
WildFly 10

JBoss Community Documentation Page of 1 173

High Availability Guide

Exported from at 2017-06-19 14:14:30 EDTJBoss Community Documentation Editor

Copyright 2017 JBoss Community contributors.

https://docs.jboss.org/author/display/WFLY10

WildFly 10

JBoss Community Documentation Page of 2 173

Table of Contents

1 Introduction to High Availability Services ___ 7

1.1 What are High Availability services? ___ 7

1.2 High Availability through fail-over ___ 8

1.3 High Availability through load balancing __ 8

1.4 Aims of the guide __ 8

1.5 Organization of the guide ___ 9

2 HTTP Services __ 10

2.1 Subsystem Support ___ 10

2.1.1 JGroups Subsystem ___ 10

2.1.2 Purpose __ 10

2.1.3 Configuration example ___ 10

2.1.4 Use Cases __ 16

2.1.5 Purpose __ 17

2.1.6 Configuration Example ___ 17

2.1.7 Use Cases __ 28

2.2 Clustered Web Sessions ___ 28

2.3 Clustered SSO __ 28

2.4 Load Balancing __ 29

2.5 Load balancing with Apache + mod_jk __ 29

2.6 Load balancing with Apache + mod_cluster __ 29

2.6.1 mod_cluster Subsystem __ 29

3 EJB Services __ 37

3.1 EJB Subsystem __ 37

4 EJB Timer __ 38

4.1 Marking an EJB as clustered __ 38

4.2 Deploying clustered EJBs __ 39

4.3 Failover for clustered EJBs ___ 39

4.3.1 Remote standalone clients __ 40

4.3.2 Cluster topology communication ___ 41

4.3.3 Remote clients on another instance of WildFly 10 ________________________________ 42

4.3.4 Testcases for failover of stateful beans __ 42

5 Hibernate ___ 43

6 HA Singleton Features __ 44

6.1 Singleton subsystem __ 44

6.1.1 Configuration __ 44

6.1.2 Non-HA environments ___ 46

6.2 Singleton deployments __ 46

6.2.1 Usage __ 46

6.3 Singleton MSC services ___ 46

6.3.1 Installing an MSC service using an existing singleton policy ________________________ 47

6.3.2 Installing an MSC service using dynamic singleton policy __________________________ 48

7 Related Issues ___ 49

WildFly 10

JBoss Community Documentation Page of 3 173

8 Changes From Previous Versions __ 50

8.1 Key changes __ 50

8.2 Migration to Wildfly ___ 50

9 WildFly 8 Cluster Howto ___ 51

10 References ___ 52

11 All WildFly 8 documentation __ 53

12 Introduction To High Availability Services __ 54

12.1 What are High Availability services? __ 54

12.2 High Availability through fail-over __ 55

12.3 High Availability through load balancing ___ 55

12.4 Aims of the guide ___ 55

12.5 Organization of the guide __ 56

13 Subsystem Support ___ 57

13.1 JGroups Subsystem __ 57

13.2 Purpose __ 57

13.3 Configuration example __ 57

13.3.1 <subsystem> __ 60

13.3.2 <stack> ___ 60

13.3.3 <transport> __ 61

13.3.4 <protocol> __ 62

13.3.5 <relay> ___ 62

13.4 Use Cases __ 63

13.4.1 Add a stack ___ 63

13.4.2 Add a protocol to a stack ___ 63

13.4.3 Add a property to a protocol ___ 63

13.4.4 Infinispan Subsystem __ 63

13.5 Purpose __ 64

13.6 Configuration Example __ 64

13.6.1 <cache-container> __ 65

13.7 Use Cases __ 75

13.7.1 Add a cache container ___ 75

13.7.2 Add a cache ___ 75

13.7.3 Configure the transaction component of a cache _________________________________ 75

13.8 JGroups Subsystem __ 75

13.8.1 Purpose __ 76

13.8.2 Configuration example ___ 76

13.8.3 Use Cases __ 81

13.9 Infinispan Subsystem ___ 81

13.9.1 Purpose __ 82

13.9.2 Configuration Example ___ 82

13.9.3 Use Cases __ 93

13.10mod_cluster Subsystem ___ 93

13.10.1operations displaying httpd informations _______________________________________ 94

13.10.2 __ 97

13.10.3Context related operations ___ 98

13.10.4Node related operations ___ 98

WildFly 10

JBoss Community Documentation Page of 4 173

Node related operations __ 98

13.10.5Configuration __ 98

14 HTTP Services ___ 101

14.1 Subsystem Support __ 101

14.1.1 JGroups Subsystem __ 101

14.1.2 Purpose ___ 101

14.1.3 Configuration example __ 101

14.1.4 Use Cases ___ 107

14.1.5 Purpose ___ 108

14.1.6 Configuration Example __ 108

14.1.7 Use Cases ___ 119

14.2 Clustered Web Sessions __ 119

14.3 Clustered SSO ___ 119

14.4 Load Balancing ___ 120

14.5 Load balancing with Apache + mod_jk ___ 120

14.6 Load balancing with Apache + mod_cluster ___ 120

14.6.1 mod_cluster Subsystem ___ 120

14.7 Clustered Web Sessions __ 127

14.8 Clustered SSO ___ 127

14.9 Load Balancing ___ 127

14.9.1 Load balancing with Apache + mod_jk _______________________________________ 128

14.9.2 Load balancing with Apache + mod_cluster ___________________________________ 128

14.9.3 Apache httpd ___ 135

15 EJB Services ___ 136

15.1 EJB Subsystem ___ 136

15.2 EJB Timer ___ 136

15.2.1 Marking an EJB as clustered ___ 136

15.2.2 Deploying clustered EJBs ___ 137

15.2.3 Failover for clustered EJBs __ 137

15.3 EJB Timer ___ 140

16 HA Singleton Features ___ 141

16.1 Singleton subsystem ___ 141

16.1.1 Configuration ___ 141

16.1.2 Non-HA environments __ 143

16.2 Singleton deployments ___ 143

16.2.1 Usage ___ 143

16.3 Singleton MSC services __ 143

16.3.1 Installing an MSC service using an existing singleton policy _______________________ 144

16.3.2 Installing an MSC service using dynamic singleton policy _________________________ 145

16.4 Singleton subsystem ___ 145

16.4.1 Configuration ___ 145

16.4.2 Non-HA environments __ 148

16.5 Singleton deployments ___ 148

16.5.1 Usage ___ 148

16.6 Singleton MSC services __ 148

16.6.1 Installing an MSC service using an existing singleton policy _______________________ 149

16.6.2 Installing an MSC service using dynamic singleton policy _________________________ 150

WildFly 10

JBoss Community Documentation Page of 5 173

17 Hibernate __ 151

18 Clustering and Domain Setup Walkthrough ___ 152

18.1 Preparation & Scenario ___ 152

18.1.1 Preparation ___ 152

18.1.2 Scenario ___ 152

18.2 Download WildFly 9 __ 154

18.3 Domain Configuration __ 154

18.3.1 Interface config on master ___ 155

18.3.2 Interface config on slave __ 155

18.3.3 Security Configuration __ 157

18.4 Deployment __ 160

18.5 Cluster Configuration ___ 166

18.6 Testing __ 168

18.7 Special Thanks ___ 171

19 Changes From Previous Versions ___ 172

19.1 Key changes ___ 172

19.2 Migration to Wildfly __ 172

20 Related Topics ___ 173

20.1 Modularity And Class Loading __ 173

20.2 Monitoring ___ 173

WildFly 10

JBoss Community Documentation Page of 6 173

Introduction to High Availability Services

What are High Availability services?

