WildFly 10

Getting Started Guide

Exported from JBoss Community Documentation Editor at 2017-06-19 14:17:03 EDT
Copyright 2017 JBoss Community contributors.

JBoss Community Documentation Page 1 of 53

https://docs.jboss.org/author/display/WFLY10

v WildFly 10
Table of Contents

1 Getting Started with WildFly 10 4

1.1 Download 5

1.2 Requirements 6

1.3 Installation 6

1.4 WildFly - A Quick Tour 6

1.4.1 WildFly 10 Directory Structure 6

1.4.2 WildFly 10 Configurations 9

1.4.3 Starting WildFly 10 9

1.4.4 Starting WildFly 10 with an Alternate Configuration 9

1.4.5 Managing your WildFly 10 11

1.4.6 Modifying the Example DataSource 13

2 JavaEE 6 Tutorial 16

2.1 Standard JavaEE 6 Technologies 16

2.2 JBoss AS7 Extension Technologies 16

2.3 Standard JavaEE 6 Technologies 16

2.3.1 Java API for RESTful Web Services (JAX-RS) 17

2.3.2 Java Servlet Technology 38

2.3.3 Java Server Faces Technology (JSF) 38

2.3.4 Java Persistence API (JPA) 38

2.3.5 Java Transaction API (JTA) 38

2.3.6 Managed Beans 38

2.3.7 Contexts and Dependency Injection (CDI) 38

2.3.8 Bean Validation 38

2.3.9 Java Message Service API (JMS) 38

2.3.10 JavaEE Connector Architecture (JCA) 41

2.3.11 JavaMail API 41

2.3.12 Java Authorization Contract for Containers (JACC) 42

2.3.13 Java Authentication Service Provider Interface for Containers (JASPIC) 43

2.3.14 Enterprise JavaBeans Technology (EJB) 44

2.3.15 Java API for XML Web Services (JAX-WS) 44

2.4 JBoss AS7 Extension Technologies 53

2.4.1 Management Interface 53

JBoss Community Documentation Page 2 of 53

WildFly 10

® Getting Started with WildFly 10
Download

Requirements
Installation
WildFly - A Quick Tour

WildFly 10 Directory Structure

WildFly 10 Configurations

Starting WildFly 10

Starting WildFly 10 with an Alternate Configuration
Managing your WildFly 10

Modifying the Example DataSource

JBoss Community Documentation

Page 3 of 53

WildFly 10

1 Getting Started with WildFly 10

WildFly 10 is the latest release in a series of JBoss open-source application server offerings. WildFly 10 is
an exceptionally fast, lightweight and powerful implementation of the Java Enterprise Edition 7 Platform
specifications. The state-of-the-art architecture built on the Modular Service Container enables services
on-demand when your application requires them. The table below lists the Java Enterprise Edition 7
technologies and the technologies available in WildFly 10 server configuration profiles.

Java EE 7 Platform Technology Java EE Java EE WildFly WildFly
7 7 10 10
Full Web Full Web
Profile Profile Profile Profile
JSR-356: Java API for Web Socket X X X X
JSR-353: Java API for JSON Processing X X X X
JSR-340: Java Servlet 3.1 X X X X
JSR-344: JavaServer Faces 2.2 X X X X
JSR-341: Expression Language 3.0 X X X X
JSR-245: JavaServer Pages 2.3 X X X X
JSR-52: Standard Tag Library for JavaServer Pages (JSTL) X X X X
1.2
JSR-352: Batch Applications for the Java Platform 1.0 X -- X --
JSR-236: Concurrency Utilities for Java EE 1.0 X X X X
JSR-346: Contexts and Dependency Injection for Java 1.1 X X X X
JSR-330: Dependency Injection for Java 1.0 X X X X
JSR-349: Bean Validation 1.1 X X X X
JSR-345: Enterprise JavaBeans 3.2 X X X X
CMP 2.0 (Lite) CMP 2.0 (Lite)
Optional Not
Available
JSR-318: Interceptors 1.2 X X X X
JSR-322: Java EE Connector Architecture 1.7 X -- X X
JSR-338: Java Persistence 2.1 X X X X
JSR-250: Common Annotations for the Java Platform 1.2 X X X X
JSR-343: Java Message Service AP| 2.0 X -- X --

JBoss Community Documentation Page 4 of 53

WildFly 10

JSR-907: Java Transaction API 1.2 X X X X
JSR-919: JavaMail 1.5 X -- X X
JSR-339: Java API for RESTFul Web Services 2.0 X X X X
JSR-109: Implementing Enterprise Web Services 1.3 X -- X --
JSR-224: Java API for XML-Based Web Services 2.2 X X X X
JSR-181: Web Services Metadata for the Java Platform X - X -
JSR-101: Java API for XML-Based RPC 1.1 Optional -- - -
JSR-67: Java APIs for XML Messaging 1.3 X -- X --
JSR-93: Java API for XML Registries Optional -- - -
JSR-196: Java Authentication Service Provider Interface for X - X -
Containers 1.1

JSR-115: Java Authorization Contract for Containers 1.5 X - X -
JSR-88: Java EE Application Deployment 1.2 Optional -- - -
JSR-77: J2EE Management 1.1 X X

JSR-45: Debugging Support for Other Languages 1.0 X X X X

& Missing HornetQ and JMS?

The WildFly Web Profile doesn't include JMS (provided by HornetQ) by default. If you want to use
messaging, make sure you start the server using the "Full Profile" configuration.

This document provides a quick overview on how to download and get started using WildFly 10 for your
application development. For in-depth content on administrative features, refer to the WildFly 10 Admin
Guide.

1.1 Download

WildFly 10 distributions can be obtained from:
wildfly.org/downloads
WildFly 10 provides a single distribution available in zip or tar file formats.

* wildfly-10.0.0.Final.zip
* wildfly-10.0.0.Final.tar.gz

JBoss Community Documentation Page 5 of 53

http://www.wildfly.org/downloads/

AN WildFly 10

1.2 Requirements

® Java SE 8 or later (we recommend that you use the latest update available)

1.3 Installation

Simply extract your chosen download to the directory of your choice. You can install WildFly 10 on any
operating system that supports the zip or tar formats. Refer to the Release Notes for additional information
related to the release.

1.4 WildFly - A Quick Tour

Now that you've downloaded WildFly 10, the next thing to discuss is the layout of the distribution and explore
the server directory structure, key configuration files, log files, user deployments and so on. It's worth
familiarizing yourself with the layout so that you’ll be able to find your way around when it comes to
deploying your own applications.

1.4.1 WildFly 10 Directory Structure

DIRECTORY DESCRIPTION

appclient Configuration files, deployment content, and writable areas used by the
application client container run from this installation.

bin Start up scripts, start up configuration files and various command line utilities like
Vault, add-user and Java diagnostic report
available for Unix and Windows environments

bin/client Contains a client jar for use by non-maven based clients.
docs/schema XML schema definition files
docs/examples/configs Example configuration files representing specific use cases

domain Configuration files, deployment content, and writable areas used by the domain
mode processes run from this installation.

modules WildFly 10 is based on a modular classloading architecture. The various modules
used in the server are stored here.

standalone Configuration files, deployment content, and writable areas used by the single
standalone server run from this installation.

welcome-content Default Welcome Page content

JBoss Community Documentation Page 6 of 53

WildFly 10

Standalone Directory Structure

In "standalone" mode each WildFly 10 server instance is an independent process (similar to previous JBoss
AS versions; e.g., 3, 4,5, or 6). The configuration files, deployment content and writable areas used by the
single standalone server run from a WildFly installation are found in the following subdirectories under the
top level "standalone" directory:

DIRECTORY

configuration

data

deployments

lib/ext

log
tmp

tmp/auth

DESCRIPTION

Configuration files for the standalone server that runs off of this installation. All configuration
information for the running server is located here and is the single place for configuration
modifications for the standalone server.

Persistent information written by the server to survive a restart of the server

End user deployment content can be placed in this directory for automatic detection and
deployment of that content into the server's runtime.

NOTE: The server's management API is recommended for installing deployment content.
File system based deployment scanning capabilities remain for developer convenience.

Location for installed library jars referenced by applications using the Extension-List
mechanism

standalone server log files
location for temporary files written by the server

Special location used to exchange authentication tokens with local clients so they can
confirm that they are local to the running AS process.

