
WildFly 10

JBoss Community Documentation Page of 1 53

Getting Started Guide

Exported from at 2017-06-19 14:17:03 EDTJBoss Community Documentation Editor

Copyright 2017 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY10

WildFly 10

JBoss Community Documentation Page of 2 53

Table of Contents

1 Getting Started with WildFly 10 ___ 4

1.1 Download ___ 5

1.2 Requirements __ 6

1.3 Installation ___ 6

1.4 WildFly - A Quick Tour ___ 6

1.4.1 WildFly 10 Directory Structure __ 6

1.4.2 WildFly 10 Configurations ___ 9

1.4.3 Starting WildFly 10 ___ 9

1.4.4 Starting WildFly 10 with an Alternate Configuration ________________________________ 9

1.4.5 Managing your WildFly 10 __ 11

1.4.6 Modifying the Example DataSource ___ 13

2 JavaEE 6 Tutorial __ 16

2.1 Standard JavaEE 6 Technologies __ 16

2.2 JBoss AS7 Extension Technologies __ 16

2.3 Standard JavaEE 6 Technologies __ 16

2.3.1 Java API for RESTful Web Services (JAX-RS) __________________________________ 17

2.3.2 Java Servlet Technology ___ 38

2.3.3 Java Server Faces Technology (JSF) ___ 38

2.3.4 Java Persistence API (JPA) ___ 38

2.3.5 Java Transaction API (JTA) ___ 38

2.3.6 Managed Beans __ 38

2.3.7 Contexts and Dependency Injection (CDI) ______________________________________ 38

2.3.8 Bean Validation __ 38

2.3.9 Java Message Service API (JMS) __ 38

2.3.10 JavaEE Connector Architecture (JCA) ___ 41

2.3.11 JavaMail API __ 41

2.3.12 Java Authorization Contract for Containers (JACC) _______________________________ 42

2.3.13 Java Authentication Service Provider Interface for Containers (JASPIC) ______________ 43

2.3.14 Enterprise JavaBeans Technology (EJB) ______________________________________ 44

2.3.15 Java API for XML Web Services (JAX-WS) _____________________________________ 44

2.4 JBoss AS7 Extension Technologies __ 53

2.4.1 Management Interface ___ 53

WildFly 10

JBoss Community Documentation Page of 3 53

Getting Started with WildFly 10

Download

Requirements

Installation

WildFly - A Quick Tour

WildFly 10 Directory Structure

WildFly 10 Configurations

Starting WildFly 10

Starting WildFly 10 with an Alternate Configuration

Managing your WildFly 10

Modifying the Example DataSource

WildFly 10

JBoss Community Documentation Page of 4 53

1 Getting Started with WildFly 10
WildFly 10 is the latest release in a series of JBoss open-source application server offerings. WildFly 10 is

an exceptionally fast, lightweight and powerful implementation of the Java Enterprise Edition 7 Platform

specifications. The state-of-the-art architecture built on the Modular Service Container enables services

on-demand when your application requires them. The table below lists the Java Enterprise Edition 7

technologies and the technologies available in WildFly 10 server configuration profiles.

Java EE 7 Platform Technology Java EE

7

Full

Profile

Java EE

7

Web

Profile

WildFly

10

Full

Profile

WildFly

10

Web

Profile

JSR-356: Java API for Web Socket X X X X

JSR-353: Java API for JSON Processing X X X X

JSR-340: Java Servlet 3.1 X X X X

JSR-344: JavaServer Faces 2.2 X X X X

JSR-341: Expression Language 3.0 X X X X

JSR-245: JavaServer Pages 2.3 X X X X

JSR-52: Standard Tag Library for JavaServer Pages (JSTL)

1.2

X X X X

JSR-352: Batch Applications for the Java Platform 1.0 X -- X --

JSR-236: Concurrency Utilities for Java EE 1.0 X X X X

JSR-346: Contexts and Dependency Injection for Java 1.1 X X X X

JSR-330: Dependency Injection for Java 1.0 X X X X

JSR-349: Bean Validation 1.1 X X X X

JSR-345: Enterprise JavaBeans 3.2 X

CMP 2.0

Optional

X

(Lite)

X

CMP 2.0

Not

Available

X

(Lite)

JSR-318: Interceptors 1.2 X X X X

JSR-322: Java EE Connector Architecture 1.7 X -- X X

JSR-338: Java Persistence 2.1 X X X X

JSR-250: Common Annotations for the Java Platform 1.2 X X X X

JSR-343: Java Message Service API 2.0 X -- X --

WildFly 10

JBoss Community Documentation Page of 5 53

JSR-907: Java Transaction API 1.2 X X X X

JSR-919: JavaMail 1.5 X -- X X

JSR-339: Java API for RESTFul Web Services 2.0 X X X X

JSR-109: Implementing Enterprise Web Services 1.3 X -- X --

JSR-224: Java API for XML-Based Web Services 2.2 X X X X

JSR-181: Web Services Metadata for the Java Platform X -- X --

JSR-101: Java API for XML-Based RPC 1.1 Optional -- -- --

JSR-67: Java APIs for XML Messaging 1.3 X -- X --

JSR-93: Java API for XML Registries Optional -- -- --

JSR-196: Java Authentication Service Provider Interface for

Containers 1.1

X -- X --

JSR-115: Java Authorization Contract for Containers 1.5 X -- X --

JSR-88: Java EE Application Deployment 1.2 Optional -- -- --

JSR-77: J2EE Management 1.1 X X

JSR-45: Debugging Support for Other Languages 1.0 X X X X

Missing HornetQ and JMS?

The WildFly Web Profile doesn't include JMS (provided by HornetQ) by default. If you want to use

messaging, make sure you start the server using the "Full Profile" configuration.

This document provides a quick overview on how to download and get started using WildFly 10 for your

application development. For in-depth content on administrative features, refer to the WildFly 10 Admin

Guide.

1.1 Download

WildFly 10 distributions can be obtained from:

wildfly.org/downloads

WildFly 10 provides a single distribution available in zip or tar file formats.

wildfly-10.0.0.Final.zip

wildfly-10.0.0.Final.tar.gz

http://www.wildfly.org/downloads/

WildFly 10

JBoss Community Documentation Page of 6 53

1.2 Requirements

Java SE 8 or later (we recommend that you use the latest update available)

1.3 Installation

Simply extract your chosen download to the directory of your choice. You can install WildFly 10 on any

operating system that supports the zip or tar formats. Refer to the Release Notes for additional information

related to the release.

1.4 WildFly - A Quick Tour

Now that you’ve downloaded WildFly 10, the next thing to discuss is the layout of the distribution and explore

the server directory structure, key configuration files, log files, user deployments and so on. It’s worth

familiarizing yourself with the layout so that you’ll be able to find your way around when it comes to

deploying your own applications.