High Availability through fail-over

High Availability through load balancing

Aims of the guide

Organization of the guide

HTTP Services

Subsystem Support

Purpose

Configuration example

Use Cases

Purpose

Configuration Example

Use Cases

Clustered Web Sessions

Clustered SSO

Load Balancing

Load balancing with Apache + mod_jk

Load balancing with Apache + mod_cluster

mod_cluster Subsystem

EJB Services

EJB Subsystem

EJB Timer

Marking an EJB as clustered

Deploying clustered EJBs

Failover for clustered EJBs

Hibernate

HA Singleton Features

Singleton subsystem

Configuration

Non-HA environments

Singleton deployments

Usage

Singleton MSC services

Installing an MSC service using an existing singleton policy

Installing an MSC service using dynamic singleton policy

Related Issues

Changes From Previous Versions

Key changes

Migration to Wildfly

WildFly 8 Cluster Howto

References

All WildFly 8 documentation

WildFly 10

JBoss Community Documentation Page of 7 173

1 Introduction to High Availability Services

1.1 What are High Availability services?

WildFly's High Availability services are used to guarantee availability of a deployed Java EE application.

Deploying critical applications on a single node suffers from two potential problems:

loss of application availability when the node hosting the application crashes (single point of failure)

loss of application availability in the form of extreme delays in response time during high volumes of

requests (overwhelmed server)

WildFly supports two features which ensure high availability of critical Java EE applications:

 allows a client interacting with a Java EE application to have uninterrupted access to thatfail-over:

application, even in the presence of node failures

 allows a client to have timely responses from the application, even in the presenceload balancing:

of high-volumes of requests

These two independent high availability services can very effectively inter-operate when making

use of mod_cluster for load balancing!

Taking advantage of WildFly's high availability services is easy, and simply involves deploying WildFly on a

cluster of nodes, making a small number of application configuration changes, and then deploying the

application in the cluster.

We now take a brief look at what these services can guarantee.

WildFly 10

JBoss Community Documentation Page of 8 173

1.2 High Availability through fail-over

Fail-over allows a client interacting with a Java EE application to have uninterrupted access to that

application, even in the presence of node failures. For example, consider a Java EE application which

makes use of the following features:

 session-oriented servlets to provide user interaction

 session-oriented EJBs to perform state-dependent business computation

 EJB entity beans to store critical data in a persistent store (e.g. database)

 SSO login to the application

If the application makes use of WildFly's fail-over services, a client interacting with an instance of that

application will not be interrupted even when the node on which that instance executes crashes. Behind the

scenes, WildFly makes sure that all of the user data that the application make use of (HTTP session data,

EJB SFSB sessions, EJB entities and SSO credentials) are available at other nodes in the cluster, so that

when a failure occurs and the client is redirected to that new node for continuation of processing (i.e. the

client "fails over" to the new node), the user's data is available and processing can continue.

The Infinispan and JGroups subsystems are instrumental in providing these data availability guarantees and

will be discussed in detail later in the guide.

1.3 High Availability through load balancing

Load balancing enables the application to respond to client requests in a timely fashion, even when

subjected to a high-volume of requests. Using a load balancer as a front-end, each incoming HTTP request

can be directed to one node in the cluster for processing. In this way, the cluster acts as a pool of

processing nodes and the load is "balanced" over the pool, achieving scalability and, as a consequence,

availability. Requests involving session-oriented servlets are directed to the the same application instance in

the pool for efficiency of processing (sticky sessions). Using mod_cluster has the advantage that changes in

cluster topology (scaling the pool up or down, servers crashing) are communicated back to the load balancer

and used to update in real time the load balancing activity and avoid requests being directed to application

instances which are no longer available.

The mod_cluster subsystem is instrumental in providing support for this High Availability feature of

WildFly and will be discussed in detail later in this guide.

1.4 Aims of the guide

This guide aims to:

provide a description of the high-availability features available in WildFly and the services they

depend on

show how the various high availability services can be configured for particular application use cases

identify default behavior for features relating to high-availability/clustering

WildFly 10

JBoss Community Documentation Page of 9 173

1.5 Organization of the guide

As high availability features and their configuration depend on the particular component they affect (e.g.

HTTP sessions, EJB SFSB sessions, Hibernate), we organize the discussion around those Java

EE features. We strive to make each section as self-contained as possible. Also, when discussing a feature,

we will introduce any WildFly subsystems upon which the feature depends.

WildFly 10

JBoss Community Documentation Page of 10 173

2 HTTP Services
This section summarises the HTTP-based clustering features.

2.1 Subsystem Support

This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

2.1.1 JGroups Subsystem

2.1.2 Purpose

The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

2.1.3 Configuration example

What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

WildFly 10

JBoss Community Documentation Page of 11 173

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 12 173

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"

diagnostics-socket-binding="jgroups-diagnostics"

 default-executor="jgroups" oob-executor="jgroups-oob" timer-executor="jgroups-timer"

 shared="false" thread-factory="jgroups-thread-factory"

 machine="machine1" rack="rack1" site="site1"/>

 <protocol type="PING">

 <property name="timeout">100</property>

 </protocol>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="udp-xsite">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 <relay site="LONDON">

 <remote-site name="SFO" stack="tcp" cluster="global"/>

 <remote-site name="NYC" stack="tcp" cluster="global"/>

 </relay>

 </stack>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 13 173

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

WildFly 10

JBoss Community Documentation Page of 14 173

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

WildFly 10

JBoss Community Documentation Page of 15 173

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

WildFly 10

JBoss Community Documentation Page of 16 173

2.1.4 Use Cases

In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add(transport={}, protocols={})

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=TRANSPORT:add(type=<type>,

socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:add-protocol(type=<type>, socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=TRANSPORT/property=<property>:add(value=<value>)

Infinispan Subsystem

WildFly 10

JBoss Community Documentation Page of 17 173

2.1.5 Purpose

The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

2.1.6 Configuration Example

In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 18 173

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC" batching="true">

 <locking isolation="REPEATABLE_READ"/>

 </replicated-cache>

 </cache-container>

 <cache-container name="web" aliases="standard-session-cache" default-cache="repl"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <file-store/>

 </replicated-cache>

 <replicated-cache name="sso" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb sfsb-cache" default-cache="repl"

module="org.jboss.as.clustering.ejb3.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </replicated-cache>

 <!--

 ~ Clustered cache used internally by EJB subsytem for managing the client-mapping(s) of

 ~ the socketbinding referenced by the EJB remoting connector

 -->

 <replicated-cache name="remote-connector-client-mappings" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" default-cache="local-query" module="org.hibernate">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 19 173

<cache-container>
This element is used to configure a cache container.

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

WildFly 10

JBoss Community Documentation Page of 20 173

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups stack to be used for the transport. If none is specified,stack

the default-stack for the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

WildFly 10

JBoss Community Documentation Page of 21 173

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>
This child element defines properties to control indexing behaviour.