JBoss Community Documentation Page 7 of 53

WildFly 10

Domain Directory Structure

A key feature of WildFly 10 is the managing multiple servers from a single control point. A collection of
multiple servers are referred to as a "domain". Domains can span multiple physical (or virtual) machines
with all WildFly instances on a given host under the control of a Host Controller process. The Host
Controllers interact with the Domain Controller to control the lifecycle of the WildFly instances running on
that host and to assist the Domain Controller in managing them. The configuration files, deployment content
and writeable areas used by domain mode processes run from a WildFly installation are found in the
following subdirectories under the top level "domain" directory:

DIRECTORY DESCRIPTION

configuration Configuration files for the domain and for the Host Controller and any servers running off of

content

lib/ext

log

servers

tmp

tmp/auth

this installation. All configuration information for the servers managed wtihin the domain is
located here and is the single place for configuration information.

an internal working area for the Host Controller that controls this installation. This is where it
internally stores deployment content. This directory is not meant to be manipulated by end
users.

Note that "domain" mode does not support deploying content based on scanning a file
system.

Location for installed library jars referenced by applications using the Extension-List
mechanism

Location where the Host Controller process writes its logs. The Process Controller, a small
lightweight process that actually spawns the other Host Controller process and any
Application Server processes also writes a log here.

Writable area used by each Application Server instance that runs from this installation.
Each Application Server instance will have its own subdirectory, created when the server is
first started. In each server's subdirectory there will be the following subdirectories:

data -- information written by the server that needs to survive a restart of the server

log -- the server's log files

tmp -- location for temporary files written by the server

location for temporary files written by the server

Special location used to exchange authentication tokens with local clients so they can
confirm that they are local to the running AS process.

JBoss Community Documentation Page 8 of 53

E§><;7
AN WildFly 10

1.4.2 WildFly 10 Configurations

Standalone Server Configurations

¢ standalone.xml (default)
® Java Enterprise Edition 7 web profile certified configuration with the required technologies plus
those noted in the table above.

¢ standalone-ha.xml
® Java Enterprise Edition 7 web profile certified configuration with high availability

¢ standalone-full.xml
® Java Enterprise Edition 7 full profile certified configuration including all the required EE 7
technologies

¢ standalone-full-ha.xml
® Java Enterprise Edition 7 full profile certified configuration with high availability

Domain Server Configurations

¢ domain.xml
® Java Enterprise Edition 7 full and web profiles available with or without high availability

Important to note is that the domain and standalone modes determine how the servers are managed not
what capabilities they provide.

1.4.3 Starting WildFly 10

To start WildFly 10 using the default web profile configuration in "standalone" mode, change directory to
$JBOSS_HOME/bin.

./ standal one. sh
To start the default web profile configuration using domain management capabilities,

./ domai n. sh

1.4.4 Starting WildFly 10 with an Alternate Configuration

If you choose to start your server with one of the other provided configurations, they can be accessed by
passing the --server-config argument with the server-config file to be used.

JBoss Community Documentation Page 9 of 53

E§><;7
A WildFly 10

To use the full profile with clustering capabilities, use the following syntax from $JBOSS HOME/bin:

./ standal one. sh --server-config=standal one-full-ha. xn

Similarly to start an alternate configuration in domain mode:

./ domai n. sh --donai n- confi g=ny-donai n-configuration. xmn

Alternatively, you can create your own selecting the additional subsystems you want to add, remove, or
modify.

Test Your Installation

After executing one of the above commands, you should see output similar to what's shown below.

JBoss Bootstrap Environnent

JBOSS_HOVE: /opt/w | dfly-10.0.0.Fina

JAVA: java

JAVA_OPTS: -server -Xnme64m -Xnx512m - XX: Met aspaceSi ze=96M - XX: MaxMet aspaceSi ze=256m

-D ava. net. preferl Pv4St ack=true -Dj boss. nodul es. syst em pkgs=com yourki t, org. j boss. byt eman
-Dj ava. awt . headl ess=true

11:46: 11,161 INFO [org.]jboss. nodul es] (nmain) JBoss Mdul es version 1.5.1.Fina

11:46: 11,331 INFO [org.jboss.nsc] (nmain) JBoss MSC version 1.2.6.Final

11:46: 11,391 INFO [org.]jboss.as] (MSC service thread 1-6) WLYSRV0049: W I dFly Ful
10.0.0.Final (WIdFly Core 2.0.10.Final) starting

<sni p>

11: 46: 14,300 INFO [org.jboss.as] (Controller Boot Thread) WLYSRV0025: WIdFly Ful
10.0.0.Final (WIdFly Core 2.0.10.Final) started in 1909ns - Started 267 of 553 services (371
services are |azy, passive or on-demand)

As with previous WildFly releases, you can point your browser to hittp://localhost:8080 (if using the default
configured http port) which brings you to the Welcome Screen:

JBoss Community Documentation Page 10 of 53

http://localhost:8080

WildFly 10

Welcome to WildFly 10

Your WildFly 10 is running.

Documentation | Quickstarts | Administration Console

WildFly Froject | User Forum | Report an issue

JBess Community

From here you can access links to the WildFly community documentation set, stay up-to-date on the latest
project information, have a discussion in the user forum and access the enhanced web-based Administration
Console. Or, if you uncover a defect while using WildFly, report an issue to inform us (attached patches will
be reviewed). This landing page is recommended for convenient access to information about WildFly 10 but
can easily be replaced with your own if desired.

1.4.5 Managing your WildFly 10
WildFly 10 offers two administrative mechanisms for managing your running instance:

® web-based Administration Console
® command-line interface

JBoss Community Documentation Page 11 of 53

WildFly 10

Authentication

By default WildFly 10 is now distributed with security enabled for the management interfaces, this means
that before you connect using the administration console or remotely using the CLI you will need to add a
new user, this can be achieved simply by using the add-user.sh script in the bin folder.

After starting the script you will be guided through the process to add a new user: -

./ add- user. sh
What type of user do you wish to add?

a) Managenent User (ngnt-users.properties)

b) Application User (application-users.properties)

(a):

In this case a new user is being added for the purpose of managing the servers so select option a.

You will then be prompted to enter the details of the new user being added: -

Enter the details of the new user to add.
Real m (Managenent Real m) :

User nanme :

Password :

Re-enter Password :

It is important to leave the name of the realm as 'ManagementRealm' as this needs to match the name used
in the server's configuration, for the remaining fields enter the new username, password and password
confirmation.

Provided there are no errors in the values entered you will then be asked to confirm that you want to add the
user, the user will be written to the properties files used for authentication and a confirmation message will
be displayed.

The modified time of the properties files are inspected at the time of authentication and the files reloaded if
they have changed, for this reason you do not need to re-start the server after adding a new user.

JBoss Community Documentation Page 12 of 53

WildFly 10

Administration Console

To access the web-based Administration Console, simply follow the link from the Welcome Screen. To
directly access the Management Console, point your browser at:

http://localhost:9990/console

NOTE: port 9990 is the default port configured.

<managenent -i nterfaces>
<native-interface security-real nF"Managenent Real ni' >
<socket - bi ndi ng nati ve="nanagenent - native"/>
</native-interface>
<http-interface security-real m=" Managenent Real ni' >
<socket - bi ndi ng http="managenent-http"/>
</http-interface>
</ managenent -i nt er f aces>

If you modify the management-http socket binding in your running configuration: adjust the above command
accordingly. If such modifications are made, then the link from the Welcome Screen will also be
inaccessible.

If you have not yet added at least one management user an error page will be displayed asking you to add a
new user, after a user has been added you can click on the 'Try Again' link at the bottom of the error page to
try connecting to the administration console again.

Command-Line Interface

If you prefer to manage your server from the command line (or batching), the jboss-cli.sh script provides the
same capabilities available via the web-based Ul. This script is accessed from $JBOSS_ HOME/bin
directory; e.g.,

$JIBOSS_HOVE/ bi n/ j boss-cli.sh --connect
Connected to standal one controller at |ocal host: 9990

Notice if no host or port information provided, it will default to localhost:9990.

When running locally to the WildFly process the CLI will silently authenticate against the server by
exchanging tokens on the file system, the purpose of this exchange is to verify that the client does have
access to the local file system. If the CLI is connecting to a remote WildFly installation then you will be
prompted to enter the username and password of a user already added to the realm.

Once connected you can add, modify, remove resources and deploy or undeploy applications. For a
complete list of commands and command syntax, type help once connected.

JBoss Community Documentation Page 13 of 53

http://localhost:9990/console

WildFly 10

1.4.6 Modifying the Example DataSource

As with previous JBoss application server releases, a default data source, ExampleDS, is configured using
the embedded H2 database for developer convenience. There are two ways to define datasource
configurations:

1. as a module
2. as a deployment

In the provided configurations, H2 is configured as a module. The module is located in the
$JBOSS_HOME/modules/com/h2database/h2 directory. The H2 datasource configuration is shown below.

