Community Documentation Page of 4 56

1 Introduction
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

https://github.com/wildfly/quickstart/blob/10.x/guide/Introduction.asciidoc

WildFly 10

JBoss Community Documentation Page of 5 56

2 Getting started with WildFly
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/GettingStarted.asciidoc

https://github.com/wildfly/quickstart/blob/10.x/guide/GettingStarted.asciidoc

WildFly 10

JBoss Community Documentation Page of 6 56

3 Helloworld quickstart
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/HelloworldQuickstart.asciidoc

3.1 Deploying the Helloworld example using Eclipse

You may choose to deploy the example using Eclipse. You'll need to have JBoss AS started in Eclipse (as

described in) and to have imported the quickstarts into[Starting JBoss AS from Eclipse with JBoss Tools]

Eclipse (as described in).[Importing the quickstarts into Eclipse]

With the quickstarts imported, you can deploy the example by right clicking on the jboss-as-helloworld

project, and choosing :Run As -> Run On Server

Make sure the JBoss AS server is selected, and hit :Finish

https://github.com/wildfly/quickstart/blob/10.x/guide/HelloworldQuickstart.asciidoc

WildFly 10

JBoss Community Documentation Page of 7 56

You should see JBoss AS start up (unless you already started it in [Starting JBoss AS from Eclipse with

) and the application deploy in the Console log:JBoss Tools]

WildFly 10

JBoss Community Documentation Page of 8 56

3.2 The helloworld example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/HelloworldQuickstart/#_the_helloworld_quickstart_in_depth

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/HelloworldQuickstart/#_the_helloworld_quickstart_in_depth

WildFly 10

JBoss Community Documentation Page of 9 56

4 Numberguess quickstart
This page has moved to

https://github.com/wildfly/quickstart/blob/10.x/guide/NumberguessQuickstart.asciidoc

4.1 Deploying the Numberguess example using Eclipse

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_deploying_the_numberguess_quickstart_using_eclipse

4.2 The numberguess example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_the_numberguess_quickstart_in_depth

https://github.com/wildfly/quickstart/blob/10.x/guide/NumberguessQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_deploying_the_numberguess_quickstart_using_eclipse
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/NumberguessQuickstart/#_the_numberguess_quickstart_in_depth

WildFly 10

JBoss Community Documentation Page of 10 56

5 Greeter quickstart
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/GreeterQuickstart.asciidoc

5.1 Deploying the Login example using Eclipse

This page has moved to http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/

5.2 The login example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/#greeter_in_depth

https://github.com/wildfly/quickstart/blob/10.x/guide/GreeterQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/GreeterQuickstart/#greeter_in_depth

WildFly 10

JBoss Community Documentation Page of 11 56

6 Kitchensink quickstart
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/KitchensinkQuickstart.asciidoc

6.1 Deploying the Kitchensink example using Eclipse

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_deploying_the_kitchensink_quickstart_using_jboss_developer_studio_or_eclipse_with_jboss_tools

6.2 The kitchensink example in depth

This page has moved to

http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_the_kitchensink_quickstart_in_depth

https://github.com/wildfly/quickstart/blob/10.x/guide/KitchensinkQuickstart.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_deploying_the_kitchensink_quickstart_using_jboss_developer_studio_or_eclipse_with_jboss_tools
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/KitchensinkQuickstart/#_the_kitchensink_quickstart_in_depth

WildFly 10

JBoss Community Documentation Page of 12 56

7 Creating your own application
This page has moved to https://github.com/wildfly/quickstart/blob/10.x/guide/Archetype.asciidoc

7.1 Creating your own application using Eclipse

This page has moved to http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Archetype/

https://github.com/wildfly/quickstart/blob/10.x/guide/Archetype.asciidoc
http://www.jboss.org/jdf/quickstarts/jboss-as-quickstart/guide/Archetype/

WildFly 10

JBoss Community Documentation Page of 13 56

8 More Resources

Getting

Started

Guide

The Getting Started Guide covers topics such as server layout (what you can configure

where), data source definition, and using the web management interface.

Torquebox Torque Box allows you to use all the familiar services from JBoss AS 7, but with Ruby.