1.4.1 WildFly 10 Directory Structure

DIRECTORY DESCRIPTION

appclient Configuration files, deployment content, and writable areas used by the

application client container run from this installation.

bin Start up scripts, start up configuration files and various command line utilities like

Vault, add-user and Java diagnostic report

available for Unix and Windows environments

bin/client Contains a client jar for use by non-maven based clients.

docs/schema XML schema definition files

docs/examples/configs Example configuration files representing specific use cases

domain Configuration files, deployment content, and writable areas used by the domain

mode processes run from this installation.

modules WildFly 10 is based on a modular classloading architecture. The various modules

used in the server are stored here.

standalone Configuration files, deployment content, and writable areas used by the single

standalone server run from this installation.

welcome-content Default Welcome Page content

WildFly 10

JBoss Community Documentation Page of 7 53

Standalone Directory Structure
In " " mode each WildFly 10 server instance is an independent process (similar to previous JBossstandalone

AS versions; e.g., 3, 4, 5, or 6). The configuration files, deployment content and writable areas used by the

single standalone server run from a WildFly installation are found in the following subdirectories under the

top level "standalone" directory:

DIRECTORY DESCRIPTION

configuration Configuration files for the standalone server that runs off of this installation. All configuration

information for the running server is located here and is the single place for configuration

modifications for the standalone server.

data Persistent information written by the server to survive a restart of the server

deployments End user deployment content can be placed in this directory for automatic detection and

deployment of that content into the server's runtime.

NOTE: The server's management API is recommended for installing deployment content.

File system based deployment scanning capabilities remain for developer convenience.

lib/ext Location for installed library jars referenced by applications using the Extension-List

mechanism

log standalone server log files

tmp location for temporary files written by the server

tmp/auth Special location used to exchange authentication tokens with local clients so they can

confirm that they are local to the running AS process.

WildFly 10

JBoss Community Documentation Page of 8 53

Domain Directory Structure
A key feature of WildFly 10 is the managing multiple servers from a single control point. A collection of

multiple servers are referred to as a " ". Domains can span multiple physical (or virtual) machinesdomain

with all WildFly instances on a given host under the control of a Host Controller process. The Host

Controllers interact with the Domain Controller to control the lifecycle of the WildFly instances running on

that host and to assist the Domain Controller in managing them. The configuration files, deployment content

and writeable areas used by domain mode processes run from a WildFly installation are found in the

following subdirectories under the top level "domain" directory:

DIRECTORY DESCRIPTION

configuration Configuration files for the domain and for the Host Controller and any servers running off of

this installation. All configuration information for the servers managed wtihin the domain is

located here and is the single place for configuration information.

content an internal working area for the Host Controller that controls this installation. This is where it

internally stores deployment content. This directory is not meant to be manipulated by end

users.

Note that " " mode does not support deploying content based on scanning a filedomain

system.

lib/ext Location for installed library jars referenced by applications using the Extension-List

mechanism

log Location where the Host Controller process writes its logs. The Process Controller, a small

lightweight process that actually spawns the other Host Controller process and any

Application Server processes also writes a log here.

servers Writable area used by each Application Server instance that runs from this installation.

Each Application Server instance will have its own subdirectory, created when the server is

first started. In each server's subdirectory there will be the following subdirectories:

data -- information written by the server that needs to survive a restart of the server

log -- the server's log files

tmp -- location for temporary files written by the server

tmp location for temporary files written by the server

tmp/auth Special location used to exchange authentication tokens with local clients so they can

confirm that they are local to the running AS process.

WildFly 10

JBoss Community Documentation Page of 9 53

1.4.2 WildFly 10 Configurations

Standalone Server Configurations

standalone.xml ()default

Java Enterprise Edition 7 web profile certified configuration with the required technologies plus

those noted in the table above.

standalone-ha.xml

Java Enterprise Edition 7 web profile certified configuration with high availability

standalone-full.xml

Java Enterprise Edition 7 full profile certified configuration including all the required EE 7

technologies

standalone-full-ha.xml

Java Enterprise Edition 7 full profile certified configuration with high availability

Domain Server Configurations

domain.xml

Java Enterprise Edition 7 full and web profiles available with or without high availability

Important to note is that the and modes determine how the servers are managed notdomain standalone

what capabilities they provide.

1.4.3 Starting WildFly 10

To start WildFly 10 using the default web profile configuration in " " mode, change directory tostandalone

$JBOSS_HOME/bin.

./standalone.sh

To start the default web profile configuration using domain management capabilities,

./domain.sh

1.4.4 Starting WildFly 10 with an Alternate Configuration

If you choose to start your server with one of the other provided configurations, they can be accessed by

passing the --server-config argument with the server-config file to be used.

WildFly 10

JBoss Community Documentation Page of 10 53

To use the full profile with clustering capabilities, use the following syntax from $JBOSS_HOME/bin:

./standalone.sh --server-config=standalone-full-ha.xml

Similarly to start an alternate configuration in mode:domain

./domain.sh --domain-config=my-domain-configuration.xml

 Alternatively, you can create your own selecting the additional subsystems you want to add, remove, or

modify.

Test Your Installation
After executing one of the above commands, you should see output similar to what's shown below.

===

 JBoss Bootstrap Environment

 JBOSS_HOME: /opt/wildfly-10.0.0.Final

 JAVA: java

 JAVA_OPTS: -server -Xms64m -Xmx512m -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=256m

-Djava.net.preferIPv4Stack=true -Djboss.modules.system.pkgs=com.yourkit,org.jboss.byteman

-Djava.awt.headless=true

===

11:46:11,161 INFO [org.jboss.modules] (main) JBoss Modules version 1.5.1.Final

11:46:11,331 INFO [org.jboss.msc] (main) JBoss MSC version 1.2.6.Final

11:46:11,391 INFO [org.jboss.as] (MSC service thread 1-6) WFLYSRV0049: WildFly Full

10.0.0.Final (WildFly Core 2.0.10.Final) starting

<snip>

11:46:14,300 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: WildFly Full

10.0.0.Final (WildFly Core 2.0.10.Final) started in 1909ms - Started 267 of 553 services (371

services are lazy, passive or on-demand)

As with previous WildFly releases, you can point your browser to (if using the defaulthttp://localhost:8080

configured http port) which brings you to the Welcome Screen:

http://localhost:8080

WildFly 10

JBoss Community Documentation Page of 11 53

From here you can access links to the WildFly community documentation set, stay up-to-date on the latest

project information, have a discussion in the user forum and access the enhanced web-based Administration

Console. Or, if you uncover a defect while using WildFly, report an issue to inform us (attached patches will

be reviewed). This landing page is recommended for convenient access to information about WildFly 10 but

can easily be replaced with your own if desired.

1.4.5 Managing your WildFly 10

WildFly 10 offers two administrative mechanisms for managing your running instance:

web-based Administration Console

command-line interface

WildFly 10

JBoss Community Documentation Page of 12 53

Authentication
By default WildFly 10 is now distributed with security enabled for the management interfaces, this means

that before you connect using the administration console or remotely using the CLI you will need to add a

new user, this can be achieved simply by using the script in the bin folder.add-user.sh

After starting the script you will be guided through the process to add a new user: -

./add-user.sh

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a):

In this case a new user is being added for the purpose of managing the servers so select option a.

You will then be prompted to enter the details of the new user being added: -

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username :

Password :

Re-enter Password :

It is important to leave the name of the realm as 'ManagementRealm' as this needs to match the name used

in the server's configuration, for the remaining fields enter the new username, password and password

confirmation.

Provided there are no errors in the values entered you will then be asked to confirm that you want to add the

user, the user will be written to the properties files used for authentication and a confirmation message will

be displayed.