<subsyst em xm ns="ur n: j boss: donai n: dat asour ces: 1. 0" >
<dat asour ces>
<dat asour ce j ndi - name="j ava: j boss/ dat asour ces/ Exanpl eDS" pool - nane=" Exanpl eDS" >
<connection-url >j dbc: h2: nem t est; DB_CLOSE_DELAY=- 1</ connecti on-url >
<driver>h2</driver>
<pool >
<m n- pool - si ze>10</ m n- pool - si ze>
<max- pool - si ze>20</ max- pool - si ze>
<prefill>true</prefill>
</ pool >
<security>
<user - nane>sa</ user - name>
<passwor d>sa</ passwor d>
</security>
</ dat asour ce>
<xa-dat asour ce jndi - nanme="j ava: j boss/ dat asour ces/ Exanpl eXADS" pool - name="Exanpl eXADS" >
<driver>h2</driver>
<xa- dat asour ce-property nane="URL">j dbc: h2: nem t est </ xa- dat asour ce- property>
<xa- pool >
<m n- pool - si ze>10</ m n- pool - si ze>
<max- pool - si ze>20</ max- pool - si ze>
<prefill>true</prefill>
</ xa- pool >
<security>
<user - nane>sa</ user - name>
<passwor d>sa</ passwor d>
</security>
</ xa- dat asour ce>
<drivers>
<driver nane="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce-cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst en>

The datasource subsystem is provided by the IronJacamar project. For a detailed description of the available
configuration properties, please consult the project documentation.

JBoss Community Documentation Page 14 of 53

http://www.jboss.org/ironjacamar

= WildFly 10

® [ronJacamar homepage: http://www.jboss.org/ironjacamar

® Project Documentation: http://www.jboss.org/ironjacamar/docs

® Schema description:
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor

Configure Logging in WildFly 10

WildFly 10 logging can be configured with the web console or the command line interface. You can get more
detail on the Logging Configuration page.

Turn on debugging for a specific category with CLI:

/ subsyst enel oggi ng/ | ogger =or g. j boss. as: add(| evel =DEBUG)

By default the ser ver . | og is configured to include all levels in it's log output. In the above example we
changed the console to also display debug messages.

JBoss Community Documentation Page 15 of 53

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor
https://docs.jboss.org/author/display/WFLY10/Logging+Configuration

AN WildFly 10

2 JavakEE 6 Tutorial

» Coming Soon

This guide is still under development, check back soon!

2.1 Standard JavaEE 6 Technologies

Enterprise JavaBeans Technology (EJB)

Java Servlet Technology

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)
Java API for XML Web Services (JAX-WS)
Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

. JavaEE Connector Architecture (JCA)

. JavaMail API

. Java Authorization Contract for Containers (JACC)
. Java Authentication Service Provider Interface for Containers (JASPIC)

© ©o N wDd R

[T = = S
o~ W N PO

2.2 JBoss AS7 Extension Technologies

1. OSGi Technology
2. Management Interface

2.3 Standard JavaEE 6 Technologies

5 Coming Soon

This guide is still under development, check back soon!

JBoss Community Documentation Page 16 of 53

WildFly 10

© ©o N~ wDd R

=
©

[- Sy Y
o~ W NP

2.3.1 Java API for RESTful Web Services (JAX-RS)

Enterprise JavaBeans Technology (EJB)
Java Servlet Technology

Java Server Faces Technology (JSF)
Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)
Java API for XML Web Services (JAX-WS)
Managed Beans

Contexts and Dependency Injection (CDI)
Bean Validation

Java Message Service API (JMS)

. JavaEE Connector Architecture (JCA)
. JavaMail API

. Java Authorization Contract for Containers (JACC)
. Java Authentication Service Provider Interface for Containers (JASPIC)

Content

Tutorial Overview

What are RESTful Web Services?
Creating a RESTful endpoint
Package and build the endpoint
Deploy the endpoint to OpenShift
Building the mobile client
Exploring the mobile client

JBoss Community Documentation

Page 17 of 53

https://docs.jboss.org/author/display/AS71/Java+API+for+XML+Web+Services+%28JAX-WS%29

WildFly 10

Tutorial Overview

This chapter describes the Java API for RESTful web services (JAX-RS, defined in JSR331). RESTEasy is
an portable implementation of this specification which can run in any Servlet container. Tight integration with
JBoss Application Server is available for optimal user experience in that environment. While JAX-RS is only
a server-side specification, RESTeasy has innovated to bring JAX-RS to the client through the RESTEasy
JAX-RS Client Framework.

Detailed documentation on RESTEasy is available here.
The source for this tutorial is in github repository git://github.com/tdiesler/javaee-tutorial.git

OpenShift, is a portfolio of portable cloud services for deploying and managing applications in the cloud. This
tutorial shows how to deploy a RESTful web service on the free OpenShift Express JavaEE cartridge that
runs JBossAS 7.

An application running on Android shows how to leverage JBoss technology on mobile devices. Specifically,
we show how use the RESTEasy client APl from an Android device to integrate with a RESTful service
running on a JBossAS 7 instance in the cloud.

The following topics are addressed

®* What are RESTful web services

® Creating a RESTful server endpoint

® Deploying a RESTful endpoint to a JBossAS instance in the cloud
® RESTEasy client running on an Android mobile device

JBoss Community Documentation Page 18 of 53

http://jcp.org/en/jsr/detail?id=311
http://www.jboss.org/resteasy
http://www.jboss.org/resteasy/docs.html
https://github.com/tdiesler/javaee-tutorial
https://openshift.redhat.com/app
http://www.jboss.org/jbossas
http://www.android.com

WildFly 10

What are RESTful Web Services?

@ Coming Soon

This section is still under development.

RESTful web services are designed to expose APIs on the web. REST stands for Representational State T
ransfer. It aims to provide better performance, scalability, and flexibility than traditinoal web services, by
allowing clients to access data and resources using predictable URLs. Many well-known public web services
expose RESTful APlIs.

The Java 6 Enterprise Edition specification for RESTful services is JAX-RS. It is covered by JSR-311 (
http://jcp.org/jsr/detail/311.jsp). In the REST model, the server exposes APIs through specific URIs (typically
URLSs), and clients access those URIs to query or modify data. REST uses a stateless communication
protocol. Typically, this is HTTP.

The following is a summary of RESTful design principles:

®* A URL is tied to a resource using the @at h annotation. Clients access the resource using the URL.
® Create, Read, Update, and Delete (CRUD) operations are accessed via PUT, GET, POST, and
DELETE requests in the HTTP protocol.
® PUT creates a new resource.
®* DELETE deletes a resource.
® CET retrieves the current state of a resource.
® PQOST updates a resources's state.
® Resources are decoupled from their representation, so that clients can request the data in a variety of
different formats.
¢ Stateful interactions require explicit state transfer, in the form of URL rewriting, cookies, and hidden
form fields. State can also be embedded in response messages.

Creating a RESTful endpoint

A RESTful endpoint is deployed as JavaEE web archive (WAR). For this tutorial we use a simple library
application to manage some books. There are two classes in this application:

® Library
®* Book

The Book is a plain old Java object (POJO) with two attributes. This is a simple Java representation of a
RESTful entity.

JBoss Community Documentation Page 19 of 53

http://jcp.org/jsr/detail/311.jsp

WildFly 10

public class Book {

private String isbn;
private String title;

The Library is the RESTful Root Resource. Here we use a set of standard JAX-RS annotations to define

® The root path to the library resource
® The wire representation of the data (MIME type)
® The Http methods and corresponding paths

@ath("/library")

@onsunes({ "application/json" })
@roduces({ "application/json" })
public class Library {

@ET
@rat h("/ books")
public Collecti on<Book> get Books() {

}
@ET

@at h("/ book/{isbn}")
publ i ¢ Book get Book(@Pat hParan("isbn") String id) {

@rat h("/ book/ {isbn}")
publ i ¢ Book addBook(@at hParan("isbn") String id, @ueryParan("title") String title) {

@at h("/book/{isbn}")
publ i ¢ Book updat eBook(@at hParan{"isbn") String id, String title) {

@DELETE
@at h("/ book/ {isbn}")
publi ¢ Book renpveBook(@athParan{"isbn") String id) {

}

The Library root resource uses these JAX-RS annotations:

JBoss Community Documentation Page 20 of 53

E§><;7
AN WildFly 10

Annotation Description
@Path Identifies the URI path that a resource class or class method will serve requests for
@Consumes Defines the media types that the methods of a resource class can accept

@Produces Defines the media type(s) that the methods of a resource class can produce

@GET Indicates that the annotated method responds to HTTP GET requests
@PUT Indicates that the annotated method responds to HTTP PUT requests
@POST Indicates that the annotated method responds to HTTP POST requests

@DELETE Indicates that the annotated method responds to HTTP DELETE requests

For a full description of the available JAX-RS annotations, see the JAX-RS AP| documentation.