JBoss AS 7

FAQ

Frequently Asked Questions for JBoss AS 7

8.1 Developing JSF Project Using JBoss AS7, Maven

and IntelliJ

JBoss AS7 is a very 'modern' application server that has very fast startup speed. So it's an excellent

container to test your JSF project. In this article, I'd like to show you how to use AS7, maven and IntelliJ

together to develop your JSF project.

In this article I'd like to introduce the following things:

Create a project using Maven

Add JSF into project

Writing Code

Add JBoss AS 7 deploy plugin into project

Deploy project to JBoss AS 7

Import project into IntelliJ

Add IntelliJ JSF support to project

Add JBoss AS7 to IntelliJ

Debugging project with IntelliJ and AS7

I won't explain many basic concepts about AS7, maven and IntelliJ in this article because there are already

many good introductions on these topics. So before doing the real work, there some preparations should be

done firstly:

Download JBoss AS7

It could be downloaded from here: http://www.jboss.org/jbossas/downloads/

Using the latest release would be fine. When I'm writing this article the latest version is 7.1.1.Final.

Install Maven

Please make sure you have maven installed on your machine. Here is my environment:

https://docs.jboss.org/author/display/WFLY10/Getting+Started+Guide
https://docs.jboss.org/author/display/WFLY10/Getting+Started+Guide
https://docs.jboss.org/author/display/WFLY10/Getting+Started+Guide
http://torquebox.org/2x/builds/LATEST/html-docs/
http://community.jboss.org/wiki/JBossAS7FAQ
http://community.jboss.org/wiki/JBossAS7FAQ
http://www.jboss.org/jbossas/downloads/

WildFly 10

JBoss Community Documentation Page of 14 56

weli@power:~$ mvn -version

Apache Maven 3.0.3 (r1075438; 2011-03-01 01:31:09+0800)

Maven home: /usr/share/maven

Java version: 1.6.0_33, vendor: Apple Inc.

Java home: /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home

Default locale: en_US, platform encoding: MacRoman

OS name: "mac os x", version: "10.8", arch: "x86_64", family: "mac"

Get IntelliJ

In this article I'd like to use IntelliJ Ultimate Edition as the IDE for development, it's a commercial software

and can be downloaded from: http://www.jetbrains.com/idea/

The version I'm using is IntelliJ IDEA Ultimate 11.1

After all of these prepared, we can dive into the real work:

http://www.jetbrains.com/idea/

WildFly 10

JBoss Community Documentation Page of 15 56

8.1.1 Create a project using Maven

Use the following maven command to create a web project:

mvn archetype:create -DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-webapp \

-DarchetypeVersion=1.0 \

-DgroupId=net.bluedash \

-DartifactId=jsfdemo \

-Dversion=1.0-SNAPSHOT

If everything goes fine maven will generate the project for us:

The contents of the project is shown as above.

WildFly 10

JBoss Community Documentation Page of 16 56

8.1.2 Add JSF into project

The JSF library is now included in maven repo, so we can let maven to manage the download for us. First is

to add repository into our pom.xml:

<repository>

 <id>jvnet-nexus-releases</id>

 <name>jvnet-nexus-releases</name>

 <url>https://maven.java.net/content/repositories/releases/</url>

</repository>

Then we add JSF dependency into pom.xml:

<dependency>

 <groupId>javax.faces</groupId>

 <artifactId>jsf-api</artifactId>

 <version>2.1</version>

 <scope>provided</scope>

</dependency>

Please note the 'scope' is 'provided', because we don't want to bundle the jsf.jar into the war produced by

our project later, as JBoss AS7 already have jsf bundled in.

Then we run 'mvn install' to update the project, and maven will download jsf-api for us automatically.

8.1.3 Writing Code

Writing JSF code in this article is trivial, so I've put written a project called 'jsfdemo' onto github:

https://github.com/liweinan/jsfdemo

Please clone this project into your local machine, and import it into IntelliJ following the steps described as

above.

8.1.4 Add JBoss AS 7 deploy plugin into project

JBoss AS7 has provide a set of convenient maven plugins to perform daily tasks such as deploying project

into AS7. In this step let's see how to use it in our project.