<locking>
This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>
This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>
This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

WildFly 10

JBoss Community Documentation Page of 22 173

<expiration>
This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

WildFly 10

JBoss Community Documentation Page of 23 173

<abstract base-store>
This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

WildFly 10

JBoss Community Documentation Page of 24 173

<write-behind>
This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

<abstract base-jdbc-store> extends <abstract base-store>
This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>
This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>
This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>
This child element of cache configures a list of remote servers for this cache store.

WildFly 10

JBoss Community Documentation Page of 25 173

<remote-server>
This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

WildFly 10

JBoss Community Documentation Page of 26 173

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

WildFly 10

JBoss Community Documentation Page of 27 173

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

WildFly 10

JBoss Community Documentation Page of 28 173

2.1.7 Use Cases

In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=TRANSPORT:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/transaction=TRANSACTION:add(mode=<transaction-mode>)

2.2 Clustered Web Sessions

2.3 Clustered SSO

WildFly 10

JBoss Community Documentation Page of 29 173

2.4 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

2.5 Load balancing with Apache + mod_jk

Describe load balancing with Apache using mod_jk.

2.6 Load balancing with Apache + mod_cluster

Describe load balancing with Apache using mod_cluster.

2.6.1 mod_cluster Subsystem

The mod_cluster integration is done via the it requires mod_cluster-1.1.x.ormodcluster subsystem

mod_cluster-1.2.x (since 7.1.0)

The modcluster subsystem supports several operations:

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

WildFly 10

JBoss Community Documentation Page of 30 173

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

WildFly 10

JBoss Community Documentation Page of 31 173

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

WildFly 10

JBoss Community Documentation Page of 32 173

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

WildFly 10

JBoss Community Documentation Page of 33 173

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "jfcpc:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 34 173

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

WildFly 10

JBoss Community Documentation Page of 35 173

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric
Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric
Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 36 173

custom-metric / remove-custom-metric
like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

JVMRoute configuration
If you want to use your own JVM route instead of automatically generated one you can insert the following

property:

...

</extensions>

<system-properties>

 <property name="jboss.mod_cluster.jvmRoute" value="myJvmRoute"/>

</system-properties>

<management>

...

WildFly 10

JBoss Community Documentation Page of 37 173

3 EJB Services
This chapter explains how clustering of EJBs works in WildFly 10.

3.1 EJB Subsystem

WildFly 10

JBoss Community Documentation Page of 38 173

4 EJB Timer
Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

4.1 Marking an EJB as clustered

WildFly 10 allows clustering of stateful session beans. A stateful session bean can be marked with

 annotation or be marked as clustered using the@org.jboss.ejb3.annotation.Clustered

jboss-ejb3.xml's element.<clustered>

MyStatefulBean

import org.jboss.ejb3.annotation.Clustered;

import javax.ejb.Stateful;

@Stateful

@Clustered

public class MyStatefulBean {

...

}

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:c="urn:clustering:1.0">

 <jee:assembly-descriptor>

 <c:clustering>

 <jee:ejb-name>DDBasedClusteredBean</jee:ejb-name>

 <c:clustered>true</c:clustered>

 </c:clustering>

 </jee:assembly-descriptor>

</jboss>

https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers

WildFly 10

JBoss Community Documentation Page of 39 173

4.2 Deploying clustered EJBs

Clustering support is available in the HA profiles of WildFly 10. In this chapter we'll be using the standalone

server for explaining the details. However, the same applies to servers in a domain mode. Starting the

standalone server with HA capabilities enabled, involves starting it with the standalone-ha.xml (or even

standalone-full-ha.xml):

./standalone.sh -server-config=standalone-ha.xml

This will start a single instance of the server with HA capabilities. Deploying the EJBs to this instance doesn't

involve anything special and is the same as explained in the .application deployment chapter

Obviously, to be able to see the benefits of clustering, you'll need more than one instance of the server. So

let's start another server with HA capabilities. That another instance of the server can either be on the same

machine or on some other machine. If it's on the same machine, the two things you have to make sure is

that you pass the port offset for the second instance and also make sure that each of the server instances

have a unique system property. You can do that by passing the following two systemjboss.node.name

properties to the startup command:

./standalone.sh -server-config=standalone-ha.xml -Djboss.socket.binding.port-offset=<offset of

your choice> -Djboss.node.name=<unique node name>

Follow whichever approach you feel comfortable with for deploying the EJB deployment to this instance too.

Deploying the application on just one node of a standalone instance of a clustered server does not

mean that it will be automatically deployed to the other clustered instance. You will have to do

deploy it explicitly on the other standalone clustered instance too. Or you can start the servers in

domain mode so that the deployment can be deployed to all the server within a server group. See

the for more details on domain setup.admin guide

Now that you have deployed an application with clustered EJBs on both the instances, the EJBs are now

capable of making use of the clustering features.

4.3 Failover for clustered EJBs

Clustered EJBs have failover capability. The state of the @Stateful @Clustered EJBs is replicated across

the cluster nodes so that if one of the nodes in the cluster goes down, some other node will be able to take

over the invocations. Let's see how it's implemented in WildFly 10. In the next few sections we'll see how it

works for remote (standalone) clients and for clients in another remote WildFly server instance. Although,

there isn't a difference in how it works in both these cases, we'll still explain it separately so as to make sure

there aren't any unanswered questions.

https://docs.jboss.org/author/display/AS71/Application+deployment
https://docs.jboss.org/author/display/AS71/Admin+Guide

WildFly 10

JBoss Community Documentation Page of 40 173

4.3.1 Remote standalone clients

In this section we'll consider a remote standalone client (i.e. a client which runs in a separate JVM and isn't

running within another WildFly 10 instance). Let's consider that we have 2 servers, server X and server Y

which we started earlier. Each of these servers has the clustered EJB deployment. A standalone remote

client can use either the or native JBoss EJB client APIs to communicate with the servers.JNDI approach

The important thing to note is that when you are invoking clustered EJB deployments, you do have to listnot

all the servers within the cluster (which obviously wouldn't have been feasible due the dynamic nature of

cluster node additions within a cluster).

The remote client just has to list only one of the servers with the clustering capability. In this case, we can

either list server X (in jboss-ejb-client.properties) server Y. This server will act as the starting point foror

cluster topology communication between the client and the clustered nodes.

Note that you have to configure the cluster in the jboss-ejb-client.properties configuration file, like so:ejb

remote.clusters=ejb

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 41 173

4.3.2 Cluster topology communication

When a client connects to a server, the JBoss EJB client implementation (internally) communicates with the

server for cluster topology information, if the server had clustering capability. In our example above, let's

assume we listed server X as the initial server to connect to. When the client connects to server X, the

server will send back an (asynchronous) cluster topology message to the client. This topology message

consists of the cluster name(s) and the information of the nodes that belong to the cluster. The node

information includes the node address and port number to connect to (whenever necessary). So in this

example, the server X will send back the cluster topology consisting of the other server Y which belongs to

the cluster.

In case of stateful (clustered) EJBs, a typical invocation flow involves creating of a session for the stateful

bean, which happens when you do a JNDI lookup for that bean, and then invoking on the returned proxy.