The modified time of the properties files are inspected at the time of authentication and the files reloaded if

they have changed, for this reason you do not need to re-start the server after adding a new user.

WildFly 10

JBoss Community Documentation Page of 13 53

Administration Console
To access the web-based Administration Console, simply follow the link from the Welcome Screen. To

directly access the Management Console, point your browser at:

http://localhost:9990/console

NOTE: port 9990 is the default port configured.

<management-interfaces>

 <native-interface security-realm="ManagementRealm">

 <socket-binding native="management-native"/>

 </native-interface>

 <http-interface security-realm="ManagementRealm">

 <socket-binding http="management-http"/>

 </http-interface>

</management-interfaces>

If you modify the socket binding in your running configuration: adjust the above commandmanagement-http

accordingly. If such modifications are made, then the link from the Welcome Screen will also be

inaccessible.

If you have not yet added at least one management user an error page will be displayed asking you to add a

new user, after a user has been added you can click on the 'Try Again' link at the bottom of the error page to

try connecting to the administration console again.

Command-Line Interface
If you prefer to manage your server from the command line (or batching), the script provides thejboss-cli.sh

same capabilities available via the web-based UI. This script is accessed from $JBOSS_HOME/bin

directory; e.g.,

$JBOSS_HOME/bin/jboss-cli.sh --connect

Connected to standalone controller at localhost:9990

Notice if no host or port information provided, it will default to localhost:9990.

When running locally to the WildFly process the CLI will silently authenticate against the server by

exchanging tokens on the file system, the purpose of this exchange is to verify that the client does have

access to the local file system. If the CLI is connecting to a remote WildFly installation then you will be

prompted to enter the username and password of a user already added to the realm.

Once connected you can add, modify, remove resources and deploy or undeploy applications. For a

complete list of commands and command syntax, type once connected.help

http://localhost:9990/console

WildFly 10

JBoss Community Documentation Page of 14 53

1.

2.

1.4.6 Modifying the Example DataSource

As with previous JBoss application server releases, a default data source, , is configured usingExampleDS

the embedded H2 database for developer convenience. There are two ways to define datasource

configurations:

as a module

as a deployment

In the provided configurations, H2 is configured as a module. The module is located in the

$JBOSS_HOME/modules/com/h2database/h2 directory. The H2 datasource configuration is shown below.

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name="ExampleXADS">

 <driver>h2</driver>

 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-property>

 <xa-pool>

 <min-pool-size>10</min-pool-size>

 <max-pool-size>20</max-pool-size>

 <prefill>true</prefill>

 </xa-pool>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </xa-datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

The datasource subsystem is provided by the project. For a detailed description of the availableIronJacamar

configuration properties, please consult the project documentation.

http://www.jboss.org/ironjacamar

WildFly 10

JBoss Community Documentation Page of 15 53

IronJacamar homepage: http://www.jboss.org/ironjacamar

Project Documentation: http://www.jboss.org/ironjacamar/docs

Schema description:

http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor

Configure Logging in WildFly 10
WildFly 10 logging can be configured with the web console or the command line interface. You can get more

detail on the page.Logging Configuration

Turn on debugging for a specific category with CLI:

/subsystem=logging/logger=org.jboss.as:add(level=DEBUG)

By default the is configured to include all levels in it's log output. In the above example weserver.log

changed the console to also display debug messages.

http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingds_descriptor
https://docs.jboss.org/author/display/WFLY10/Logging+Configuration

WildFly 10

JBoss Community Documentation Page of 16 53

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1.

2.

2 JavaEE 6 Tutorial

Coming Soon

This guide is still under development, check back soon!

2.1 Standard JavaEE 6 Technologies

Enterprise JavaBeans Technology (EJB)

Java Servlet Technology

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)

Java API for XML Web Services (JAX-WS)

Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

JavaEE Connector Architecture (JCA)

JavaMail API

Java Authorization Contract for Containers (JACC)

Java Authentication Service Provider Interface for Containers (JASPIC)

2.2 JBoss AS7 Extension Technologies

OSGi Technology

Management Interface

2.3 Standard JavaEE 6 Technologies

Coming Soon

This guide is still under development, check back soon!

WildFly 10

JBoss Community Documentation Page of 17 53

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Enterprise JavaBeans Technology (EJB)

Java Servlet Technology

Java Server Faces Technology (JSF)

Java Persistence API (JPA)

Java Transaction API (JTA)

Java API for RESTful Web Services (JAX-RS)

Java API for XML Web Services (JAX-WS)

Managed Beans

Contexts and Dependency Injection (CDI)

Bean Validation

Java Message Service API (JMS)

JavaEE Connector Architecture (JCA)

JavaMail API

Java Authorization Contract for Containers (JACC)

Java Authentication Service Provider Interface for Containers (JASPIC)

2.3.1 Java API for RESTful Web Services (JAX-RS)

Content

Tutorial Overview

What are RESTful Web Services?

Creating a RESTful endpoint

Package and build the endpoint

Deploy the endpoint to OpenShift

Building the mobile client

Exploring the mobile client

https://docs.jboss.org/author/display/AS71/Java+API+for+XML+Web+Services+%28JAX-WS%29

WildFly 10

JBoss Community Documentation Page of 18 53

Tutorial Overview
This chapter describes the Java API for RESTful web services (JAX-RS, defined in). isJSR331 RESTEasy

an portable implementation of this specification which can run in any Servlet container. Tight integration with

JBoss Application Server is available for optimal user experience in that environment. While JAX-RS is only

a server-side specification, RESTeasy has innovated to bring JAX-RS to the client through the RESTEasy

JAX-RS Client Framework.

Detailed documentation on RESTEasy is available .here

The source for this tutorial is in github repository git://github.com/tdiesler/javaee-tutorial.git

, is a portfolio of portable cloud services for deploying and managing applications in the cloud. ThisOpenShift

tutorial shows how to deploy a RESTful web service on the free OpenShift Express JavaEE cartridge that

runs .JBossAS 7

An application running on shows how to leverage JBoss technology on mobile devices. Specifically,Android

we show how use the RESTEasy client API from an Android device to integrate with a RESTful service

running on a JBossAS 7 instance in the cloud.

The following topics are addressed

What are RESTful web services

Creating a RESTful server endpoint

Deploying a RESTful endpoint to a JBossAS instance in the cloud

RESTEasy client running on an Android mobile device

http://jcp.org/en/jsr/detail?id=311
http://www.jboss.org/resteasy
http://www.jboss.org/resteasy/docs.html
https://github.com/tdiesler/javaee-tutorial
https://openshift.redhat.com/app
http://www.jboss.org/jbossas
http://www.android.com

WildFly 10

JBoss Community Documentation Page of 19 53

What are RESTful Web Services?

Coming Soon

This section is still under development.

RESTful web services are designed to expose APIs on the web. REST stands for presentational tate Re S T

ransfer. It aims to provide better performance, scalability, and flexibility than traditinoal web services, by

allowing clients to access data and resources using predictable URLs. Many well-known public web services

expose RESTful APIs.