We should put AS7's repository into pom.xml:

https://github.com/liweinan/jsfdemo

WildFly 10

JBoss Community Documentation Page of 17 56

<repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Repository Group</name>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

</repository>

And also the plugin repository:

<pluginRepository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Repository Group</name>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

</pluginRepository>

And put jboss deploy plugin into 'build' section:

<plugin>

 <groupId>org.jboss.as.plugins</groupId>

 <artifactId>jboss-as-maven-plugin</artifactId>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>deploy</goal>

 </goals>

 </execution>

 </executions>

</plugin>

I've put the final version pom.xml here to check whether your modification is correct:

https://github.com/liweinan/jsfdemo/blob/master/pom.xml

Now we have finished the setup work for maven.

https://github.com/liweinan/jsfdemo/blob/master/pom.xml

WildFly 10

JBoss Community Documentation Page of 18 56

8.1.5 Deploy project to JBoss AS 7

To deploy the project to JBoss AS7, we should start AS7 firstly. In JBoss AS7 directory, run following

command:

bin/standalone.sh

AS7 should start in a short time. Then let's go back to our project directory and run maven command:

mvn -q jboss-as:deploy

Maven will use some time to download necessary components for a while, so please wait patiently. After a

while, we can see the result:

And if you check the console output of AS7, you can see the project is deployed:

WildFly 10

JBoss Community Documentation Page of 19 56

Now we have learnt how to create a JSF project and deploy it to AS7 without any help from graphical tools.

Next let's see how to use IntelliJ IDEA to go on developing/debugging our project.

8.1.6 Import project into IntelliJ

Now it's time to import the project into IntelliJ. Now let's open IntelliJ, and choose 'New Project...':

WildFly 10

JBoss Community Documentation Page of 20 56

The we choose 'Import project from external model':

WildFly 10

JBoss Community Documentation Page of 21 56

Next step is choosing 'Maven':

WildFly 10

JBoss Community Documentation Page of 22 56

Then IntelliJ will ask you the position of the project you want to import. In 'Root directory' input your project's

directory and leave other options as default:

WildFly 10

JBoss Community Documentation Page of 23 56

For next step, just click 'Next':

WildFly 10

JBoss Community Documentation Page of 24 56

Finally click 'Finish':

WildFly 10

JBoss Community Documentation Page of 25 56

Hooray! We've imported the project into IntelliJ now

8.1.7 Adding IntelliJ JSF support to project

Let's see how to use IntelliJ and AS7 to debug the project. First we need to add 'JSF' facet into project.

Open project setting:

WildFly 10

JBoss Community Documentation Page of 26 56

WildFly 10

JBoss Community Documentation Page of 27 56

Click on 'Facets' section on left; Select 'Web' facet that we already have, and click the '+' on top, choose

'JSF':

Select 'Web' as parent facet:

WildFly 10

JBoss Community Documentation Page of 28 56

Click 'Ok':

WildFly 10

JBoss Community Documentation Page of 29 56

Now we have enabled IntelliJ's JSF support for project.

8.1.8 Add JBoss AS7 to IntelliJ

Let's add JBoss AS7 into IntelliJ and use it to debug our project. First please choose 'Edit Configuration' in

menu tab:

WildFly 10

JBoss Community Documentation Page of 30 56

Click '+' and choose 'JBoss Server' -> 'Local':

WildFly 10

JBoss Community Documentation Page of 31 56

Click 'configure':

WildFly 10

JBoss Community Documentation Page of 32 56

and choose your JBoss AS7:

WildFly 10

JBoss Community Documentation Page of 33 56

Now we need to add our project into deployment. Click the 'Deployment' tab:

WildFly 10

JBoss Community Documentation Page of 34 56

Choose 'Artifact', and add our project:

WildFly 10

JBoss Community Documentation Page of 35 56

Leave everything as default and click 'Ok', now we've added JBoss AS7 into IntelliJ

8.1.9 Debugging project with IntelliJ and AS7

Now comes the fun part. To debug our project, we cannot directly use the 'debug' feature provided by IntelliJ

right now(maybe in the future version this problem could be fixed). So now we should use the debugging

config provided by AS7 itself to enable JPDA feature, and then use the remote debug function provided by

IntelliJ to get things done. Let's dive into the details now:

First we need to enable JPDA config inside AS7, open 'bin/standalone.conf' and find following lines:

Sample JPDA settings for remote socket debugging

#JAVA_OPTS="$JAVA_OPTS -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

Enable the above config by removing the leading hash sign:

Sample JPDA settings for remote socket debugging

JAVA_OPTS="$JAVA_OPTS -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

WildFly 10

JBoss Community Documentation Page of 36 56

With WildFly you can directly start the server in debug mode:

bin/standalone.sh --debug --server-config=standalone.xml

Now we start AS7 in IntelliJ:

Please note we should undeploy the existing 'jsfdemo' project in AS7 as we've added by maven jboss deploy

plugin before. Or AS7 will tell us there is already existing project with same name so IntelliJ could not deploy

the project anymore.

If the project start correctly we can see from the IntelliJ console window, and please check the debug option

is enabled:

WildFly 10

JBoss Community Documentation Page of 37 56

Now we will setup the debug configuration, click 'debug' option on menu:

Choose 'Edit Configurations':

Then we click 'Add' and choose Remote:

WildFly 10

JBoss Community Documentation Page of 38 56

Set the 'port' to the one you used in AS7 config file 'standalone.conf':

WildFly 10

JBoss Community Documentation Page of 39 56

Leave other configurations as default and click 'Ok'. Now we need to set breakpoints in project, let's choose

TimeBean.java and set a breakpoint on 'getNow()' method by clicking the left side of that line of code:

Now we can use the profile to do debug:

WildFly 10

JBoss Community Documentation Page of 40 56

If everything goes fine we can see the console output:

Now we go to web browser and see our project's main page, try to click on 'Get current time':

WildFly 10

JBoss Community Documentation Page of 41 56

Then IntelliJ will popup and the code is pausing on break point:

WildFly 10

JBoss Community Documentation Page of 42 56

And we could inspect our project now.

8.1.10 Conclusion

In this article I've shown to you how to use maven to create a project using JSF and deploy it in JBoss AS7,

and I've also talked about the usage of IntelliJ during project development phase. Hope the contents are

practical and helpful to you

8.1.11 References

JBoss AS7: Using JPDA to debug the AS source code

Importing JBoss 7 Bundled Dependency Versions Through Maven

Maven Getting Started - Developers

JSF 2.1 project using Eclipse and Maven 2:http

Practical RichFaces

Oracle Mojarra JavaServer Faces

JBoss AS7 Maven Plugin

https://community.jboss.org/wiki/JBossAS7UsingJPDAToDebugTheASSourceCode
http://navinpeiris.com/2011/07/19/importing-jboss-7-dependencies-through-maven/
https://community.jboss.org/wiki/MavenGettingStarted-Developers
https://docs.jboss.org/blog.v-s-f.co.uk/2010/09/jsf-2-1-project-using-eclipse-and-maven-2/
http://www.amazon.com/Practical-RichFaces-Max-Katz/dp/1430234490/ref=dp_ob_title_bk
http://javaserverfaces.java.net/download.html
https://github.com/jbossas/jboss-as-maven-plugin

WildFly 10

JBoss Community Documentation Page of 43 56

8.2 Getting Started Developing Applications

Presentation & Demo

Introduction

Prerequisites for using the script

Import examples into Eclipse and set up JBoss AS

The Helloworld Quickstart

Introduction

Using Maven

Using the Command Line Interface (CLI)

Using the web management interface

Using the filesystem

Using Eclipse

Digging into the app

The numberguess quickstart

Introduction

Run the app

Deployment descriptors src/main/webapp/WEB-INF

Views

Beans

The login quickstart

Introduction

Run the app

Deployment Descriptors

Views

Beans

The kitchensink quickstart

Introduction

Run the app

Bean Validation

JAX-RS

Arquillian

8.2.1 Introduction

This document is a “script” for use with the quickstarts associated with the Getting Started Developing

. It can be used as the basis for demoing/explaining the Java EE 6 programming modelApplications Guide

with JBoss AS 7.

There is an associated presentation – JBoss AS - Getting Started Developing Applications – which can be

used to introduce the Java EE 6 ecosystem.

The emphasis here is on the programming model, not on OAM/dev-ops, performance etc.