Package and build the endpoint

To package the endpoint we create a simple web archive and include a web.xml with the following content

. Review

AS7-1674 Remove or explain why web.xml is needed for RESTful endpoints

<web- app version="2.4" xm ns="http://java. sun. com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi:schemaLocati on="http://java. sun.com xm / ns/j 2ee
http://java. sun.comf xm / ns/j2ee/ web- app_2_4. xsd" >
<servl et - mappi ng>
<servl et - nanme>j avax. ws. rs. core. Appl i cati on</ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

The root context is defined in jboss-web.xml

<j boss- web>
<cont ext - r oot >j axr s- sanpl e</ cont ext - r oot >
</ j boss-web>

The code for the JAX-RS part of this tutorial is available on
https://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs. In this step we clone the repository and build the
endpoint using maven. There are a number of JAX-RS client tests that run against a local JBossAS 7
instance. Before we build the project, we set the IBOSS_HOME environment variable accordingly.

JBoss Community Documentation Page 21 of 53

http://download.oracle.com/javaee/6/api/javax/ws/rs/package-summary.html
https://issues.jboss.org/browse/AS7-1674
https://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs
http://maven.apache.org

A WildFly 10

Arquillian, the test framework we use throughout this tutorial, can manage server startup/shutdown. It is
however also possible to startup the server instance manually before you run the tests. The latter allows you
to look at the console and see what log output the deployment phase and JAX-RS endpoint invocations
produce.

$ git clone git://github.conmtdiesler/javaee-tutorial.git
Cloning into javaee-tutorial...

$ cd javaee-tutorial/jaxrs
$ export JBOSS_HOVE=~/ wor kspace/ j boss-as-7.0. 1. Fi nal
$ nvn install

[INFQ Reactor Summary:

[I NFO

[INFQ JavaEE Tutorial - JAX-RS SUCCESS [1. 694s]
[INFQ JavaEE Tutorial - JAX-RS Server SUCCESS [2. 392s]
[INFQ JavaEE Tutorial - JAX-RS dient SUCCESS [7. 304s]
O I e
[INFO BU LD SUCCESS

O I e R L R T

[INFO Total time: 12.142s

Deploy the endpoint to OpenShift

First we need to create a free OpenShift Express account and select the JavaEE cartridge that runs
JBo0ssAS 7. Once we have received the confirmation email from OpenShift we can continue to create our
subdomain and deploy the RESTful endpoint. A series of videos on the OpenShift Express page shows you
how to do this. There is also an excellent quick start document that you have access to after login.

For this tutorial we assume you have done the above and that we can continue by creating the OpenShift
application. This step sets up your JBossAS 7 instance in the cloud. Additionally a Git repository is
configured that gives access to your deployed application.

$ rhc-create-app -a tutorial -t jbossas-7.0
Passwor d:

Attenpting to create renpte application space: tutorial
Successfully created application: tutorial
Now your new domain name is being propagated worldw de (this mght take a minute)...
Success! Your application is now published here:
http://tutorial-tdiesler.rhcloud. com

The renpte repository is |located here:

ssh://79dcb9db5e134ccch9d1ba33e6089667@ut ori al -t di esl er. rhcl oud. coml ~/git/tutorial.git/

Next, we can clone the remote Git repository to our local workspace

JBoss Community Documentation Page 22 of 53

http://www.jboss.org/arquillian
https://openshift.redhat.com/app/express
https://openshift.redhat.com/app/express#quickstart
http://git-scm.com

E§><;7
AN WildFly 10

$ git clone
ssh://79dcb9db5e134cccbh9d1ba33e6089667@utori al -t di esl er.rhcl oud. com ~/git/tutorial.git
Cloning into tutorial..

renmote: Counting objects: 24, done

renmot e: Conpressing objects: 100% (14/14), done

remote: Total 24 (delta 0), reused 0 (delta 0)

Recei ving objects: 100% (24/24), 21.84 Ki B, done

I's -1 tutoria
depl oynment s
pom xm
READVE

src

Because we want to deploy an already existing web application, which we'll build in the next step, we can
safely remove the source artefacts from the repository.

$rm-rf tutorial/src tutorial/pom xmn

Now we copy the JAX-RS endpoint webapp that we build above to the 'deployments’ folder and commit the
changes.

$ cp javaee-tutorial/jaxrs/server/target/javaee-tutorial-jaxrs-server-1.0.0- SNAPSHOT. war
tutorial/depl oynents
$ cd tutorial; git coomit -a -m"Initial jaxrs endpoint deploynent"

[master be5b5a3] Initial jaxrs endpoint depl oynent

7 files changed, 0 insertions(+), 672 deletions(-)

create node 100644 depl oynents/javaee-tutorial -jaxrs-server-1.0.0- SNAPSHOT. war
del ete node 100644 pom xm

del et e node 100644 src/ main/javal.gitkeep

del et e node 100644 src/ nmin/resources/.gitkeep

del et e node 100644 src/ nai n/ webapp/ VEEB- | NF/ web. xm

del et e node 100644 src/ mai n/ webapp/ heal th. jsp

del et e node 100644 src/ mai n/ webapp/ i mages/ j bosscor p_| ogo. png

del et e node 100644 src/ mai n/ webapp/ i ndex. ht m

del et e node 100644 src/ mai n/ webapp/ snoop. j sp

$ git push origin
Counting objects: 6, done

remote: Starting application...Done

You can now use curl or your browser to see the JAX-RS endpoint in action. The following URL lists the
books that are currently registered in the library.

JBoss Community Documentation Page 23 of 53

%ﬁ WildFly 10

$ curl http://tutorial-tdiesler.rhcloud.conljaxrs-sanple/library/books

[
{"title":"The Judgnent","isbn":"001"},

{"title":"The Stoker","isbn":"002"},
{"title":"Jackal s and Arabs","isbn":"003"},
{"title":"The Refusal","isbn":"004"}

]

Building the mobile client

The source associated with this tutorial contains a fully working mobile client application for the Android
framework. If not done so already please follow steps described in Installing the SDK. In addition to the
Android SDK, | recommend installing the m2eclipse and the EGit plugin to Eclipse.

First, go to File|Import... and choose "Existing Maven Projects” to import the tutorial sources

Select \

Import Existing Maven Projects

Select an import source:

/)
= @t 2
= Install
= [= Maven

J Check out Maven Projects from SCM

& Existing Maven Projects

0, Install or deploy an artifact to a Maven repository

W, Materialize Maven Projects

P = Plug-in Development

Py 2o BimiCinbias

@ = Back || Mext > | ‘ Cancel ‘ | Finish

You project view should look like this

JBoss Community Documentation Page 24 of 53

http://developer.android.com/sdk/installing.html
http://m2eclipse.sonatype.org/installing-m2eclipse.html
http://www.eclipse.org/egit/download/
http://www.eclipse.org/downloads/packages/eclipse-classic-37/indigor

WildFly 10

i Ny
[Project Explorer &3 ¥ =08

P = javaee-tutorial

= javaee-tutorial-jaxrs

Bjavaee—tutariaL—jaxrs—cLient

A

M-, - . .
1= javaee-tutorial-jaxrs-server

Then go to File|New|Android Project and fill out the first wizard page like this

MNew Android Project

Creates a new Android Project resource.

Project name: |javaee—tutnria[—jaxrs—andrnid

-Contents

(0 Create new project in workspace

@ |Ereate project from existing source

Use default location

Location: |J’homef’tdieslerf’git;"jzwaee-tutariaLﬂ’jaxrsfandruid || Browse... |

(0 Create project from existing sample

Samples: |..'~‘~|:-i[.--:~n|-:-_- N |

-Build Target

Target Mame Vendor Platform APl Le
Android 2.2 Android Open Source Project 2.2 8
(] Android 3.2 Android Open Source Project 3.2 13
)
@ = Back || Mext > | ‘ Cancel ‘ ‘ Finish

JBoss Community Documentation Page 25 of 53

WildFly 10

Click Finish. Next, go to Project|Properties|Build Path|Libraries and add these external libraries to your
android project.

Java Build Path

Add JARs...

Add Extermal JARs...

Add Variable...

Add Library...

Add Class Folder...

Add Extermal Class Folder...