The Java 6 Enterprise Edition specification for RESTful services is JAX-RS. It is covered by JSR-311 (

). In the REST model, the server exposes APIs through specific URIs (typicallyhttp://jcp.org/jsr/detail/311.jsp

URLs), and clients access those URIs to query or modify data. REST uses a stateless communication

protocol. Typically, this is HTTP.

The following is a summary of RESTful design principles:

A URL is tied to a resource using the annotation. Clients access the resource using the URL.@Path

Create, Read, Update, and Delete (CRUD) operations are accessed via , , , and PUT GET POST

 requests in the HTTP protocol.DELETE

 creates a new resource. PUT

 deletes a resource.DELETE

 retrieves the current state of a resource.GET

 updates a resources's state.POST

Resources are decoupled from their representation, so that clients can request the data in a variety of

different formats.

Stateful interactions require explicit state transfer, in the form of URL rewriting, cookies, and hidden

form fields. State can also be embedded in response messages.

Creating a RESTful endpoint
A RESTful endpoint is deployed as JavaEE web archive (WAR). For this tutorial we use a simple library

application to manage some books. There are two classes in this application:

Library

Book

The Book is a plain old Java object (POJO) with two attributes. This is a simple Java representation of a

RESTful entity.

http://jcp.org/jsr/detail/311.jsp

WildFly 10

JBoss Community Documentation Page of 20 53

public class Book {

 private String isbn;

 private String title;

 ...

}

The Library is the RESTful Root Resource. Here we use a set of standard JAX-RS annotations to define

The root path to the library resource

The wire representation of the data (MIME type)

The Http methods and corresponding paths

@Path("/library")

@Consumes({ "application/json" })

@Produces({ "application/json" })

public class Library {

 @GET

 @Path("/books")

 public Collection<Book> getBooks() {

 ...

 }

 @GET

 @Path("/book/{isbn}")

 public Book getBook(@PathParam("isbn") String id) {

 ...

 }

 @PUT

 @Path("/book/{isbn}")

 public Book addBook(@PathParam("isbn") String id, @QueryParam("title") String title) {

 ...

 }

 @POST

 @Path("/book/{isbn}")

 public Book updateBook(@PathParam("isbn") String id, String title) {

 ...

 }

 @DELETE

 @Path("/book/{isbn}")

 public Book removeBook(@PathParam("isbn") String id) {

 ...

 }

}

The Library root resource uses these JAX-RS annotations:

WildFly 10

JBoss Community Documentation Page of 21 53

Annotation Description

@Path Identifies the URI path that a resource class or class method will serve requests for

@Consumes Defines the media types that the methods of a resource class can accept

@Produces Defines the media type(s) that the methods of a resource class can produce

@GET Indicates that the annotated method responds to HTTP GET requests

@PUT Indicates that the annotated method responds to HTTP PUT requests

@POST Indicates that the annotated method responds to HTTP POST requests

@DELETE Indicates that the annotated method responds to HTTP DELETE requests

For a full description of the available JAX-RS annotations, see the documentation.JAX-RS API

Package and build the endpoint
To package the endpoint we create a simple web archive and include a web.xml with the following content

Review

 Remove or explain why web.xml is needed for RESTful endpointsAS7-1674

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet-mapping>

 <servlet-name>javax.ws.rs.core.Application</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

The root context is defined in jboss-web.xml

<jboss-web>

 <context-root>jaxrs-sample</context-root>

</jboss-web>

The code for the JAX-RS part of this tutorial is available on

. In this step we clone the repository and build thehttps://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs

endpoint using . There are a number of JAX-RS client tests that run against a local JBossAS 7maven

instance. Before we build the project, we set the JBOSS_HOME environment variable accordingly.

http://download.oracle.com/javaee/6/api/javax/ws/rs/package-summary.html
https://issues.jboss.org/browse/AS7-1674
https://github.com/tdiesler/javaee-tutorial/tree/master/jaxrs
http://maven.apache.org

WildFly 10

JBoss Community Documentation Page of 22 53

, the test framework we use throughout this tutorial, can manage server startup/shutdown. It isArquillian

however also possible to startup the server instance manually before you run the tests. The latter allows you

to look at the console and see what log output the deployment phase and JAX-RS endpoint invocations

produce.

$ git clone git://github.com/tdiesler/javaee-tutorial.git

Cloning into javaee-tutorial...

$ cd javaee-tutorial/jaxrs

$ export JBOSS_HOME=~/workspace/jboss-as-7.0.1.Final

$ mvn install

...

[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] JavaEE Tutorial - JAX-RS SUCCESS [1.694s]

[INFO] JavaEE Tutorial - JAX-RS Server SUCCESS [2.392s]

[INFO] JavaEE Tutorial - JAX-RS Client SUCCESS [7.304s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 12.142s

Deploy the endpoint to OpenShift
First we need to create a free account and select the JavaEE cartridge that runsOpenShift Express

JBossAS 7. Once we have received the confirmation email from OpenShift we can continue to create our

subdomain and deploy the RESTful endpoint. A series of videos on the OpenShift Express page shows you

how to do this. There is also an excellent that you have access to after login.quick start document

For this tutorial we assume you have done the above and that we can continue by creating the OpenShift

application. This step sets up your JBossAS 7 instance in the cloud. Additionally a repository isGit

configured that gives access to your deployed application.

$ rhc-create-app -a tutorial -t jbossas-7.0

Password:

Attempting to create remote application space: tutorial

Successfully created application: tutorial

Now your new domain name is being propagated worldwide (this might take a minute)...

Success! Your application is now published here:

 http://tutorial-tdiesler.rhcloud.com/

The remote repository is located here:

 ssh://79dcb9db5e134cccb9d1ba33e6089667@tutorial-tdiesler.rhcloud.com/~/git/tutorial.git/

Next, we can clone the remote Git repository to our local workspace

http://www.jboss.org/arquillian
https://openshift.redhat.com/app/express
https://openshift.redhat.com/app/express#quickstart
http://git-scm.com

WildFly 10

JBoss Community Documentation Page of 23 53

$ git clone

ssh://79dcb9db5e134cccb9d1ba33e6089667@tutorial-tdiesler.rhcloud.com/~/git/tutorial.git

Cloning into tutorial...

remote: Counting objects: 24, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 24 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (24/24), 21.84 KiB, done.

ls -1 tutorial

deployments

pom.xml

README

src

Because we want to deploy an already existing web application, which we'll build in the next step, we can

safely remove the source artefacts from the repository.

$ rm -rf tutorial/src tutorial/pom.xml

Now we copy the JAX-RS endpoint webapp that we build above to the 'deployments' folder and commit the

changes.

$ cp javaee-tutorial/jaxrs/server/target/javaee-tutorial-jaxrs-server-1.0.0-SNAPSHOT.war

tutorial/deployments

$ cd tutorial; git commit -a -m "Initial jaxrs endpoint deployment"

[master be5b5a3] Initial jaxrs endpoint deployment

 7 files changed, 0 insertions(+), 672 deletions(-)

 create mode 100644 deployments/javaee-tutorial-jaxrs-server-1.0.0-SNAPSHOT.war

 delete mode 100644 pom.xml

 delete mode 100644 src/main/java/.gitkeep

 delete mode 100644 src/main/resources/.gitkeep

 delete mode 100644 src/main/webapp/WEB-INF/web.xml

 delete mode 100644 src/main/webapp/health.jsp

 delete mode 100644 src/main/webapp/images/jbosscorp_logo.png

 delete mode 100644 src/main/webapp/index.html

 delete mode 100644 src/main/webapp/snoop.jsp

$ git push origin

Counting objects: 6, done.