WildFly 10

JBoss Community Documentation Page of 44 56

8.2.2 Prerequisites for using the script

JBoss AS 7 downloaded and installed

Eclipse Indigo with m2eclipse and JBoss Tools installed

The quickstarts downloaded and imported into Eclipse

Make sure is set.$JBOSS_HOME

Make sure has the correct path to your JBoss AS installsrc/test/resources/arquillian.xml

for kitchensink

Make sure your font size is set in Eclipse so everyone can read the text!

8.2.3 Import examples into Eclipse and set up JBoss AS

TODO

8.2.4 The Helloworld Quickstart

Introduction
This quickstart is extremely basic, and is really useful for nothing more than showing than the app server is

working properly, and our deployment mechanism is working. We recommend you use this quickstart to

demonstrate the various ways you can deploy apps to JBoss AS 7.

WildFly 10

JBoss Community Documentation Page of 45 56

1.

2.

3.

4.

5.

Using Maven

Start JBoss AS 7 from the console

$JBOSS_HOME/bin/standalone.sh

Deploy the app using Maven

mvn clean package jboss-as:deploy

The quickstarts use the jboss-as maven plugin to deploy and undeploy applications. This

plugin uses the JBoss AS Native Java Detyped Management API to communicate with the

server. The Detyped API is used by management tools to control an entire domain of

servers, and exposes only a small number of types, allowing for backwards and forwards

compatibility.

Show the app has deployed in the terminal

Visit http://localhost:8080/jboss-as-helloworld

Undeploy the app using Maven

mvn jboss-as:undeploy

http://localhost:8080/jboss-as-helloworld

WildFly 10

JBoss Community Documentation Page of 46 56

1.

2.

3.

4.

5.

Using the Command Line Interface (CLI)

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Start the CLI

$JBOSS_HOME/bin/jboss-admin.sh --connect

The command line also uses the Deptyped Management API to communicate with the

server. It's designed to be as "unixy" as possible, allowing you to "cd" into nodes, with full

tab completion etc. The CLI allows you to deploy and undeploy applications, create JMS

queues, topics etc., create datasources (normal and XA). It also fully supports the domain

node.

Deploy the app

deploy target/jboss-as-helloworld.war

Show the app has deployed

undeploy jboss-as-helloworld.war

WildFly 10

JBoss Community Documentation Page of 47 56

1.

2.

3.

4.

5.

6.

7.

8.

Using the web management interface

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Open up the web management interface http://localhost:9990/console

The web maangement interface offers the same functionality as the CLI (and again uses the

Detyped Management API), but does so using a pretty GWT interface! You can set up

virtual servers, interrogate sub systems and more.

Navigate . Click on choose file and locate Manage Deployments -> Add content

.helloworld/target/jboss-as-helloworld.war

Click and to upload the war to the server.Next Finish

Now click and to start the applicationEnable Ok

Switch to the console to show it deployed

Now click Remove

http://localhost:9990/console

WildFly 10

JBoss Community Documentation Page of 48 56

1.

2.

3.

4.

5.

6.

7.

Using the filesystem

Start JBoss AS 7 from the console (if not already running)

$JBOSS_HOME/bin/standalone.sh

Build the war

mvn clean package

Of course, you can still use the good ol' file system to deploy. Just copy the file to

.$JBOSS_HOME/standalone/deployments

Copy the war

cp target/jboss-as-helloworld.war $JBOSS_HOME/standalone/deployments

Show the war deployed

The filesystem deployment uses marker files to indicate the status of a deployment. As this

deployment succeeded we get a

$JBOSS_HOME/standalone/deployments/jboss-as-helloworld.war.deployed

file. If the deployment failed, you would get a file etc..failed

Undeploy the war

rm $JBOSS_HOME/standalone/deployments/jboss-as-helloworld.war.deployed

Show the deployment stopping!

Start and stop the appserver, show that the deployment really is gone!

This gives you much more precise control over deployments than before

WildFly 10

JBoss Community Documentation Page of 49 56

1.

1.

2.

3.

4.

5.

2.

1.

2.

3.

1.

2.

3.

4.

Using Eclipse

Add a JBoss AS server

Bring up the Server view

Right click in it, and choose New -> Server

Choose JBoss AS 7.0 and hit Next

Locate the server on your disc

Hit Finish

Start JBoss AS in Eclipse

Select the server

Click the Run button

Deploy the app

right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-helloworld

http://localhost:8080/jboss-as-helloworld

WildFly 10

JBoss Community Documentation Page of 50 56

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

1.