(#Source 1=*Projects |!ﬁ.LibrarieE| “;Order and Export
JARs and class folders on the build path:

P [jackson-core-asl-1.6.3.jar - fhome/tdiesler/.m2/repos
P e jackson-jaxrs-1.6.3.jar - /nome/tdiesler/. m2/repositor
b jackson-mapper-asl-1.6.3.jar - /fhome/tdiesler/.mZ/ref
P 3 jackson-xc-1.6.3.jar - /nome/tdiesler/. m2/repository/c
P e jaxrs-api-2.2.1.GA jar - /home/tdiesler/.m2/repository
P [resteasy-mobile-1.0.0.jar - /home/tdiesler/.m2/reposi
P =k Android 2.2

g [>)

Edit...

Remove

Migrate JAR File...

You final project view should look like this

JBoss Community Documentation

Page 26 of 53

WildFly 10

s Project Explorer &2 = ¥ =0

P = javaee-tutorial
P = javaee-tutorial-jaxrs
v £ javaee-tutorial-jaxrs-android

P =k Android 2.2
fw jaxrs-api-2.2.1.GA jar - /home/tdiesler/.m2/re
D?jacksan—jaer—l.E.B.jar - fhome/tdiesler/.m2/re
£ jackson-core-asl-1.6.3.jar - /home/tdiesler/.m.
tw jackson-mapper-asl-1.6.3.jar - /home/tdiesler/
s jackson-xc-1.6.3.jar - /home/tdiesler/. m2/repc
(w resteasy-mobile-1.0.0.jar - /home/tdiesler/.m:
& src

P £ org.jboss.ee.tutorial. jaxrs.android

g = v - = v =

P # org.jboss.ee.tutorial. jaxrs.android.data
P &2 gen [Generated Java Files]
i assets
b E=res
9] AndroidManifest.xml
default.properties
P = javaee-tutorial-jaxrs-client

P % javaee-tutorial-jaxrs-server

To run the application in the emulator, we need an Android Virtual Device (AVD). Go to Window|Android
SDK and AVD Manager and create a new AVD like this

JBoss Community Documentation Page 27 of 53

WildFly 10

Name: |2_2-HVGA |

Target: |Andrnid 2.2 - APl Level 8 < |
CPUJABI: | ARM (armeabi) -
SD Card: ® Size: | | |MiB ~ |
) File: | | |E|H|
Snapshat: L] Enabled
Skin:
@ Built-in: |H‘UGA v |
) Resolution: | | X | |

Hardware:
Property Value

Abstracted LCD densi 160

Max VM application he 24

L] Override the existing AV D with the same name

Cancel ‘ ‘ Create AVD

Now go to Run|Configuration to create a new run configuration for the client app.

JBoss Community Documentation Page 28 of 53

WildFly 10

Create, manage, and run configurations

Android Application @

B X B

Name: ljavaee—tutorial—jaxrs—android l

lt'-'F'* filter text f =l Android - B Targeﬂ =] ;ommonw
~ [@ Android Application [| |Project:
ljavaee-tutorial-jaxrs-android l l Browse... l
a . .
Ju Android JUnit Test Launch Action:
Ecli Applicati
© Eclipse Application @ Launch Default Activity
il Java Applet
o O Launch:
51 Java Application
b Ju JUnit © Do Nothing
JU JUnit Plug-in Test |2
T
} . [Apply] l Revert l
Filter matched 15 of 16 items

©)

e [o |

Now you should be able to launch the application in the debugger. Right click on the
javaee-tutorial-jaxrs-android project and select Debug As|Android Application. This should launch the

emulator, which now goes though a series of boot screens until it eventually displays the Android home
screen. This will take a minute or two if you do this for the first time.

JBoss Community Documentation Page 29 of 53

WildFly 10

Q0006
~>
- E«

i J2 (3 jals {6 |7 s |ofo
NLFFHHFFFF

r
rrrrrrrrrr
L owle ||

JBoss Community Documen tation

Page 30 of 53

WildFly 10

aAON0

IA—H
<

QOO

i J2 (3 jals {6 |7 s |ofo
FLFFHHFFFF

r
rrrrrrrrrr
L owle ||

JBoss Community Documen tation

Page 31 of 53

WildFly 10

5554:2_2_HVGA | X

8:40..

Tuesday, August 30
€ Charging (50%)

el #sM% A& #=r(r

I_l_l_l_l_l_l_l_l_l_
I_l_l_l—l_l_l_

ALT

When you unlock the home screen by dragging the little green lock to the right. You should see the the
running JAX-RS client application.

JBoss Community Documentation Page 32 of 53

WildFly 10

5554:2_2_HVGA

JBoss - JavaEE Tutorial - JAX-RS

MO Books Yet

Ol W

1 [z J2 Ja s Js [5.]a]o o
o e fo o vl il

@z el To In o, o
I P O i P

Finally, you need to configure the host that the client app connects to. This would be the same as you used
above to curl the library list. In the emulator click Menu|Host Settings and enter the host address of your
OpensShift application.

JBoss Community Documentation Page 33 of 53

WildFly 10

5554:2_2_HVGA

JBoss - JavaEE Tutorial - JAX-RS

o000
Host.

tutorial-tdiesler.rhcloud.com :

port ® ¢ ('v;G -
§ -

10205 Js {5-Js J2.s [s o
o o e Jn fr Jv Ju 1 Jo [
s o [e Jo Ju |y [x |u |
2z Jc v [s v lw [, o2
P — P

When going back to the application using the little back arrow next to Menu, you should see a list of books.

JBoss Community Documentation Page 34 of 53

WildFly 10

5554:2_2_HVGA

—
6
AdD®O O

The Refusa

i J2 (3 jals {6 |7 s |ofo
o wle R {1 [v]uliole
PP P P PR P PR P E

2z x jc v s nw|. |&
L owle ||

You can now add, edit and delete books and switch between your browser and the emulator to verify that the
client app is not cheating and that the books are in fact in the cloud on your JBossAS 7 instance.

In Eclipse you can go to the Debug perspective and click on the little Android robot in the lower right corner.
This will display the LogCat view, which should display log output from that Android system as well as from
this client app

08-30 09: 05:46.180: | NFQ JaxrsSanpl e(269): renoveBook: Book [isbn=1234, title=1234]

08-30 09: 05: 46.210: | NFQ Jaxr sSanpl e(269): request URl:
http://tutorial-tdiesler.rhcloud.com80/jaxrs-sanple/library

08-30 09: 05:46.860: | NFQ gl obal (269): Default buffer size used in Bufferedl nput Stream
constructor. It would be better to be explicit if an 8k buffer is required.

08-30 09: 05: 46. 920: | NFQ Jaxr sSanpl e(269): get Books: [Book [isbn=001, title=The Judgnent], Book
[isbn=002, title=The Stoker], Book [isbn=003, title=Jackals and Arabs], Book [isbn=004,

titl e=The Refusal]]

Exploring the mobile client

There is a lot to writing high quality mobile applications. The goal of this little application is to get you started
with JBossAS 7 / Android integration. There is also a portable approach to writing mobile applications. A
popular one would be through PhoneGap. With PhoneGap you write your application in HTML+CSS+Java
Script. It then runs in the browser of your mobile device. Naturally, not the full set of mobile platform APIs
would be available through this approach.

JBoss Community Documentation Page 35 of 53

http://www.phonegap.com
http://www.phonegap.com/about/features

AN WildFly 10

The JAX-RS client application uses an annotated library client interface

@onsunes({ "application/json" })
@r oduces({ "application/json" })
public interface Librarydient {

@ET
@at h("/ books")
publ i c Li st<Book> get Books();

@ET
@pat h("/ book/ {i sbn}")
publ i ¢ Book get Book(@athParan{"isbn") String id);

@ur
@rat h("/ book/ {isbn}")
publ i ¢ Book addBook(@at hParan("isbn") String id, @ueryParan("title") String title);

@GosT
@at h("/book/{isbn}")
publ i ¢ Book updat eBook(@&at hParan{"isbn") String id, String title);

@ELETE
@at h("/ book/ {isbn}")
publ i c Book renpbveBook(@athParan("isbn") String id);

There are two implementations of this interface available.