...

remote: Starting application...Done

You can now use curl or your browser to see the JAX-RS endpoint in action. The following URL lists the

books that are currently registered in the library.

WildFly 10

JBoss Community Documentation Page of 24 53

$ curl http://tutorial-tdiesler.rhcloud.com/jaxrs-sample/library/books

[

{"title":"The Judgment","isbn":"001"},

{"title":"The Stoker","isbn":"002"},

{"title":"Jackals and Arabs","isbn":"003"},

{"title":"The Refusal","isbn":"004"}

]

Building the mobile client
The source associated with this tutorial contains a fully working mobile client application for the Android

framework. If not done so already please follow steps described in . In addition to theInstalling the SDK

Android SDK, I recommend installing the and the plugin to .m2eclipse EGit Eclipse

First, go to File|Import... and choose "Existing Maven Projects" to import the tutorial sources

You project view should look like this

http://developer.android.com/sdk/installing.html
http://m2eclipse.sonatype.org/installing-m2eclipse.html
http://www.eclipse.org/egit/download/
http://www.eclipse.org/downloads/packages/eclipse-classic-37/indigor

WildFly 10

JBoss Community Documentation Page of 25 53

Then go to File|New|Android Project and fill out the first wizard page like this

WildFly 10

JBoss Community Documentation Page of 26 53

Click Finish. Next, go to Project|Properties|Build Path|Libraries and add these external libraries to your

android project.

You final project view should look like this

WildFly 10

JBoss Community Documentation Page of 27 53

To run the application in the emulator, we need an Android Virtual Device (AVD). Go to Window|Android

SDK and AVD Manager and create a new AVD like this

WildFly 10

JBoss Community Documentation Page of 28 53

Now go to Run|Configuration to create a new run configuration for the client app.

WildFly 10

JBoss Community Documentation Page of 29 53

Now you should be able to launch the application in the debugger. Right click on the

javaee-tutorial-jaxrs-android project and select Debug As|Android Application. This should launch the

emulator, which now goes though a series of boot screens until it eventually displays the Android home

screen. This will take a minute or two if you do this for the first time.

WildFly 10

JBoss Community Documentation Page of 30 53

WildFly 10

JBoss Community Documentation Page of 31 53

WildFly 10

JBoss Community Documentation Page of 32 53

When you unlock the home screen by dragging the little green lock to the right. You should see the the

running JAX-RS client application.

WildFly 10

JBoss Community Documentation Page of 33 53

Finally, you need to configure the host that the client app connects to. This would be the same as you used

above to curl the library list. In the emulator click Menu|Host Settings and enter the host address of your

OpenShift application.

WildFly 10

JBoss Community Documentation Page of 34 53

When going back to the application using the little back arrow next to Menu, you should see a list of books.

WildFly 10

JBoss Community Documentation Page of 35 53

You can now add, edit and delete books and switch between your browser and the emulator to verify that the

client app is not cheating and that the books are in fact in the cloud on your JBossAS 7 instance.

In Eclipse you can go to the Debug perspective and click on the little Android robot in the lower right corner.

This will display the LogCat view, which should display log output from that Android system as well as from

this client app

08-30 09:05:46.180: INFO/JaxrsSample(269): removeBook: Book [isbn=1234, title=1234]

08-30 09:05:46.210: INFO/JaxrsSample(269): requestURI:

http://tutorial-tdiesler.rhcloud.com:80/jaxrs-sample/library

08-30 09:05:46.860: INFO/global(269): Default buffer size used in BufferedInputStream

constructor. It would be better to be explicit if an 8k buffer is required.

08-30 09:05:46.920: INFO/JaxrsSample(269): getBooks: [Book [isbn=001, title=The Judgment], Book

[isbn=002, title=The Stoker], Book [isbn=003, title=Jackals and Arabs], Book [isbn=004,

title=The Refusal]]

Exploring the mobile client
There is a lot to writing high quality mobile applications. The goal of this little application is to get you started

with JBossAS 7 / Android integration. There is also a portable approach to writing mobile applications. A

popular one would be through . With PhoneGap you write your application in HTML+CSS+JavaPhoneGap

Script. It then runs in the browser of your mobile device. Naturally, of mobile platform APIsnot the full set

would be available through this approach.

http://www.phonegap.com
http://www.phonegap.com/about/features

WildFly 10

JBoss Community Documentation Page of 36 53

The JAX-RS client application uses an annotated library client interface

@Consumes({ "application/json" })

@Produces({ "application/json" })

public interface LibraryClient {

 @GET

 @Path("/books")

 public List<Book> getBooks();

 @GET

 @Path("/book/{isbn}")

 public Book getBook(@PathParam("isbn") String id);

 @PUT

 @Path("/book/{isbn}")

 public Book addBook(@PathParam("isbn") String id, @QueryParam("title") String title);

 @POST

 @Path("/book/{isbn}")

 public Book updateBook(@PathParam("isbn") String id, String title);

 @DELETE

 @Path("/book/{isbn}")

 public Book removeBook(@PathParam("isbn") String id);

}

There are two implementations of this interface available.

LibraryHttpclient

LibraryResteasyClient

The first uses APIs that are available in the Android SDK natively. The code is much more involved, but

there would be no need to add external libraries (i.e. resteasy, jackson, etc). The effect is that the total size

of the application is considerably smaller in size (i.e. 40k)

WildFly 10

JBoss Community Documentation Page of 37 53

@Override

 public List<Book> getBooks() {

 List<Book> result = new ArrayList<Book>();

 String content = get("books");

 Log.d(LOG_TAG, "Result content:" + content);

 if (content != null) {

 try {

 JSONTokener tokener = new JSONTokener(content);

 JSONArray array = (JSONArray) tokener.nextValue();

 for (int i = 0; i < array.length(); i++) {

 JSONObject obj = array.getJSONObject(i);

 String title = obj.getString("title");

 String isbn = obj.getString("isbn");

 result.add(new Book(isbn, title));

 }

 } catch (JSONException ex) {

 ex.printStackTrace();

 }

 }

 Log.i(LOG_TAG, "getBooks: " + result);

 return result;

 }

 private String get(String path) {

 try {

 HttpGet request = new HttpGet(getRequestURI(path));

 HttpResponse res = httpClient.execute(request);

 String content = EntityUtils.toString(res.getEntity());

 return content;

 } catch (Exception ex) {

 ex.printStackTrace();

 return null;

 }

 }

The second implementation uses the fabulous RESTEasy client proxy to interact with the JAX-RS endpoint.

The details of Http connectivity and JSON data binding is transparently handled by RESTEasy. The total

size of the application is considerably bigger in size (i.e. 400k)

@Override

 public List<Book> getBooks() {

 List<Book> result = new ArrayList<Book>();

 try {

 result = getLibraryClient().getBooks();

 } catch (RuntimeException ex) {

 ex.printStackTrace();

 }

 Log.i(LOG_TAG, "getBooks: " + result);

 return result;

 }

WildFly 10

JBoss Community Documentation Page of 38 53

Stay tuned for an update on a much more optimized version of the RESTEasy mobile client. Feasible is also

a RESTEasy JavaScript library that would enable the portable PhoneGap approach.