The lookup for stateful bean, internally, triggers a (synchronous) session creation request from the client to

the server. In this case, the session creation request goes to server X since that's the initial connection that

we have configured in our jboss-ejb-client.properties. Since server X is clustered, it will return back a session

id and along with send back an of that session. In case of clustered servers, the affinity equals to"affinity"

the name of the cluster to which the stateful bean belongs on the server side. For non-clustered beans, the

affinity is just the node name on which the session was created. This will later help the EJB client toaffinity

route the invocations on the proxy, appropriately to either a node within a cluster (for clustered beans) or to a

specific node (for non-clustered beans). While this session creation request is going on, the server X will

also send back an asynchronous message which contains the cluster topology. The JBoss EJB client

implementation will take note of this topology information and will later use it for connection creation to nodes

within the cluster and routing invocations to those nodes, whenever necessary.

Now that we know how the cluster topology information is communicated from the server to the client, let see

how failover works. Let's continue with the example of server X being our starting point and a client

application looking up a stateful bean and invoking on it. During these invocations, the client side will have

collected the cluster topology information from the server. Now let's assume for some reason, server X goes

down and the client application subsequent invokes on the proxy. The JBoss EJB client implementation, at

this stage will be aware of the affinity and in this case it's a cluster affinity. Because of the cluster topology

information it has, it knows that the cluster has two nodes server X and server Y. When the invocation now

arrives, it sees that the server X is down. So it uses a selector to fetch a suitable node from among the

cluster nodes. The selector itself is configurable, but we'll leave it from discussion for now. When the selector

returns a node from among the cluster, the JBoss EJB client implementation creates a connection to that

node (if not already created earlier) and creates a EJB receiver out of it. Since in our example, the only other

node in the cluster is server Y, the selector will return that node and the JBoss EJB client implementation will

use it to create a EJB receiver out of it and use that receiver to pass on the invocation on the proxy.

Effectively, the invocation has now failed over to a different node within the cluster.

WildFly 10

JBoss Community Documentation Page of 42 173

4.3.3 Remote clients on another instance of WildFly 10

So far we discussed remote standalone clients which typically use either the EJB client API or the

jboss-ejb-client.properties based approach to configure and communicate with the servers where the

clustered beans are deployed. Now let's consider the case where the client is an application deployed

another AS7 instance and it wants to invoke on a clustered stateful bean which is deployed on another

instance of WildFly 10. In this example let's consider a case where we have 3 servers involved. Server X

and Server Y both belong to a cluster and have clustered EJB deployed on them. Let's consider another

server instance Server C (which may or may have clustering capability) which acts as a client on whichnot

there's a deployment which wants to invoke on the clustered beans deployed on server X and Y and achieve

failover.

The configurations required to achieve this are explained in . As you can see the configurationsthis chapter

are done in a jboss-ejb-client.xml which points to a remote outbound connection to the other server. This

jboss-ejb-client.xml goes in the deployment of server C (since that's our client). As explained eariler, the

client configuration need point to all clustered nodes. Instead it just has to point to one of them which willnot

act as a start point for communication. So in this case, we can create a remote outbound connection on

server C to server X and use server X as our starting point for communication. Just like in the case of remote

standalone clients, when the application on server C (client) looks up a stateful bean, a session creation

request will be sent to server X which will send back a session id and the cluster affinity for it. Furthermore,

server X asynchronously send back a message to server C (client) containing the cluster topology. This

topology information will include the node information of server Y (since that belongs to the cluster along with

server X). Subsequent invocations on the proxy will be routed appropriately to the nodes in the cluster. If

server X goes down, as explained earlier, a different node from the cluster will be selected and the

invocation will be forwarded to that node.

As can be seen both remote standalone client and remote clients on another WildFly 10 instance act similar

in terms of failover.

4.3.4 Testcases for failover of stateful beans

We have testcases in WildFly 10 testsuite which test that whatever is explained above works as expected.

The tests the case where a stateful EJB uses @ClusteredRemoteEJBClientStatefulBeanFailoverTestCase

annotation to mark itself as clustered. We also have RemoteEJBClientDDBasedSFSBFailoverTestCase

which uses jboss-ejb3.xml to mark a stateful EJB as clustered. Both these testcases test that when a node

goes down in a cluster, the client invocation is routed to a different node in the cluster.

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+server+instance
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/RemoteEJBClientStatefulBeanFailoverTestCase.java
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/dd/RemoteEJBClientDDBasedSFSBFailoverTestCase.java

WildFly 10

JBoss Community Documentation Page of 43 173

5 Hibernate

WildFly 10

JBoss Community Documentation Page of 44 173

1.

2.

3.

4.

6 HA Singleton Features
In general, an HA or clustered singleton is a service that exists on multiple nodes in a cluster, but is active on

just a single node at any given time. If the node providing the service fails or is shut down, a new singleton

provider is chosen and started. Thus, other than a brief interval when one provider has stopped and another

has yet to start, the service is always running on one node.

6.1 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

6.1.1 Configuration

The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

WildFly 10

JBoss Community Documentation Page of 45 173

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

WildFly 10

JBoss Community Documentation Page of 46 173

6.1.2 HA environments

The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

6.2 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

6.2.1 Usage

A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

6.3 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220

WildFly 10

JBoss Community Documentation Page of 47 173

6.3.1 Installing an MSC service using an existing singleton

policy

While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 48 173

6.3.2 Installing an MSC service using dynamic singleton policy

Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 49 173

7 Related Issues
Couldn't find a page to include called: Related Issues

WildFly 10

JBoss Community Documentation Page of 50 173

8 Changes From Previous Versions
Describe here key changes between releases.

8.1 Key changes

8.2 Migration to Wildfly

WildFly 10

JBoss Community Documentation Page of 51 173

9 WildFly 8 Cluster Howto
Couldn't find a page to include called: WildFly 8 Cluster Howto

WildFly 10

JBoss Community Documentation Page of 52 173

10 References
Couldn't find a page to include called: References

WildFly 10

JBoss Community Documentation Page of 53 173

11 All WildFly 8 documentation
Couldn't find a page to include called: All WildFly 8 documentation

WildFly 10

JBoss Community Documentation Page of 54 173

12 Introduction To High Availability Services

12.1 What are High Availability services?

WildFly's High Availability services are used to guarantee availability of a deployed Java EE application.

Deploying critical applications on a single node suffers from two potential problems:

loss of application availability when the node hosting the application crashes (single point of failure)

loss of application availability in the form of extreme delays in response time during high volumes of

requests (overwhelmed server)

WildFly supports two features which ensure high availability of critical Java EE applications:

 allows a client interacting with a Java EE application to have uninterrupted access to thatfail-over:

application, even in the presence of node failures

 allows a client to have timely responses from the application, even in the presenceload balancing:

of high-volumes of requests

These two independent high availability services can very effectively inter-operate when making

use of mod_cluster for load balancing!

Taking advantage of WildFly's high availability services is easy, and simply involves deploying WildFly on a

cluster of nodes, making a small number of application configuration changes, and then deploying the

application in the cluster.

We now take a brief look at what these services can guarantee.