® LibraryHttpclient
® LibraryResteasyClient

The first uses APIs that are available in the Android SDK natively. The code is much more involved, but
there would be no need to add external libraries (i.e. resteasy, jackson, etc). The effect is that the total size
of the application is considerably smaller in size (i.e. 40k)

JBoss Community Documentation Page 36 of 53

WildFly 10

@verride
public List<Book> getBooks() {
Li st <Book> result = new ArraylLi st <Book>();
String content = get("books");
Log. d(LOG TAG "Result content:" + content);
if (content != null) {
try {
JSONTokener tokener = new JSONTokener (content);

JSONArray array = (JSONArray) tokener. nextVal ue();

for (int i =0; i < array.length(); i++) {
JSONhj ect obj = array.get JSONObj ect (i);
String title = obj.getString("title");
String isbn = obj.getString("isbn");
resul t.add(new Book(isbn, title));

}

} catch (JSONException ex) {
ex. printStackTrace();

}
Log.i (LOG TAG "getBooks: " + result);
return result;

private String get(String path) {
try {
Htt pGet request = new HttpGet (get Request URI (path));
Ht t pResponse res = httpdient. execute(request);

String content = EntityUtils.toString(res.getEntity());

return content;

} catch (Exception ex) {
ex. printStackTrace();
return null;

The second implementation uses the fabulous RESTEasy client proxy to interact with the JAX-RS endpoint.
The details of Http connectivity and JSON data binding is transparently handled by RESTEasy. The total

size of the application is considerably bigger in size (i.e. 400k)

@verride
public List<Book> getBooks() {
Li st <Book> result = new ArrayLi st <Book>();
try {
result = getLibrarydient().getBooks();
} catch (RuntimeException ex) {
ex. printStackTrace();
}
Log.i (LOG TAG "getBooks: " + result);
return result;

JBoss Community Documentation

Page 37 of 53

WildFly 10

Stay tuned for an update on a much more optimized version of the RESTEasy mobile client. Feasible is also

a RESTEasy JavaScript library that would enable the portable PhoneGap approach.

2.3.2 Java Servlet Technology

» Coming Soon

This guide is still under development, check back soon!

Content

® Asynchronous Support

Asynchronous Support

2.3.3 Java Server Faces Technology (JSF)

2.3.4 Java Persistence API (JPA)

2.3.5 Java Transaction APl (JTA)

5 Coming Soon

This guide is still under development, check back soon!

2.3.6 Managed Beans

2.3.7 Contexts and Dependency Injection (CDI)

2.3.8 Bean Validation

JBoss Community Documentation

Page 38 of 53

WildFly 10

2.3.9 Java Message Service APl (JMS)

» Coming Soon

This guide is still under development, check back soon!

® Configure JBossAS for Messaging
® Adding the message destinations

Configure JBossAS for Messaging

Currently, the default configuration does not include the JMS subsystem. To enable JMS in the standalone
server you need to add these configuration items to standalone.xml or simply use standalone-full.xml.

<ext ensi on nodul e="org.j boss. as. messagi ng"/ >

<subsyst em xm ns="ur n: j boss: domai n: messagi ng: 1. 0" >
<l-- Default journal file size is 10My, reduced here to 100k for faster first boot -->
<journal -file-size>102400</journal -file-size>
<journal-mn-files>2</journal -mn-fil es>
<j ournal -type>N O</j our nal -t ype>
<!-- disabl e messagi ng persistence -->
<per si st ence- enabl ed>f al se</ per si st ence- enabl ed>

<connect or s>
<netty-connector nanme="netty" socket-bi ndi ng="nmessagi ng" />
<netty-connector name="netty-throughput" socket-bi ndi ng="nmessagi ng-t hr oughput ">
<par am key="bat ch- del ay" val ue="50"/>
</ netty-connect or >
<in-vm connector name="in-vm' server-id="0" />
</ connect or s>

<accept or s>
<netty-acceptor name="netty" socket-bi ndi ng="nmessagi ng" />
<netty-acceptor name="netty-throughput" socket-bi ndi ng="nmessagi ng-t hr oughput ">
<par am key="bat ch-del ay" val ue="50"/>
<param key="di rect-deliver" value="fal se"/>
</ netty-acceptor>
<accept or nanme="stonp-acceptor">

<factory-cl ass>org. hornetq.core.renoting.inpl.netty. NettyAcceptorFactory</factory-class>
<par am key="protocol " val ue="stonp" />
<param key="port" val ue="61613" />
</ acceptor >
<in-vmacceptor name="in-vn' server-id="0" />
</ accept or s>

<security-settings>
<security-setting match="#">
<perm ssi on type="creat eNonDur abl eQueue" rol es="guest"/>

JBoss Community Documentation Page 39 of 53

WildFly 10

<perm ssion type="del et eNonDur abl eQueue" rol es="guest"/>
<perm ssion type="consunme" rol es="guest"/>
<perm ssion type="send" rol es="guest"/>
</ security-setting>
</ security-settings>

<addr ess-setti ngs>
<l--default for catch all-->
<address-setting match="#">
<dead-| etter-address>j ns. queue. DLQ</ dead- | ett er - addr ess>
<expi ry-addr ess>j nms. queue. Expi r yQueue</ expi ry- addr ess>
<redel i very-del ay>0</redel i very-del ay>
<max- si ze- byt es>10485760</ max- si ze- byt es>

<message-count er-hi story-day-1imt>10</ message-counter-history-day-limt>

<address-full -policy>BLOCK</ addr ess-full-policy>
</ addr ess-setting>
</ addr ess-settings>

<l--JMS Stuff-->
<j ms- connection-factori es>
<connection-factory name="|nVmConnecti onFactory">
<connect or s>
<connect or-ref connector-nane="in-vni'/>
</ connect or s>
<entries>
<entry name="j ava:/ Connecti onFactory"/>
</entries>
</ connection-factory>
<connection-factory nanme="Renot eConnecti onFactory">
<connect or s>
<connector-ref connector-name="netty"/>
</ connect or s>
<entries>
<entry nanme="Renot eConnecti onFactory"/>
</entries>
</ connection-factory>
<pool ed- connection-factory nane="hornetg-ra">
<transacti on node="xa"/>
<connect or s>
<connector-ref connector-name="in-vm'/>
</ connect or s>
<entries>
<entry nanme="java:/JnsXA"/>

<l-- Gobal JNDI entry used to provide a default JMS Connection factory to EE

application -->
<entry name="j ava:] boss/ Def aul t JIMSConnecti onFactory"/>
</entries>
</ pool ed- connecti on-factory>
</j ms-connecti on-factori es>

<j ms- desti nati ons>
<j ms- queue nane="t est Queue" >
<entry nanme="queue/test"/>
</j ms- queue>
<j ms-topi c name="t est Topi c">
<entry nane="topic/test"/>
</jms-topic>
</j ms- desti nati ons>

JBoss Community Documentation

Page 40 of 53

AN WildFly 10

</ subsyst en>

<socket - bi ndi ng nane="nessagi ng" port="5445" />
<socket - bi ndi ng nane="nessagi ng-t hroughput" port="5455"/>

Alternatively run the server using the preview configuration

$ bin/standal one. sh --server-confi g=standal one-previ ew. xm

Adding the message destinations

For this tutorial we use two message destinations

® BidQueue - The queue that receives the client bids
® AuctionTopic - The topic that publishes the start of a new auction

You can either add the message destinations by using the Command Line Interface (CLI)

$ bin/jboss-adnm n.sh --connect

Connected to standal one controller at |ocal host: 9999

[st andal one@ ocal host: 9999 /] j ns-queue add --queue-address=Bi dQueue --entries=queue/ bid

[standal one@ ocal host:9999 /] jns-topic add --topic-address=Aucti onTopic --entries=topic/auction
[standal one@ ocal host: 9999 /] exit

Cl osed connection to | ocal host: 9999

or by adding them to the subsytem configuration as shown above.

2.3.10 JavaEE Connector Architecture (JCA)

2.3.11 JavaMail API

JBoss Community Documentation Page 41 of 53

WildFly 10

2.3.12 Java Authorization Contract for Containers (JACC)

In order to register your own JACC Module, you'll need to create a server module containing the required
classes, and then set three system properties for WildFly to take it. Such a module would depend on the
"javax.api" and "javaee.api" modules.

An example module.xml for such a module could be:

<nmodul e xm ns="urn: j boss: nodul e: 1. 1" nanme="com exanpl e. cust onj acc" >
<r esour ces>
<resour ce-root path="custonjacc.jar"/>
</ resour ces>
<dependenci es>
<nmodul e nane="j avax. api "/ >
<nmodul e nane="j avaee. api "/ >
</ dependenci es>
</ modul e>

The specified JAR needs to contain at least two classes, as mandated by the JACC spec:

® APolicyProvider implementation: in our example, it'll be
com exanpl e. cust onj acc. Cust onPol i cy.
® APolicyConfigurationFactory implementation:
com exanpl e. cust onj acc. Cust onPol i cyConfi gurati onFact ory in our case.

The spec requires two system properties to be set for the server to register the JACC Module.