2.

3.

Digging into the app

Open up the helloworld quickstart in Eclipse, and open up .src/main/webapp

Point out that we don't require a anymore!web.xml

Show and explain it's a marker file used to JBoss AS to enable CDI (open it, show that itbeans.xml

is empty)

Show , and explain it is just used to kick the user into the app (open it, show theindex.html

meta-refresh)

Open up the - and emphasise that it's pretty simple.pom.xm

There is no parent pom, everything for the build is here

Show that we are enabling the JBoss Maven repo - explain you can do this in your POM or in

system wide ()settings.xml

Show the section. Here we import the JBoss AS 7 Web Profile API.dependencyManagement

Explain that this gives you all the versions for all of the JBoss AS 7 APIs that are in the web

profile. Explain we could also depend on this directly, which would give us the whole set of

APIs, but that here we've decided to go for slightly tighter control and specify each dependency

ourselves

Show the import for CDI, JSR-250 and Servlet API. Show that these are all provided - we are

depending on build in server implementations, not packaging this stuff!

Show the plugin sections - nothing that exciting here, the war plugin is out of date and requires

you to provide , configure the JBoss AS Maven Plugin, set the Java version to 6.web.xml

Open up and open up the .src/main/java HelloWorldServlet

Point out the - explain this one annotation removes about 8 lines of XML - no@WebServlet

need to separately map a path either. This is much more refactor safe

Show that we can inject services into a Servlet

Show that we use the service (line 41)

#Cmd-click on HelloService

This is a CDI bean - very simple, no annotations required!

Explain injection

Probably used to string based bean resolution

This is typesafe (refactor safe, take advantage of the compiler and the IDE - we just saw

that!)

When CDI needs to inject something, the first thing it looks at is the type - and if the type

of the injection point is assignable from a bean, CDI will inject that bean

WildFly 10

JBoss Community Documentation Page of 51 56

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

1.

3.

4.

5.

6.

8.2.5 The numberguess quickstart

Introduction
This quickstart adds in a "complete" view layer into the mix. Java EE ships with a JSF. JSF is a server side

rendering, component orientated framework, where you write markup using an HTML like language, adding

in dynamic behavior by binding components to beans in the back end. The quickstart also makes more use

of CDI to wire the application together.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-numberguess

Make a few guesses

Deployment descriptors src/main/webapp/WEB-INF
Emphasize the lack of them!

No need to open any of them, just point them out

 - don't need it!web.xml

 - as before, marker filebeans.xml

 - nice feature from AS7 - we can just put into thefaces-config.xml faces-config.xml

WEB-INF and it enables JSF (inspiration from CDI)

 we saw this before, this time it's the same but adds in JSF APIpom.xml

Views

 - same as before, just kicks us into the appindex.html

home.xhtml

Lines 19 - 25 – these are messages output depending on state of beans (minimise coupling

between controller and view layer by interrogating state, not pushing)

Line 20 – output any messages pushed out by the controller

Line 39 - 42 – the input field is bound to the guess field on the game bean. We validate the input by

calling a method on the game bean.

Line 43 - 45 – the command button is used to submit the form, and calls a method on the game bean

Line 48, 49, The reset button again calls a method on the game bean

http://localhost:8080/jboss-as-numberguess

WildFly 10

JBoss Community Documentation Page of 52 56

1.

1.

2.

3.

4.

1.

2.

5.

2.

3.

1.

2.

Beans

 – this is the main controller for the game. App has no persistence etc.Game.java

 – As we discussed CDI is typesafe, (beans are injected by type) but sometimes need@Named

to access in a non-typesafe fashion. @Named exposes the Bean in EL - and allows us to

access it from JSF

 – really simple app, we keep the game data in the session - to play two@SessionScoped

concurrent games, need two sessions. This is not a limitation of CDI, but simply keeps this

demo very simple. CDI will create a bean instance the first time the game bean is accessed,

and then always load that for you

 – here we inject the maximum number we can guess. This allows us to@Inject maxNumber

externalize the config of the game

 – here we inject the random number we need to guess. Two things@Inject rnadomNumber

to discuss here

Instance - normally we can inject the object itself, but sometimes it's useful to inject a