WildFly 10

JBoss Community Documentation Page of 55 173

12.2 High Availability through fail-over

Fail-over allows a client interacting with a Java EE application to have uninterrupted access to that

application, even in the presence of node failures. For example, consider a Java EE application which

makes use of the following features:

 session-oriented servlets to provide user interaction

 session-oriented EJBs to perform state-dependent business computation

 EJB entity beans to store critical data in a persistent store (e.g. database)

 SSO login to the application

If the application makes use of WildFly's fail-over services, a client interacting with an instance of that

application will not be interrupted even when the node on which that instance executes crashes. Behind the

scenes, WildFly makes sure that all of the user data that the application make use of (HTTP session data,

EJB SFSB sessions, EJB entities and SSO credentials) are available at other nodes in the cluster, so that

when a failure occurs and the client is redirected to that new node for continuation of processing (i.e. the

client "fails over" to the new node), the user's data is available and processing can continue.

The Infinispan and JGroups subsystems are instrumental in providing these data availability guarantees and

will be discussed in detail later in the guide.

12.3 High Availability through load balancing

Load balancing enables the application to respond to client requests in a timely fashion, even when

subjected to a high-volume of requests. Using a load balancer as a front-end, each incoming HTTP request

can be directed to one node in the cluster for processing. In this way, the cluster acts as a pool of

processing nodes and the load is "balanced" over the pool, achieving scalability and, as a consequence,

availability. Requests involving session-oriented servlets are directed to the the same application instance in

the pool for efficiency of processing (sticky sessions). Using mod_cluster has the advantage that changes in

cluster topology (scaling the pool up or down, servers crashing) are communicated back to the load balancer

and used to update in real time the load balancing activity and avoid requests being directed to application

instances which are no longer available.

The mod_cluster subsystem is instrumental in providing support for this High Availability feature of

WildFly and will be discussed in detail later in this guide.

12.4 Aims of the guide

This guide aims to:

provide a description of the high-availability features available in WildFly and the services they

depend on

show how the various high availability services can be configured for particular application use cases

identify default behavior for features relating to high-availability/clustering

WildFly 10

JBoss Community Documentation Page of 56 173

12.5 Organization of the guide

As high availability features and their configuration depend on the particular component they affect (e.g.

HTTP sessions, EJB SFSB sessions, Hibernate), we organize the discussion around those Java

EE features. We strive to make each section as self-contained as possible. Also, when discussing a feature,

we will introduce any WildFly subsystems upon which the feature depends.

WildFly 10

JBoss Community Documentation Page of 57 173

13 Subsystem Support
This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

13.1 JGroups Subsystem

13.2 Purpose

The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

13.3 Configuration example

What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 58 173

WildFly 10

JBoss Community Documentation Page of 59 173

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"

diagnostics-socket-binding="jgroups-diagnostics"

 default-executor="jgroups" oob-executor="jgroups-oob" timer-executor="jgroups-timer"

 shared="false" thread-factory="jgroups-thread-factory"

 machine="machine1" rack="rack1" site="site1"/>

 <protocol type="PING">

 <property name="timeout">100</property>

 </protocol>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="udp-xsite">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 <relay site="LONDON">

 <remote-site name="SFO" stack="tcp" cluster="global"/>

 <remote-site name="NYC" stack="tcp" cluster="global"/>

 </relay>

 </stack>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 60 173

13.3.1 <subsystem>

This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

13.3.2 <stack>

This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

WildFly 10

JBoss Community Documentation Page of 61 173

13.3.3 <transport>

This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

WildFly 10

JBoss Community Documentation Page of 62 173

13.3.4 <protocol>

This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

13.3.5 <relay>

This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

WildFly 10

JBoss Community Documentation Page of 63 173

13.4 Use Cases

In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

13.4.1 Add a stack

/subsystem=jgroups/stack=mystack:add(transport={}, protocols={})

13.4.2 Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=TRANSPORT:add(type=<type>,

socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:add-protocol(type=<type>, socket-binding=<socketbinding>)

13.4.3 Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=TRANSPORT/property=<property>:add(value=<value>)

13.4.4 Infinispan Subsystem

WildFly 10

JBoss Community Documentation Page of 64 173

13.5 Purpose

The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

13.6 Configuration Example

In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 65 173

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC" batching="true">

 <locking isolation="REPEATABLE_READ"/>

 </replicated-cache>

 </cache-container>

 <cache-container name="web" aliases="standard-session-cache" default-cache="repl"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <file-store/>

 </replicated-cache>

 <replicated-cache name="sso" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb sfsb-cache" default-cache="repl"

module="org.jboss.as.clustering.ejb3.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </replicated-cache>

 <!--

 ~ Clustered cache used internally by EJB subsytem for managing the client-mapping(s) of

 ~ the socketbinding referenced by the EJB remoting connector

 -->

 <replicated-cache name="remote-connector-client-mappings" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" default-cache="local-query" module="org.hibernate">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 66 173

13.6.1 <cache-container>

This element is used to configure a cache container.

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

WildFly 10

JBoss Community Documentation Page of 67 173

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups stack to be used for the transport. If none is specified,stack

the default-stack for the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

WildFly 10

JBoss Community Documentation Page of 68 173

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>
This child element defines properties to control indexing behaviour.

<locking>
This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>
This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

WildFly 10

JBoss Community Documentation Page of 69 173

<eviction>
This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

<expiration>
This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

WildFly 10

JBoss Community Documentation Page of 70 173

<abstract base-store>
This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

WildFly 10

JBoss Community Documentation Page of 71 173

<write-behind>
This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

<abstract base-jdbc-store> extends <abstract base-store>
This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>
This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>
This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>
This child element of cache configures a list of remote servers for this cache store.

WildFly 10

JBoss Community Documentation Page of 72 173

<remote-server>
This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

WildFly 10

JBoss Community Documentation Page of 73 173

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

WildFly 10

JBoss Community Documentation Page of 74 173

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

WildFly 10

JBoss Community Documentation Page of 75 173

13.7 Use Cases

In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

13.7.1 Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=TRANSPORT:add(lock-timeout=<timeout>)

13.7.2 Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

13.7.3 Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/transaction=TRANSACTION:add(mode=<transaction-mode>)

WildFly 10

JBoss Community Documentation Page of 76 173

13.8 JGroups Subsystem

13.8.1 Purpose

The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

13.8.2 Configuration example

What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 77 173

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"

diagnostics-socket-binding="jgroups-diagnostics"

 default-executor="jgroups" oob-executor="jgroups-oob" timer-executor="jgroups-timer"

 shared="false" thread-factory="jgroups-thread-factory"

 machine="machine1" rack="rack1" site="site1"/>

 <protocol type="PING">

 <property name="timeout">100</property>

 </protocol>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="udp-xsite">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 <relay site="LONDON">

 <remote-site name="SFO" stack="tcp" cluster="global"/>

 <remote-site name="NYC" stack="tcp" cluster="global"/>

 </relay>

 </stack>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 78 173

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

WildFly 10

JBoss Community Documentation Page of 79 173

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

WildFly 10

JBoss Community Documentation Page of 80 173

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

WildFly 10

JBoss Community Documentation Page of 81 173

13.8.3 Use Cases

In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add(transport={}, protocols={})

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=TRANSPORT:add(type=<type>,

socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:add-protocol(type=<type>, socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=TRANSPORT/property=<property>:add(value=<value>)

WildFly 10

JBoss Community Documentation Page of 82 173

13.9 Infinispan Subsystem

13.9.1 Purpose

The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

13.9.2 Configuration Example

In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 83 173

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC" batching="true">

 <locking isolation="REPEATABLE_READ"/>

 </replicated-cache>

 </cache-container>

 <cache-container name="web" aliases="standard-session-cache" default-cache="repl"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <file-store/>

 </replicated-cache>

 <replicated-cache name="sso" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb sfsb-cache" default-cache="repl"

module="org.jboss.as.clustering.ejb3.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </replicated-cache>

 <!--

 ~ Clustered cache used internally by EJB subsytem for managing the client-mapping(s) of

 ~ the socketbinding referenced by the EJB remoting connector

 -->

 <replicated-cache name="remote-connector-client-mappings" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" default-cache="local-query" module="org.hibernate">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 84 173

<cache-container>
This element is used to configure a cache container.