For a server running in standalone mode, put the following commands in the JBoss CLI:

[st andal one@ ocal host: 9990 /]

/ syst em property=javax. security.jacc. policy.provider:add(val ue=com exanpl e. cust onj acc. Cust onPol i cy
/1

/ syst em property=j avax. security.jacc. Pol i cyConfigurationFactory. provi der:add(val ue=com exanpl e. cus

Another property is needed to make WildFly know where to load the classes from:

[st andal one@ ocal host: 9990 /]
/ syst em property=org.jboss. as.security.jacc-nodul e: add(val ue=com exanpl e. cust onj acc)

JBoss Community Documentation Page 42 of 53

WildFly 10

2.3.13 Java Authentication Service Provider Interface for
Containers (JASPIC)

JASPI is not available by default for deployments, and a specific Security Domain must be created to use it.
For a simplified developer experience, a default JASPI Domain is already bundled, called j aspi t est .

To make use of it, a Web Application only needs to specifiy the desired security domain in the
j boss-web. xm deployment descriptor. This file should be located under the VEEB- | NF directory. An
example j boss-web. xnl enabling the default JASPI domain:

<?xm version="1.0"?>
<j boss-web xm ns="http://ww.]jboss. conl xm /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. j boss. conl xm / ns/j avaee
http://ww. jboss. org/j2eel/ schema/j boss-web_10_0. xsd"
versi on="10. 0" >
<security-domai n>j aspi test</security-domai n>
</ j boss-web>

For EAR deployments, a j boss- app. xm like the following should be used instead, placed under the root
META-INF directory:

<?xm version="1.0" encodi ng="UTF-8"?>

<j boss-app xm ns="http://ww. jboss. conl xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance"
versi on="7.0">
<security-domai n>j aspi test </ security-domai n>

</j boss-app>

JBoss Community Documentation Page 43 of 53

= WildFly 10

2.3.14 Enterprise JavaBeans Technology (EJB)

In this section we'll look at the two main types of beans (Session Beans and Message Driven Beans), the
methods to access and the packaging possibilities of beans.

» Coming Soon

This guide is still under development, check back soon!

® Session Beans
® Stateful Session Beans
® Stateless Session Beans
® Singleton Session Beans
® Message Driven Beans
®* How can Enterprise JavaBeans can be accessed?
® Remote call invocation
® | ocal call invocation
®* \Web Services
® Packaging

Session Beans
Stateful Session Beans
Stateless Session Beans

Singleton Session Beans
Message Driven Beans

How can Enterprise JavaBeans can be accessed?
Remote call invocation
Local call invocation

Web Services

Packaging

JBoss Community Documentation Page 44 of 53

AN WildFly 10

2.3.15 Java API for XML Web Services (JAX-WS)

JBossWS uses the JBoss Application Server as its target container. The following examples focus on web
service deployments that leverage EJB3 service implementations and the JAX-WS programming models.

For further information on POJO service implementations and advanced topics you need consult the user

guide.

Developing web service implementations

JAX-WS does leverage annotations in order to express web service meta data on Java components and to
describe the mapping between Java data types and XML. When developing web service implementations
you need to decide whether you are going to start with an abstract contract (WSDL) or a Java component.

If you are in charge to provide the service implementation, then you are probably going to start with the
implementation and derive the abstract contract from it. You are probably not even getting in touch with the
WSDL unless you hand it to 3rd party clients. For this reason we are going to look at a service
implementation that leverages JSR-181 annotations.

@ Even though detailed knowledge of web service meta data is not required, it will definitely help if
you make yourself familiar with it. For further information see

® \Web service meta data (JSR-181)
® Java API for XML binding (JAXB)
® Java API for XML-Based Web Services

The service implementation class
When starting from Java you must provide the service implementation. A valid endpoint implementation
class must meet the following requirements:

® |t mustcarry aj avax.j ws. WebSer vi ce annotation (see JSR 181)
* All method parameters and return types must be compatible with the JAXB 2.0

Let's look at a sample EJB3 component that is going to be exposed as a web service.

Don't be confused with the EJB3 annotation @bt at el ess. We concentrate on the @\ebSer vi ce annotation
for now.

JBoss Community Documentation Page 45 of 53

https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222
http://www.jcp.org/en/jsr/summary?id=224

WildFly 10

Implementing the service

package org.jboss.test.ws.jaxws.sanples.retail.profile;

i mport javax.ejb. Stateless;

i mport javax.jws.WbService;

i mport javax.jws.WebMet hod;

i mport javax.jws.soap. SOAPBi ndi ng;

@5t at el ess (1)
@\ebSer vi ce((2)
name="Profil eMgnt",
target Namespace = "http://org.jboss.ws/sanples/retail/profile",
servi ceName = "Profil eMynt Servi ce")
@QAPBI ndi ng(par anet er St yl e = SOAPBI ndi ng. Par anet er St yl e. BARE) (3)
public class Profil eMgnt Bean {
@\ebMet hod (4)

publ i ¢ Di scount Response get Cust oner Di scount (Di scount Request request) {

return new Di scount Response(request. get Custoner(),

}
}
1. W are using a statel ess session bean inplenentation
2. Exposed a web service with an explicit nanmespace
3. It's a doc/lit bare endpoint
4. And offers an 'getCustomerDi scount' operation

10. 00) ;

JBoss Community Documentation

Page 46 of 53

A WildFly 10

What about the payload?

The method parameters and return values are going to represent our XML payload and thus require being
compatible with JAXB2. Actually you wouldn't need any JAXB annotations for this particular example,
because JAXB relies on meaningful defaults. For the sake of documentation we put the more important ones
here.

Take a look at the request parameter:

package org.jboss.test.ws.jaxws.sanples.retail.profile;

i mport javax.xm . bind. annotati on. Xnl AccessType,;
i mport javax.xmnl . bind. annot ati on. Xnl Accessor Type;
i mport javax.xml .bind.annotation. Xm Type;

import org.jboss.test.ws.jaxws.sanples.retail.Custoner;

@m Accessor Type(Xnl AccessType. Fl ELD)

@ Type((1)
nanme = "di scount Request",
nanmespace="http://org.jboss.ws/sanples/retail/profile",
propOrder = { "customer" }

)
public class D scount Request {

prot ected Customer custoner;

public Discount Request() {
}

publ i ¢ D scount Request (Cust onmer custoner) {
this. custonmer = custoner;

public Customer getCustomer() {
return custoner;

public void setCustoner(Custoner value) {
this. custoner = val ue;

1. In this case we use @m Type to specify an XM. conpl ex type name and override the nanespace.

» If you have more complex mapping problems you need to consult the JAXB documentation.

JBoss Community Documentation Page 47 of 53

http://java.sun.com/webservices/jaxb/

AN WildFly 10

Deploying service implementations

Service deployment basically depends on the implementation type. As you may already know web services
can be implemented as EJB3 components or plain old Java objects. This quick start leverages EJB3
components, that's why we are going to look at this case in the next sections.

EJB3 services

Simply wrap up the service implementation class, the endpoint interface and any custom data types in a JAR
and drop them in the deployment directory. No additional deployment descriptors required. Any meta data
required for the deployment of the actual web service is taken from the annotations provided on the
implementation class and the service endpoint interface. JBossWS will intercept that EJB3 deployment (the
bean will also be there) and create an HTTP endpoint at deploy-time.

The JAR package structure
jar -tf jaxws-samples-retail.jar

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

@ ifthe deployment was successful you should be able to see your endpoint in the application server
management console.

Consuming web services

When creating web service clients you would usually start from the WSDL. JBossWS ships with a set of
tools to generate the required JAX-WS artefacts to build client implementations. In the following section we
will look at the most basic usage patterns. For a more detailed introduction to web service client please
consult the user guide.