"provider" of the object (in this case so that we can get a new random number when the

game is reset!). Instance allows us to a new instance when neededget()

Qualifiers - now we have two types of Integer (CDI auto-boxes types when doing

injection) so we need to disambiguate. Explain qualifiers and development time

approach to disambiguation. You will want to open up and here.@MaxNumber @Random

 – here is our reset method - we also call it on startup to set up initial values.@PostConstruct

Show use of .Instance.get()

 This bean acts as our random number generator.Generator.java

 explain about other scopes available in CDI + extensibility.@ApplicationScoped

 Explain about producers being useful for determining bean instance at runtimenext()

 Explain about producers allowing for loose couplinggetMaxNumber()

8.2.6 The login quickstart

Introduction
The login quickstart builds on the knowledge of CDI and JSF we have got from numberguess. New stuff we

will learn about is how to use JPA to store data in a database, how to use JTA to control transactions, and

how to use EJB for declarative TX control.

WildFly 10

JBoss Community Documentation Page of 53 56

1.

2.

3.

4.

5.

6.

7.

1.

2.

1.

2.

3.

1.

1.

2.

3.

4.

5.

6.

2.

1.

2.

3.

4.

5.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-login

Login as admin/admin

Create a new user

Deployment Descriptors

Show that we have the same ones we are used in – , src/main/webapp beans.xml

faces-config.xml

We have a couple of new ones in src/main/resources

. Not too exciting. We are using a datasource that AS7 ships with. It'spersistence.xml

backed by the H2 database and is purely a sample datasource to use in sample applications.

We also tell Hibernate to auto-create tables - as you always have.

 Again, the same old thing you are used to in Hibernate - auto-import data whenimport.sql

the app starts.

 is the same again, but just adds in dependencies for JPA, JTA and EJBpom.xml

Views

 One of the updates added to JSF 2.0 was templating ability. We take advantagetemplate.xhtml

of that in this app, as we have multiple views

Actually nothing too major here, we define the app "title" and we could easily define a common

footer etc. (we can see this done in the kitchensink app)

The command inserts the actual content from the templated page.ui:insert

#home.xhtml

Uses the template

Has some input fields for the login form, button to login and logout, link to add users.

Binds fields to credentials bean}}

Buttons link to login bean which is the controller

users.xhtml

Uses the template

Displays all users using a table

Has a form with input fields to add users.

Binds fields to the newUser bean

Methods call on userManager bean

http://localhost:8080/jboss-as-login

WildFly 10

JBoss Community Documentation Page of 54 56

1.

2.

1.

2.

3.

4.

5.

3.

4.

5.

1.

2.

3.

4.

5.

6.

1.

2.

6.

1.

2.

3.

7.

1.

Beans

 Backing bean for the login form field, pretty trivial. It's request scoped (naturalCredentials.java

for a login field) and named so we can get it from JSF.

Login.java

Is session scoped (a user is logged in for the length of their session or until they log out}}

Is accessible from EL

Injects the current credentials

Uses the userManager service to load the user, and sends any messages to JSF as needed

Uses a producer method to expose the @LoggedIn user (producer methods used as we don't

know which user at development time)

 Is a pretty straightforward JPA entity. Mapped with , has an natural id.User.java @Entity

 This is an interface, and by default we use the ManagedBean version, whichUserManager.java

requires manual TX control

 - accessible from EL, request scoped.ManagedBeanUserManager.java

Injects a logger (we'll see how that is produced in a minute)

Injects the entity manager (again, just a min)

Inject the UserTransaction (this is provided by CDI)

 standard JPA-QL that we know and love - but lots of ugly TX handling code.getUsers()

Same for and methods - very simple JPA but...addUser() findUser()

Got a couple of producer methods.

 is obvious - loads all the users in the database. No ambiguity - CDI takesgetUsers()

into account generic types when injecting. Also note that CDI names respect JavaBean

naming conventions

 is used to bind the new user form to from the view layer - very nice as itgetNewUser()

decreases coupling - we could completely change the wiring on the server side (different

approach to creating the newUser bean) and no need to change the view layer.