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

WildFly 10

JBoss Community Documentation Page of 85 173

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups stack to be used for the transport. If none is specified,stack

the default-stack for the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

WildFly 10

JBoss Community Documentation Page of 86 173

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>
This child element defines properties to control indexing behaviour.

<locking>
This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>
This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>
This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

WildFly 10

JBoss Community Documentation Page of 87 173

<expiration>
This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

WildFly 10

JBoss Community Documentation Page of 88 173

<abstract base-store>
This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

WildFly 10

JBoss Community Documentation Page of 89 173

<write-behind>
This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

<abstract base-jdbc-store> extends <abstract base-store>
This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>
This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>
This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>
This child element of cache configures a list of remote servers for this cache store.

WildFly 10

JBoss Community Documentation Page of 90 173

<remote-server>
This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

WildFly 10

JBoss Community Documentation Page of 91 173

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

WildFly 10

JBoss Community Documentation Page of 92 173

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

WildFly 10

JBoss Community Documentation Page of 93 173

13.9.3 Use Cases

In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=TRANSPORT:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/transaction=TRANSACTION:add(mode=<transaction-mode>)

13.10 mod_cluster Subsystem

The mod_cluster integration is done via the it requires mod_cluster-1.1.x.ormodcluster subsystem

mod_cluster-1.2.x (since 7.1.0)

The modcluster subsystem supports several operations:

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

WildFly 10

JBoss Community Documentation Page of 94 173

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

13.10.1 operations displaying httpd informations

There are 2 operations that display how Apache httpd sees the node:

WildFly 10

JBoss Community Documentation Page of 95 173

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

WildFly 10

JBoss Community Documentation Page of 96 173

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

WildFly 10

JBoss Community Documentation Page of 97 173

13.10.2

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "jfcpc:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 98 173

13.10.3 Context related operations

Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

13.10.4 Node related operations

Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

WildFly 10

JBoss Community Documentation Page of 99 173

13.10.5 Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric
Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric
Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 100 173

custom-metric / remove-custom-metric
like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

JVMRoute configuration
If you want to use your own JVM route instead of automatically generated one you can insert the following

property:

...

</extensions>

<system-properties>

 <property name="jboss.mod_cluster.jvmRoute" value="myJvmRoute"/>

</system-properties>

<management>

...

WildFly 10

JBoss Community Documentation Page of 101 173

14 HTTP Services
This section summarises the HTTP-based clustering features.

14.1 Subsystem Support

This section describes the key clustering subsystems, JGroups and Infinispan. Say a few words about how

they work together.

14.1.1 JGroups Subsystem

14.1.2 Purpose

The JGroups subsystem provides group communication support for HA services in the form of JGroups

channels.

Named channel instances permit application peers in a cluster to communicate as a group and in such a

way that the communication satisfies defined properties (e.g. reliable, ordered, failure-sensitive).

Communication properties are configurable for each channel and are defined by the protocol stack used to

create the channel. Protocol stacks consist of a base transport layer (used to transport messages around the

cluster) together with a user-defined, ordered stack of protocol layers, where each protocol layer supports a

given communication property.

The JGroups subsystem provides the following features:

allows definition of named protocol stacks

view run-time metrics associated with channels

specify a default stack for general use

In the following sections, we describe the JGroups subsystem.

JGroups channels are created transparently as part of the clustering functionality (e.g. on clustered

application deployment, channels will be created behind the scenes to support clustered features

such as session replication or transmission of SSO contexts around the cluster).

14.1.3 Configuration example

What follows is a sample JGroups subsystem configuration showing all of the possible elements and

attributes which may be configured. We shall use this example to explain the meaning of the various

elements and attributes.

WildFly 10

JBoss Community Documentation Page of 102 173

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 103 173

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">

 <stack name="udp">

 <transport type="UDP" socket-binding="jgroups-udp"

diagnostics-socket-binding="jgroups-diagnostics"

 default-executor="jgroups" oob-executor="jgroups-oob" timer-executor="jgroups-timer"

 shared="false" thread-factory="jgroups-thread-factory"

 machine="machine1" rack="rack1" site="site1"/>

 <protocol type="PING">

 <property name="timeout">100</property>

 </protocol>

 <protocol type="MERGE3"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="UFC"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="tcp">

 <transport type="TCP" socket-binding="jgroups-tcp"/>

 <protocol type="MPING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 </stack>

 <stack name="udp-xsite">

 <transport type="UDP" socket-binding="jgroups-udp"/>

 <protocol type="PING" socket-binding="jgroups-mping"/>

 <protocol type="MERGE2"/>

 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

 <protocol type="FD"/>

 <protocol type="VERIFY_SUSPECT"/>

 <protocol type="pbcast.NAKACK2"/>

 <protocol type="UNICAST2"/>

 <protocol type="pbcast.STABLE"/>

 <protocol type="pbcast.GMS"/>

 <protocol type="MFC"/>

 <protocol type="FRAG2"/>

 <protocol type="RSVP"/>

 <relay site="LONDON">

 <remote-site name="SFO" stack="tcp" cluster="global"/>

 <remote-site name="NYC" stack="tcp" cluster="global"/>

 </relay>

 </stack>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 104 173

<subsystem>
This element is used to configure the subsystem within a Wildfly system profile.

 This attribute specifies the XML namespace of the JGroups subsystem and, in particular, itsxmlns

version.

 This attribute is used to specify a default stack for the JGroups subsystem. Thisdefault-stack

default stack will be used whenever a stack is required but no stack is specified.

<stack>
This element is used to configure a JGroups protocol stack.

 This attribute is used to specify the name of the stack.name

WildFly 10

JBoss Community Documentation Page of 105 173

<transport>
This element is used to configure the transport layer (required) of the protocol stack.

 This attribute specifies the transport type (e.g. UDP, TCP, TCPGOSSIP)type

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally.

 This attribute references a defined socket binding in the serverdiagnostics-socket-binding

profile. It is used when JGroups needs to create sockets for use with the diagnostics program. For

more about the use of diagnostics, see the JGroups documentation for probe.sh.

 This attribute references a defined thread pool executor in the threadsdefault-executor

subsystem. It governs the allocation and execution of runnable tasks to handle incoming JGroups

messages.

 This attribute references a defined thread pool executor in the threads subsystem. Itoob-executor

governs the allocation and execution of runnable tasks to handle incoming JGroups OOB

(out-of-bound) messages.

 This attribute references a defined thread pool executor in the threads subsystem.timer-executor

It governs the allocation and execution of runnable timer-related tasks.

 This attribute indicates whether or not this transport is shared amongst several JGroupsshared

stacks or not.