2.3.2 Java Servlet Technology

Coming Soon

This guide is still under development, check back soon!

Content

Asynchronous Support

Asynchronous Support

2.3.3 Java Server Faces Technology (JSF)

2.3.4 Java Persistence API (JPA)

2.3.5 Java Transaction API (JTA)

Coming Soon

This guide is still under development, check back soon!

2.3.6 Managed Beans

2.3.7 Contexts and Dependency Injection (CDI)

2.3.8 Bean Validation

WildFly 10

JBoss Community Documentation Page of 39 53

2.3.9 Java Message Service API (JMS)

Coming Soon

This guide is still under development, check back soon!

Configure JBossAS for Messaging

Adding the message destinations

Configure JBossAS for Messaging
Currently, the default configuration does not include the JMS subsystem. To enable JMS in the standalone

server you need to add these configuration items to standalone.xml or simply use standalone-full.xml.

<extension module="org.jboss.as.messaging"/>

<subsystem xmlns="urn:jboss:domain:messaging:1.0">

 <!-- Default journal file size is 10Mb, reduced here to 100k for faster first boot -->

 <journal-file-size>102400</journal-file-size>

 <journal-min-files>2</journal-min-files>

 <journal-type>NIO</journal-type>

 <!-- disable messaging persistence -->

 <persistence-enabled>false</persistence-enabled>

 <connectors>

 <netty-connector name="netty" socket-binding="messaging" />

 <netty-connector name="netty-throughput" socket-binding="messaging-throughput">

 <param key="batch-delay" value="50"/>

 </netty-connector>

 <in-vm-connector name="in-vm" server-id="0" />

 </connectors>

 <acceptors>

 <netty-acceptor name="netty" socket-binding="messaging" />

 <netty-acceptor name="netty-throughput" socket-binding="messaging-throughput">

 <param key="batch-delay" value="50"/>

 <param key="direct-deliver" value="false"/>

 </netty-acceptor>

 <acceptor name="stomp-acceptor">

<factory-class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</factory-class>

 <param key="protocol" value="stomp" />

 <param key="port" value="61613" />

 </acceptor>

 <in-vm-acceptor name="in-vm" server-id="0" />

 </acceptors>

 <security-settings>

 <security-setting match="#">

 <permission type="createNonDurableQueue" roles="guest"/>

WildFly 10

JBoss Community Documentation Page of 40 53

 <permission type="deleteNonDurableQueue" roles="guest"/>

 <permission type="consume" roles="guest"/>

 <permission type="send" roles="guest"/>

 </security-setting>

 </security-settings>

 <address-settings>

 <!--default for catch all-->

 <address-setting match="#">

 <dead-letter-address>jms.queue.DLQ</dead-letter-address>

 <expiry-address>jms.queue.ExpiryQueue</expiry-address>

 <redelivery-delay>0</redelivery-delay>

 <max-size-bytes>10485760</max-size-bytes>

 <message-counter-history-day-limit>10</message-counter-history-day-limit>

 <address-full-policy>BLOCK</address-full-policy>

 </address-setting>

 </address-settings>

 <!--JMS Stuff-->

 <jms-connection-factories>

 <connection-factory name="InVmConnectionFactory">

 <connectors>

 <connector-ref connector-name="in-vm"/>

 </connectors>

 <entries>

 <entry name="java:/ConnectionFactory"/>

 </entries>

 </connection-factory>

 <connection-factory name="RemoteConnectionFactory">

 <connectors>

 <connector-ref connector-name="netty"/>

 </connectors>

 <entries>

 <entry name="RemoteConnectionFactory"/>

 </entries>

 </connection-factory>

 <pooled-connection-factory name="hornetq-ra">

 <transaction mode="xa"/>

 <connectors>

 <connector-ref connector-name="in-vm"/>

 </connectors>

 <entries>

 <entry name="java:/JmsXA"/>

 <!-- Global JNDI entry used to provide a default JMS Connection factory to EE

application -->

 <entry name="java:jboss/DefaultJMSConnectionFactory"/>

 </entries>

 </pooled-connection-factory>

 </jms-connection-factories>

 <jms-destinations>

 <jms-queue name="testQueue">

 <entry name="queue/test"/>

 </jms-queue>

 <jms-topic name="testTopic">

 <entry name="topic/test"/>

 </jms-topic>

 </jms-destinations>

WildFly 10

JBoss Community Documentation Page of 41 53

</subsystem>

<socket-binding name="messaging" port="5445" />

<socket-binding name="messaging-throughput" port="5455"/>

Alternatively run the server using the preview configuration

$ bin/standalone.sh --server-config=standalone-preview.xml

Adding the message destinations
For this tutorial we use two message destinations

BidQueue - The queue that receives the client bids

AuctionTopic - The topic that publishes the start of a new auction

You can either add the message destinations by using the Command Line Interface (CLI)

$ bin/jboss-admin.sh --connect

Connected to standalone controller at localhost:9999

[standalone@localhost:9999 /] jms-queue add --queue-address=BidQueue --entries=queue/bid

[standalone@localhost:9999 /] jms-topic add --topic-address=AuctionTopic --entries=topic/auction

[standalone@localhost:9999 /] exit

Closed connection to localhost:9999

or by adding them to the subsytem configuration as shown above.

2.3.10 JavaEE Connector Architecture (JCA)

2.3.11 JavaMail API

WildFly 10

JBoss Community Documentation Page of 42 53

2.3.12 Java Authorization Contract for Containers (JACC)

In order to register your own JACC Module, you'll need to create a server module containing the required

classes, and then set three system properties for WildFly to take it. Such a module would depend on the

"javax.api" and "javaee.api" modules.

An example module.xml for such a module could be:

<module xmlns="urn:jboss:module:1.1" name="com.example.customjacc">

 <resources>

 <resource-root path="customjacc.jar"/>

 </resources>

 <dependencies>

 <module name="javax.api"/>

 <module name="javaee.api"/>

 </dependencies>

</module>

The specified JAR needs to contain at least two classes, as mandated by the JACC spec:

A implementation: in our example, it'll be PolicyProvider

com.example.customjacc.CustomPolicy.

A implementation: PolicyConfigurationFactory

 in our case.com.example.customjacc.CustomPolicyConfigurationFactory

The spec requires two system properties to be set for the server to register the JACC Module.

For a server running in standalone mode, put the following commands in the JBoss CLI:

[standalone@localhost:9990 /]

/system-property=javax.security.jacc.policy.provider:add(value=com.example.customjacc.CustomPolicy)
[standalone@localhost:9990

/]

/system-property=javax.security.jacc.PolicyConfigurationFactory.provider:add(value=com.example.customjacc.CustomPolicyConfigurationFactory)

Another property is needed to make WildFly know where to load the classes from:

[standalone@localhost:9990 /]

/system-property=org.jboss.as.security.jacc-module:add(value=com.example.customjacc)

WildFly 10

JBoss Community Documentation Page of 43 53

2.3.13 Java Authentication Service Provider Interface for

Containers (JASPIC)

JASPI is not available by default for deployments, and a specific Security Domain must be created to use it.