JBoss Community Documentation Page 48 of 53

AN WildFly 10

Creating the client artifacts

Using wsconsume

The wsconsume tool is used to consume the abstract contract (WSDL) and produce annotated Java classes
(and optionally sources) that define it. We are going to start with the WSDL from our retail example
(ProfileMgmtService.wsdl). For a detailed tool reference you need to consult the user guide.

wsconsune is a command |ine tool that generates
portable JAX-W5 artifacts froma WSDL file.

usage: org.jboss.ws.tools.jaxws.comand. wsconsunme [options] <wsdl-url>

opti ons:
-h, --help Show this hel p nessage
-b, --binding=<file> One or nmore JAX-WS or JAXB binding files
-k, --keep Keep/ Generate Java source
-c --catal og=<file> Casis XM. Catalog file for entity resolution
-p --package=<nane> The target package for generated source
-w --wsdl Locati on=<| oc> Val ue to use for @WbService. wsdl Location
-0, --output=<directory> The directory to put generated artifacts
-s, --source=<directory> The directory to put Java source
-g, --qQuiet Be sonewhat nore quiet
-t, --showtraces Show full exception stack traces

Let's try it on our sample:

~./wsconsune.sh -k -p org.jboss.test.ws.jaxws.sanples.retail.profile ProfileMnt Service. wsdl

(1)

org/jboss/test/ws/jaxws/sanpl es/retail/profile/Custoner.java
org/jboss/test/ws/jaxws/sanpl es/retail/profile/D scount Request.java
org/jboss/test/ws/jaxws/sanpl es/retail/profile/D scount Response.java
org/jboss/test/ws/jaxws/sanpl es/retail/profil e/ ObjectFactory.java
org/jboss/test/ws/jaxws/sanples/retail/profile/ProfileMnt.java
org/jboss/test/ws/jaxws/sanpl es/retail/profile/Profil eMynt Service.java
org/jboss/test/ws/jaxws/sanpl es/retail/profile/package-info.java

1. Asyou can see we did use the - p switch to specify the package name of the generated sources.

JBoss Community Documentation Page 49 of 53

AN WildFly 10

The generated artifacts explained

File Purpose

ProfileMgmt.java Service Endpoint Interface
Customer.java Custom data type

Discount*.java Custom data type

ObjectFactory.java JAXB XML Registry
package-info.java Holder for JAXB package annotations

ProfileMgmtService.java Service factory

Basically wsconsume generates all custom data types (JAXB annotated classes), the service endpoint
interface and a service factory class. We will look at how these artifacts can be used the build web service
client implementations in the next section.

Constructing a service stub

Web service clients make use of a service stubs that hide the details of a remote web service invocation. To
a client application a WS invocation just looks like an invocation of any other business component. In this
case the service endpoint interface acts as the business interface. JAX-WS does use a service factory class
to construct this as particular service stub:

i mport javax.xm .ws. Service;

[...1]

Service service = Service.create((1)
new URL("http://exanpl e.org/service?wsdl "),

new QNanme(" MyService")

)

ProfileMynt profileMgmt = service.getPort(ProfileMnt.class); (2)

/1 do sonmething with the service stub here... (3)

1. Create a service factory using the WSDL location and the service name
2. Use the tool created service endpoint interface to build the service stub
3. Use the stub like any other business interface

Appendix

Sample wsdl contract

<definitions
nanme=' Profil eMynt Ser vi ce'
t ar get Nanespace="http://org.j boss.ws/sanples/retail/profile'
xm ns=' http://schemas. xm soap. or g/ wsdl /'
xm ns: nsl='http://org.jboss.ws/sanples/retail"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"'
xmns:tns="http://org.jboss. ws/sanples/retail/profile'

JBoss Community Documentation Page 50 of 53

WildFly 10

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena' >
<t ypes>

<xs:schema target Nanespace=' http://org.jboss.ws/sanpl es/retail
version="1.0" xm ns:xs="http://wwmw. w3. org/ 2001/ XM_Schena' >
<xs: conpl exType nanme=' custoner' >
<Xs: sequence>
<xs:element m nCccurs="0" name='creditCardDetails' type='xs:string />
<xs:element m nCccurs='"0" nanme='firstName' type='xs:string' />
<xs:element m nCccurs="0" nanme='lastNane' type='xs:string' />
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

<xs:schema
t ar get Namespace="http://org.j boss. ws/sanples/retail/profile
version="1.0'
xm ns: nsl='http://org.jboss.ws/sanples/retail
xm ns:tns="http://org.jboss.ws/sanples/retail/profile
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena' >

<xs:inport nanespace='http://org.jboss.ws/sanples/retail'/>
<xs: el ement nane=' get Cust oner Di scount
nillable="true' type='tns:discountRequest'/>
<xs: el ement name=' get Cust oner Di scount Response
nillable="true' type='tns:discountResponse'/>
<xs: conpl exType name='di scount Request"' >
<Xs:sequence>
<xs:element m nCccurs='0" nane='custoner' type='nsl:custoner'/>

</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType name='di scount Response' >
<Xs:sequence>
<xs:element m nCccurs='"0" nane='custoner' type='nsl:custoner'/>
<xs: el ement nane='di scount' type='xs:double'/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

</types>

<message nane=' Profil eMgnt _get Cust oner Di scount' >

<part el ement="tns: get Cust oner Di scount’' nane='get Cust oner Di scount' />
</ message>
<message name='Profil eMynt _get Cust ormer Di scount Response' >

<part el enent="'tns: get Cust oner Di scount Response

name=' get Cust ormer Di scount Response' / >

</ message>
<port Type nane='Profil eMgnt' >

<operati on nanme=' get Cust oner Di scount

par anet er Or der =' get Cust omer Di scount ' >

<i nput nessage='tns: Profil eMgnt _get Cust oner Di scount' />
<out put nessage='tns: Profil eMgmt _get Cust orer Di scount Response' / >
</ operati on>
</ port Type>

JBoss Community Documentation Page 51 of 53

E§><;7
A WildFly 10

<bi ndi ng name=' Profil eMynt Bi ndi ng" type="tns:ProfileMnt'>
<soap: bi ndi ng styl e=' docunent
transport="http://schemas. xm soap. org/ soap/ http'/>
<oper ati on nanme=' get Cust oner Di scount' >
<soap: operati on soapAction=""'/>
<i nput >

<soap: body use='literal'/>
</i nput >
<out put >
<soap: body use='literal'/>
</ out put >
</ oper ati on>
</ bi ndi ng>
<servi ce nanme='Profil eMgnt Service' >
<port binding="tns:Profil eMynt Bi ndi ng" name='Profil eMgnt Port"' >

<soap: addr ess
| ocation="http://<HOST>: <PORT>/ j axws- sanpl es-retail/Profil eMgnt Bean' / >
</ port>
</ servi ce>
</ definitions>

JBoss Community Documentation Page 52 of 53

A WildFly 10

2.4 JBoss AS7 Extension Technologies

" Coming Soon

This guide is still under development, check back soon!

1. OSGi Technology
2. Management Interface

2.4.1 Management Interface

. Coming Soon

This guide is still under development, check back soon!

®* Management via the Java Management Extension (JMX)
® Management via RESTful services
® Batch Management / Command Line Interface (CLI)

Management via the Java Management Extension (JMX)
Management via RESTful services

Batch Management / Command Line Interface (CLI)

JBoss Community Documentation Page 53 of 53

	Getting Started with WildFly 10
	Download
	Requirements
	Installation
	WildFly - A Quick Tour
	WildFly 10 Directory Structure
	Standalone Directory Structure
	Domain Directory Structure

	WildFly 10 Configurations
	Standalone Server Configurations
	Domain Server Configurations

	Starting WildFly 10
	Starting WildFly 10 with an Alternate Configuration
	Test Your Installation

	Managing your WildFly 10
	Authentication
	Administration Console
	Command-Line Interface

	Modifying the Example DataSource
	Configure Logging in WildFly 10

	JavaEE 6 Tutorial
	Standard JavaEE 6 Technologies
	JBoss AS7 Extension Technologies
	Standard JavaEE 6 Technologies
	Java API for RESTful Web Services (JAX-RS)
	Content
	Tutorial Overview
	What are RESTful Web Services?
	Creating a RESTful endpoint
	Package and build the endpoint
	Deploy the endpoint to OpenShift
	Building the mobile client
	Exploring the mobile client

	Java Servlet Technology
	Content
	Asynchronous Support

	Java Server Faces Technology (JSF)
	Java Persistence API (JPA)
	Java Transaction API (JTA)
	Managed Beans
	Contexts and Dependency Injection (CDI)
	Bean Validation
	Java Message Service API (JMS)
	Configure JBossAS for Messaging
	Adding the message destinations

	JavaEE Connector Architecture (JCA)
	JavaMail API
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Enterprise JavaBeans Technology (EJB)
	Session Beans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	Message Driven Beans
	How can Enterprise JavaBeans can be accessed?
	Remote call invocation
	Local call invocation
	Web Services

	Packaging

	Java API for XML Web Services (JAX-WS)
	Developing web service implementations
	The service implementation class
	Implementing the service
	What about the payload?

	Deploying service implementations
	EJB3 services
	 The JAR package structure

	Consuming web services
	Creating the client artifacts
	Using wsconsume
	 The generated artifacts explained

	Constructing a service stub
	Appendix
	Sample wsdl contract

	JBoss AS7 Extension Technologies
	Management Interface
	Management via the Java Management Extension (JMX)
	Management via RESTful services
	Batch Management / Command Line Interface (CLI)