 This attribute references a defined thread factory in the threads subsystem. Itthread-factory

governs the allocation of threads for running tasks which are not handled by the executors above.

 This attribute defines a site (data centre) id for this node.site

 This attribute defines a rack (server rack) id for this node.rack

 This attribute defines a machine (host) is for this node.machine

site, rack and machine ids are used by the Infinispan topology-aware consistent hash function,

which when using dist mode, prevents dist mode replicas from being stored on the same host, rack

or site

.

<property>
This element is used to configure a transport property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

WildFly 10

JBoss Community Documentation Page of 106 173

<protocol>
This element is used to configure a (non-transport) protocol layer in the JGroups stack. Protocol layers are

ordered within the stack.

 This attribute specifies the name of the JGroups protocol implementation (e.g. MPING,type

pbcast.GMS), with the package prefix org.jgroups.protocols removed.

 This attribute references a defined socket binding in the server profile. It is usedsocket-binding

when JGroups needs to create general sockets internally for this protocol instance.

<property>
This element is used to configure a protocol property.

 This attribute specifies the name of the protocol property. The value is provided as text for thename

property element.

<relay>
This element is used to configure the RELAY protocol for a JGroups stack. RELAY is a protocol which

provides cross-site replication between defined sites (data centres). In the RELAY protocol, defined sites

specify the names of remote sites (backup sites) to which their data should be backed up. Channels are

defined between sites to permit the RELAY protocol to transport the data from the current site to a backup

site.

 This attribute specifies the name of the current site. Site names can be referenced elsewheresite

(e.g. in the JGroups remote-site configuration elements, as well as backup configuration elements in

the Infinispan subsystem)

<remote-site>
This element is used to configure a remote site for the RELAY protocol.

 This attribute specifies the name of the remote site to which this configuration applies.name

 This attribute specifies a JGroups protocol stack to use for communication between this sitestack

and the remote site.

 This attribute specifies the name of the JGroups channel to use for communication betweencluster

this site and the remote site.

WildFly 10

JBoss Community Documentation Page of 107 173

14.1.4 Use Cases

In many cases, channels will be configured via XML as in the example above, so that the channels will be

available upon server startup. However, channels may also be added, removed or have their configurations

changed in a running server by making use of the Wildfly management API command-line interface (CLI). In

this section, we present some key use cases for the JGroups management API.

The key use cases covered are:

adding a stack

adding a protocol to an existing stack

adding a property to a protocol

The Wildfly management API command-line interface (CLI) itself can be used to provide extensive

information on the attributes and commands available in the JGroups subsystem interface used in

these examples.

Add a stack

/subsystem=jgroups/stack=mystack:add(transport={}, protocols={})

Add a protocol to a stack

/subsystem=jgroups/stack=mystack/transport=TRANSPORT:add(type=<type>,

socket-binding=<socketbinding>)

/subsystem=jgroups/stack=mystack:add-protocol(type=<type>, socket-binding=<socketbinding>)

Add a property to a protocol

/subsystem=jgroups/stack=mystack/transport=TRANSPORT/property=<property>:add(value=<value>)

Infinispan Subsystem

WildFly 10

JBoss Community Documentation Page of 108 173

14.1.5 Purpose

The Infinispan subsystem provides caching support for HA services in the form of Infinispan caches:

 high-performance, transactional caches which can operate in both non-distributed and distributed

scenarios. Distributed caching support is used in the provision of many key HA services. For example, the

failover of a session-oriented client HTTP request from a failing node to a new (failover) node depends on

session data for the client being available on the new node. In other words, the client session data needs to

be replicated across nodes in the cluster. This is effectively achieved via a distributed Infinispan cache. This

approach to providing fail-over also applies to EJB SFSB sessions. Over and above providing support for

fail-over, an underlying cache is also required when providing second-level caching for entity beans using

Hibernate, and this case is also handled through the use of an Infinispan cache.

The Infinispan subsystem provides the following features:

allows definition and configuration of named cache containers and caches

view run-time metrics associated with cache container and cache instances

In the following sections, we describe the Infinispan subsystem.

Infiispan cache containers and caches are created transparently as part of the clustering

functionality (e.g. on clustered application deployment, cache containers and their associated

caches will be created behind the scenes to support clustered features such as session replication

or caching of entities around the cluster).

14.1.6 Configuration Example

In this section, we provide an example XML configuration of the infinispan subsystem and review the

configuration elements and attributes.

The schema for the subsystem, describing all valid elements and attributes, can be found in the

Wildfly distribution, in the docs/schema directory.

WildFly 10

JBoss Community Documentation Page of 109 173

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="server" aliases="singleton cluster" default-cache="default"

module="org.wildfly.clustering.server">

 <transport lock-timeout="60000"/>

 <replicated-cache name="default" mode="SYNC" batching="true">

 <locking isolation="REPEATABLE_READ"/>

 </replicated-cache>

 </cache-container>

 <cache-container name="web" aliases="standard-session-cache" default-cache="repl"

module="org.wildfly.clustering.web.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <file-store/>

 </replicated-cache>

 <replicated-cache name="sso" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="ejb" aliases="sfsb sfsb-cache" default-cache="repl"

module="org.jboss.as.clustering.ejb3.infinispan">

 <transport lock-timeout="60000"/>

 <replicated-cache name="repl" mode="ASYNC" batching="true">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </replicated-cache>

 <!--

 ~ Clustered cache used internally by EJB subsytem for managing the client-mapping(s) of

 ~ the socketbinding referenced by the EJB remoting connector

 -->

 <replicated-cache name="remote-connector-client-mappings" mode="SYNC" batching="true"/>

 <distributed-cache name="dist" mode="ASYNC" batching="true" l1-lifespan="0">

 <eviction strategy="LRU" max-entries="10000"/>

 <file-store/>

 </distributed-cache>

 </cache-container>

 <cache-container name="hibernate" default-cache="local-query" module="org.hibernate">

 <transport lock-timeout="60000"/>

 <local-cache name="local-query">

 <transaction mode="NONE"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </local-cache>

 <invalidation-cache name="entity" mode="SYNC">

 <transaction mode="NON_XA"/>

 <eviction strategy="LRU" max-entries="10000"/>

 <expiration max-idle="100000"/>

 </invalidation-cache>

 <replicated-cache name="timestamps" mode="ASYNC">

 <transaction mode="NONE"/>

 <eviction strategy="NONE"/>

 </replicated-cache>

 </cache-container>

</subsystem>

WildFly 10

JBoss Community Documentation Page of 110 173

<cache-container>
This element is used to configure a cache container.

 This attribute is used to specify the name of the cache container.name

 This attribute configures the default cache to be used, when no cache is otherwisedefault-cache

specified.

 This attribute references a defined thread pool executor in the threadslistener-executor

subsystem. It governs the allocation and execution of runnable tasks in the replication queue.

 This attribute references a defined thread pool executor in the threadseviction-executor

subsystem. It governs the allocation and execution of runnable tasks to handle evictions.

 This attribute references a defined thread pool executor in thereplication-queue-executor

threads subsystem. It governs the allocation and execution of runnable tasks to handle asynchronous

cache operations.