For a simplified developer experience, a default JASPI Domain is already bundled, called .jaspitest

To make use of it, a Web Application only needs to specifiy the desired security domain in the

 deployment descriptor. This file should be located under the directory. Anjboss-web.xml WEB-INF

example enabling the default JASPI domain:jboss-web.xml

<?xml version="1.0"?>

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd"

 version="10.0">

 <security-domain>jaspitest</security-domain>

</jboss-web>

For EAR deployments, a like the following should be used instead, placed under the rootjboss-app.xml

META-INF directory:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-app xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 version="7.0">

 <security-domain>jaspitest</security-domain>

</jboss-app>

WildFly 10

JBoss Community Documentation Page of 44 53

2.3.14 Enterprise JavaBeans Technology (EJB)

In this section we'll look at the two main types of beans (Session Beans and Message Driven Beans), the

methods to access and the packaging possibilities of beans.

Coming Soon

This guide is still under development, check back soon!

Session Beans

Stateful Session Beans

Stateless Session Beans

Singleton Session Beans

Message Driven Beans

How can Enterprise JavaBeans can be accessed?

Remote call invocation

Local call invocation

Web Services

Packaging

Session Beans

Stateful Session Beans

Stateless Session Beans

Singleton Session Beans

Message Driven Beans

How can Enterprise JavaBeans can be accessed?

Remote call invocation

Local call invocation

Web Services

Packaging

WildFly 10

JBoss Community Documentation Page of 45 53

2.3.15 Java API for XML Web Services (JAX-WS)

JBossWS uses the JBoss Application Server as its target container. The following examples focus on web

service deployments that leverage EJB3 service implementations and the JAX-WS programming models.

For further information on POJO service implementations and advanced topics you need consult the user

.guide

Developing web service implementations
JAX-WS does leverage annotations in order to express web service meta data on Java components and to

describe the mapping between Java data types and XML. When developing web service implementations

you need to decide whether you are going to start with an abstract contract (WSDL) or a Java component.

If you are in charge to provide the service implementation, then you are probably going to start with the

implementation and derive the abstract contract from it. You are probably not even getting in touch with the

WSDL unless you hand it to 3rd party clients. For this reason we are going to look at a service

implementation that leverages .JSR-181 annotations

Even though detailed knowledge of web service meta data is not required, it will definitely help if

you make yourself familiar with it. For further information see

Web service meta data (JSR-181)

Java API for XML binding (JAXB)

Java API for XML-Based Web Services

The service implementation class
When starting from Java you must provide the service implementation. A valid endpoint implementation

class must meet the following requirements:

It carry a annotation (see JSR 181)must javax.jws.WebService

All method parameters and return types be compatible with the JAXB 2.0must

Let's look at a sample EJB3 component that is going to be exposed as a web service.

Don't be confused with the EJB3 annotation . We concentrate on the annotation@Stateless @WebService

for now.

https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
https://docs.jboss.org/author/display/AS71/JAX-WS+User+Guide
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222
http://www.jcp.org/en/jsr/summary?id=224

WildFly 10

JBoss Community Documentation Page of 46 53

Implementing the service

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.ejb.Stateless;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.soap.SOAPBinding;

@Stateless (1)

@WebService((2)

 name="ProfileMgmt",

 targetNamespace = "http://org.jboss.ws/samples/retail/profile",

 serviceName = "ProfileMgmtService")

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE) (3)

public class ProfileMgmtBean {

 @WebMethod (4)

 public DiscountResponse getCustomerDiscount(DiscountRequest request) {

 return new DiscountResponse(request.getCustomer(), 10.00);

 }

}

1. We are using a stateless session bean implementation

2. Exposed a web service with an explicit namespace

3. It's a doc/lit bare endpoint

4. And offers an 'getCustomerDiscount' operation

WildFly 10

JBoss Community Documentation Page of 47 53

What about the payload?
The method parameters and return values are going to represent our XML payload and thus require being

compatible with JAXB2. Actually you wouldn't need any JAXB annotations for this particular example,

because JAXB relies on meaningful defaults. For the sake of documentation we put the more important ones

here.

Take a look at the request parameter:

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlType;

import org.jboss.test.ws.jaxws.samples.retail.Customer;

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType((1)

 name = "discountRequest",

 namespace="http://org.jboss.ws/samples/retail/profile",

 propOrder = { "customer" }

)

public class DiscountRequest {

 protected Customer customer;

 public DiscountRequest() {

 }

 public DiscountRequest(Customer customer) {

 this.customer = customer;

 }

 public Customer getCustomer() {

 return customer;

 }

 public void setCustomer(Customer value) {

 this.customer = value;

 }

}

1. In this case we use @XmlType to specify an XML complex type name and override the namespace.

If you have more complex mapping problems you need to consult the .JAXB documentation

http://java.sun.com/webservices/jaxb/

WildFly 10

JBoss Community Documentation Page of 48 53

Deploying service implementations
Service deployment basically depends on the implementation type. As you may already know web services

can be implemented as EJB3 components or plain old Java objects. This quick start leverages EJB3

components, that's why we are going to look at this case in the next sections.

EJB3 services
Simply wrap up the service implementation class, the endpoint interface and any custom data types in a JAR

and drop them in the directory. No additional deployment descriptors required. Any meta datadeployment

required for the deployment of the actual web service is taken from the annotations provided on the

implementation class and the service endpoint interface. JBossWS will intercept that EJB3 deployment (the

bean will also be there) and create an HTTP endpoint at deploy-time.

 The JAR package structure
jar -tf jaxws-samples-retail.jar

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class

org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class

org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

If the deployment was successful you should be able to see your endpoint in the application server

management console.

Consuming web services
When creating web service clients you would usually start from the WSDL. JBossWS ships with a set of

tools to generate the required JAX-WS artefacts to build client implementations. In the following section we

will look at the most basic usage patterns. For a more detailed introduction to web service client please

consult the user guide.

WildFly 10

JBoss Community Documentation Page of 49 53

1.

Creating the client artifacts

Using wsconsume
The tool is used to consume the abstract contract (WSDL) and produce annotated Java classeswsconsume

(and optionally sources) that define it. We are going to start with the WSDL from our retail example

(ProfileMgmtService.wsdl). For a detailed tool reference you need to consult the user guide.

wsconsume is a command line tool that generates

portable JAX-WS artifacts from a WSDL file.

usage: org.jboss.ws.tools.jaxws.command.wsconsume [options] <wsdl-url>

options:

 -h, --help Show this help message

 -b, --binding=<file> One or more JAX-WS or JAXB binding files

 -k, --keep Keep/Generate Java source

 -c --catalog=<file> Oasis XML Catalog file for entity resolution

 -p --package=<name> The target package for generated source

 -w --wsdlLocation=<loc> Value to use for @WebService.wsdlLocation

 -o, --output=<directory> The directory to put generated artifacts

 -s, --source=<directory> The directory to put Java source

 -q, --quiet Be somewhat more quiet

 -t, --show-traces Show full exception stack traces

Let's try it on our sample:

~./wsconsume.sh -k -p org.jboss.test.ws.jaxws.samples.retail.profile ProfileMgmtService.wsdl

(1)

org/jboss/test/ws/jaxws/samples/retail/profile/Customer.java

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.java

org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.java

org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.java

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.java

org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.java

org/jboss/test/ws/jaxws/samples/retail/profile/package-info.java

As you can see we did use the switch to specify the package name of the generated sources.-p

WildFly 10

JBoss Community Documentation Page of 50 53

1.