EJBUserManager.java

It's an alternative – explain alternatives, and that they allow selection of beans at deployment

time

Much simple now we have declarative TX control.

Start to see how we can introduce EJB to get useful enterprise services such as declarative TX

control

Resources.java

{EntityManager}} - explain resource producer pattern

WildFly 10

JBoss Community Documentation Page of 55 56

1.

2.

3.

4.

5.

6.

7.

1.

2.

1.

2.

3.

1.

4.

1.

2.

3.

4.

1.

2.

3.

5.

8.2.7 The kitchensink quickstart

Introduction
The kitchensink quickstart is generated from an archetype available for JBoss AS (tell people to check the

 Guide for details). It demonstrates CDI, JSF, EJB, JPA (which[Getting Started Developing Applications]

we've seen before) and JAX-RS and Bean Validation as well. We add in Arquillian for testing.

Run the app

Start JBoss AS in Eclipse

Deploy it using Eclipse - just right click on the app, choose Run As -> Run On Server

Select the AS 7 instance you want to use

Hit finish

Load the app at http://localhost:8080/jboss-as-kitchensink

Register a member - make sure to enter an invalid email and phone - show bean validation at work

Click on the member URL and show the output from JAX-RS

Bean Validation

Explain the benefits of bean validation - need your data always valid (protect your data) AND good

errors for your user. BV allows you to express once, apply often.

index.xhtml

Show the input fields – no validators attached

Show the message output

Member.java

Hightlight the various validation annotations

Java EE automatically applies the validators in both the persistence layer and in your views

RS

 - Show that URL generation is just manualindex.xhtml

 - simply activates JAX-RSJaxRsActivator.java

 - add JAXB annotation to make JAXB process the class properlyMember.java

MemberResourceRESTService.java

 sets the JAX-RS resource@Path

JAX-RS services can use injection

 methods are auto transformed to XML using JAXB@GET

And that is it!

http://localhost:8080/jboss-as-kitchensink

WildFly 10

JBoss Community Documentation Page of 56 56

1.

2.

1.

3.

4.

5.

6.

7.

1.

8.

1.

2.

3.

Arquillian

Make sure JBoss AS is running

mvn clean test -Parq-jbossas-remote

Explain the difference between managed and remote

Make sure JBoss AS is stopped

mvn clean test -Parq-jbossas-managed

Start JBoss AS in Eclipse

Update the project to use the profilearq-jbossas-remote

Run the test from Eclipse

Right click on test, Run As -> JUnit Test

MemberRegistrationTest.java

Discuss micro deployments

Explain Arquilian allows you to use injection

Explain that Arquillian allows you to concentrate just on your test logic

	Introduction
	Getting started with WildFly
	Helloworld quickstart
	Deploying the Helloworld example using Eclipse
	The helloworld example in depth

	Numberguess quickstart
	Deploying the Numberguess example using Eclipse
	The numberguess example in depth

	Greeter quickstart
	Deploying the Login example using Eclipse
	The login example in depth

	Kitchensink quickstart
	Deploying the Kitchensink example using Eclipse
	The kitchensink example in depth

	Creating your own application
	Creating your own application using Eclipse

	More Resources
	Developing JSF Project Using JBoss AS7, Maven and IntelliJ
	Create a project using Maven
	Add JSF into project
	Writing Code
	Add JBoss AS 7 deploy plugin into project
	Deploy project to JBoss AS 7
	Import project into IntelliJ
	Adding IntelliJ JSF support to project
	Add JBoss AS7 to IntelliJ
	Debugging project with IntelliJ and AS7
	Conclusion
	References

	Getting Started Developing Applications Presentation & Demo
	Introduction
	Prerequisites for using the script
	Import examples into Eclipse and set up JBoss AS
	The Helloworld Quickstart
	Introduction
	Using Maven
	Using the Command Line Interface (CLI)
	Using the web management interface
	Using the filesystem
	Using Eclipse
	Digging into the app

	The numberguess quickstart
	Introduction
	Run the app
	Deployment descriptors src/main/webapp/WEB-INF
	Views
	Beans

	The login quickstart
	Introduction
	Run the app
	Deployment Descriptors
	Views
	Beans

	The kitchensink quickstart
	Introduction
	Run the app
	Bean Validation
	JAX-RS
	Arquillian