2.

3.

 The generated artifacts explained

File Purpose

ProfileMgmt.java Service Endpoint Interface

Customer.java Custom data type

Discount*.java Custom data type

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

ProfileMgmtService.java Service factory

Basically generates all custom data types (JAXB annotated classes), the service endpointwsconsume

interface and a service factory class. We will look at how these artifacts can be used the build web service

client implementations in the next section.

Constructing a service stub
Web service clients make use of a service stubs that hide the details of a remote web service invocation. To

a client application a WS invocation just looks like an invocation of any other business component. In this

case the service endpoint interface acts as the business interface. JAX-WS does use a service factory class

to construct this as particular service stub:

import javax.xml.ws.Service;

[...]

Service service = Service.create((1)

new URL("http://example.org/service?wsdl"),

new QName("MyService")

);

ProfileMgmt profileMgmt = service.getPort(ProfileMgmt.class); (2)

// do something with the service stub here... (3)

Create a service factory using the WSDL location and the service name

Use the tool created service endpoint interface to build the service stub

Use the stub like any other business interface

Appendix

Sample wsdl contract

<definitions

 name='ProfileMgmtService'

 targetNamespace='http://org.jboss.ws/samples/retail/profile'

 xmlns='http://schemas.xmlsoap.org/wsdl/'

 xmlns:ns1='http://org.jboss.ws/samples/retail'

 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'

 xmlns:tns='http://org.jboss.ws/samples/retail/profile'

WildFly 10

JBoss Community Documentation Page of 51 53

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <types>

 <xs:schema targetNamespace='http://org.jboss.ws/samples/retail'

 version='1.0' xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:complexType name='customer'>

 <xs:sequence>

 <xs:element minOccurs='0' name='creditCardDetails' type='xs:string'/>

 <xs:element minOccurs='0' name='firstName' type='xs:string'/>

 <xs:element minOccurs='0' name='lastName' type='xs:string'/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 <xs:schema

 targetNamespace='http://org.jboss.ws/samples/retail/profile'

 version='1.0'

 xmlns:ns1='http://org.jboss.ws/samples/retail'

 xmlns:tns='http://org.jboss.ws/samples/retail/profile'

 xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:import namespace='http://org.jboss.ws/samples/retail'/>

 <xs:element name='getCustomerDiscount'

 nillable='true' type='tns:discountRequest'/>

 <xs:element name='getCustomerDiscountResponse'

 nillable='true' type='tns:discountResponse'/>

 <xs:complexType name='discountRequest'>

 <xs:sequence>

 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name='discountResponse'>

 <xs:sequence>

 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>

 <xs:element name='discount' type='xs:double'/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </types>

 <message name='ProfileMgmt_getCustomerDiscount'>

 <part element='tns:getCustomerDiscount' name='getCustomerDiscount'/>

 </message>

 <message name='ProfileMgmt_getCustomerDiscountResponse'>

 <part element='tns:getCustomerDiscountResponse'

 name='getCustomerDiscountResponse'/>

 </message>

 <portType name='ProfileMgmt'>

 <operation name='getCustomerDiscount'

 parameterOrder='getCustomerDiscount'>

 <input message='tns:ProfileMgmt_getCustomerDiscount'/>

 <output message='tns:ProfileMgmt_getCustomerDiscountResponse'/>

 </operation>

 </portType>

WildFly 10

JBoss Community Documentation Page of 52 53

 <binding name='ProfileMgmtBinding' type='tns:ProfileMgmt'>

 <soap:binding style='document'

 transport='http://schemas.xmlsoap.org/soap/http'/>

 <operation name='getCustomerDiscount'>

 <soap:operation soapAction=''/>

 <input>

 <soap:body use='literal'/>

 </input>

 <output>

 <soap:body use='literal'/>

 </output>

 </operation>

 </binding>

 <service name='ProfileMgmtService'>

 <port binding='tns:ProfileMgmtBinding' name='ProfileMgmtPort'>

 <soap:address

 location='http://<HOST>:<PORT>/jaxws-samples-retail/ProfileMgmtBean'/>

 </port>

 </service>

</definitions>

WildFly 10

JBoss Community Documentation Page of 53 53

1.

2.

2.4 JBoss AS7 Extension Technologies

Coming Soon

This guide is still under development, check back soon!

OSGi Technology

Management Interface

2.4.1 Management Interface

Coming Soon

This guide is still under development, check back soon!

Management via the Java Management Extension (JMX)

Management via RESTful services

Batch Management / Command Line Interface (CLI)

Management via the Java Management Extension (JMX)

Management via RESTful services

Batch Management / Command Line Interface (CLI)

	Getting Started with WildFly 10
	Download
	Requirements
	Installation
	WildFly - A Quick Tour
	WildFly 10 Directory Structure
	Standalone Directory Structure
	Domain Directory Structure

	WildFly 10 Configurations
	Standalone Server Configurations
	Domain Server Configurations

	Starting WildFly 10
	Starting WildFly 10 with an Alternate Configuration
	Test Your Installation

	Managing your WildFly 10
	Authentication
	Administration Console
	Command-Line Interface

	Modifying the Example DataSource
	Configure Logging in WildFly 10

	JavaEE 6 Tutorial
	Standard JavaEE 6 Technologies
	JBoss AS7 Extension Technologies
	Standard JavaEE 6 Technologies
	Java API for RESTful Web Services (JAX-RS)
	Content
	Tutorial Overview
	What are RESTful Web Services?
	Creating a RESTful endpoint
	Package and build the endpoint
	Deploy the endpoint to OpenShift
	Building the mobile client
	Exploring the mobile client

	Java Servlet Technology
	Content
	Asynchronous Support

	Java Server Faces Technology (JSF)
	Java Persistence API (JPA)
	Java Transaction API (JTA)
	Managed Beans
	Contexts and Dependency Injection (CDI)
	Bean Validation
	Java Message Service API (JMS)
	Configure JBossAS for Messaging
	Adding the message destinations

	JavaEE Connector Architecture (JCA)
	JavaMail API
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Enterprise JavaBeans Technology (EJB)
	Session Beans
	Stateful Session Beans
	Stateless Session Beans
	Singleton Session Beans

	Message Driven Beans
	How can Enterprise JavaBeans can be accessed?
	Remote call invocation
	Local call invocation
	Web Services

	Packaging

	Java API for XML Web Services (JAX-WS)
	Developing web service implementations
	The service implementation class
	Implementing the service
	What about the payload?

	Deploying service implementations
	EJB3 services
	 The JAR package structure

	Consuming web services
	Creating the client artifacts
	Using wsconsume
	 The generated artifacts explained

	Constructing a service stub
	Appendix
	Sample wsdl contract

	JBoss AS7 Extension Technologies
	Management Interface
	Management via the Java Management Extension (JMX)
	Management via RESTful services
	Batch Management / Command Line Interface (CLI)