 This attribute is used to assign a name for the cache container in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute is used to define aliases for the cache container name.aliases

This element has the following child elements: , , , <transport> <local-cache> <invalidation-cache>

, and .<replicated-cache> <distributed-cache>

WildFly 10

JBoss Community Documentation Page of 111 173

<transport>
This element is used to configure the JGroups transport used by the cache container, when required.

 This attribute configures the JGroups stack to be used for the transport. If none is specified,stack

the default-stack for the JGroups subsystem is used.

 This attribute configures the name of the group communication cluster. This is the namecluster

which will be seen in debugging logs.

 This attribute references a defined thread pool executor in the threads subsystem. Itexecutor

governs the allocation and execution of runnable tasks to handle ? >?.<fill me in

 This attribute configures the time-out to be used when obtaining locks for thelock-timeout

transport.

 This attribute configures the site id of the cache container.site

 This attribute configures the rack id of the cache container.rack

 This attribute configures the machine id of the cache container.machine

The presence of the transport element is required when operating in clustered mode

The remaining child elements of , namely , , <cache-container> <local-cache> <invalidation-cache>

 and , each configures one of four key cache types or<replicated-cache> <distributed-cache>

classifications.

These cache-related elements are actually part of an xsd hierarchy with abstract complexTypes

, , and . In order to simplify the presentation, we notate thesecache clustered-cache shared-cache

as pseudo-elements , and <abstract cache> <abstract clustered-cache> <abstract

. In what follows, we first describe the extension hierarchy of base elements, andshared-cache>

then show how the cache type elements relate to them.

<abstract cache>
This abstract base element defines the attributes and child elements common to all non-clustered caches.

 This attribute configures the name of the cache. This name may be referenced by othername

subsystems.

 This attribute configured the cache container start mode and has since been deprecated, thestart

only supported and the default value is LAZY (on-demand start).

 This attribute configures batching. If enabled, the invocation batching API will be madebatching

available for this cache.

 This attribute configures indexing. If enabled, entries will be indexed when they are addedindexing

to the cache. Indexes will be updated as entries change or are removed.

 This attribute is used to assign a name for the cache in the JNDI name service.jndi-name

 This attribute configures the module whose class loader should be used when building thismodule

cache container's configuration.

WildFly 10

JBoss Community Documentation Page of 112 173

The <abstract cache> abstract base element has the following child elements: <indexing-properties>,

, , , , , , , <locking> <transaction> <eviction> <expiration> <store> <file-store> <string-keyed-jdbc-store>

, , .<binary-keyed-jdbc-store> <mixed-keyed-jdbc-store> <remote-store>

<indexing-properties>
This child element defines properties to control indexing behaviour.

<locking>
This child element configures the locking behaviour of the cache.

 This attribute the cache locking isolation level. Allowable values are NONE,isolation

SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED, READ_UNCOMMITTED.

 If true, a pool of shared locks is maintained for all entries that need to be locked.striping

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but

may reduce concurrency in the system.

 This attribute configures the maximum time to attempt a particular lockacquire-timeout

acquisition.

 This attribute is used to configure the concurrency level. Adjust this valueconcurrency-level

according to the number of concurrent threads interacting with Infinispan.

<transaction>
This child element configures the transactional behaviour of the cache.

 This attribute configures the transaction mode, setting the cache transaction mode to one ofmode

NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

 If there are any ongoing transactions when a cache is stopped, Infinispan waits forstop-timeout

ongoing remote and local transactions to finish. The amount of time to wait for is defined by the cache

stop timeout.

 This attribute configures the locking mode for this cache, one of OPTIMISTIC orlocking

PESSIMISTIC.

<eviction>
This child element configures the eviction behaviour of the cache.

 This attribute configures the cache eviction strategy. Available options are 'UNORDERED',strategy

'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).

 This attribute configures the maximum number of entries in a cache instance. Ifmax-entries

selected value is not a power of two the actual value will default to the least power of two larger than

selected value. -1 means no limit.

WildFly 10

JBoss Community Documentation Page of 113 173

<expiration>
This child element configures the expiration behaviour of the cache.

 This attribute configures the maximum idle time a cache entry will be maintained in themax-idle

cache, in milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1 means

the entries never expire.

 This attribute configures the maximum lifespan of a cache entry, after which the entry islifespan

expired cluster-wide, in milliseconds. -1 means the entries never expire.

 This attribute specifies the interval (in ms) between subsequent runs to purge expiredinterval

entries from memory and any cache stores. If you wish to disable the periodic eviction process

altogether, set wakeupInterval to -1.

The remaining child elements of the abstract base element , namely , , <cache> <store> <file-store>

, , and ,<remote-store> <string-keyed-jdbc-store> <binary-keyed-jdbc-store> <mixed-keyed-jdbc-store>

each configures one of six key cache store types.

These cache store-related elements are actually part of an xsd extension hierarchy with abstract

complexTypes and . As before, in order to simplify the presentation,base-store base-jdbc-store

we notate these as pseudo-elements and . In<abstract base-store> <abstract base-jdbc-store>

what follows, we first describe the extension hierarchy of base elements, and then show how the

cache store elements relate to them.

WildFly 10

JBoss Community Documentation Page of 114 173

<abstract base-store>
This abstract base element defines the attributes and child elements common to all cache stores.

 This attribute should be set to true when multiple cache instances share the same cacheshared

store (e.g. multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared

database) Setting this to true avoids multiple cache instances writing the same modification multiple

times. If enabled, only the node where the modification originated will write to the cache store. If

disabled, each individual cache reacts to a potential remote update by storing the data to the cache

store.

 This attribute configures whether or not, when the cache starts, data stored in the cachepreload

loader will be pre-loaded into memory. This is particularly useful when data in the cache loader is

needed immediately after start-up and you want to avoid cache operations being delayed as a result

of loading this data lazily. Can be used to provide a 'warm-cache' on start-up, however there is a

performance penalty as start-up time is affected by this process. Note that pre-loading is done in a

local fashion, so any data loaded is only stored locally in the node. No replication or distribution of the

preloaded data happens. Also, Infinispan only pre-loads up to the maximum configured number of

entries in eviction.

 If true, data is only written to the cache store when it is evicted from memory, apassivation

phenomenon known as . Next time the data is requested, it will be 'activated' which meanspassivation

that data will be brought back to memory and removed from the persistent store. If false, the cache

store contains a copy of the cache contents in memory, so writes to cache result in cache store

writes. This essentially gives you a 'write-through' configuration.

 This attribute, if true, causes persistent state to be fetched when joining a cluster. Iffetch-state

multiple cache stores are chained, only one of them can have this property enabled.

 This attribute configures whether the cache store is purged upon start-up.purge

 This attribute configures whether or not the singleton store cache store is enabled.singleton

SingletonStore is a delegating cache store used for situations when only one instance in a cluster

should interact with the underlying store.

 This attribute configures a custom store implementation class to use for this cache store.class

 This attribute is used to configure a list of cache store properties.properties

The abstract base element has one child element: <write-behind>

WildFly 10

JBoss Community Documentation Page of 115 173

<write-behind>
This element is used to configure a cache store as write-behind instead of write-through. In write-through

mode, writes to the cache are also written to the cache store, whereas in write-behind mode,synchronously

writes to the cache are followed by writes to the cache store.asynchronous

 This attribute configures the time-out for acquiring the lock which guards theflush-lock-timeout

state to be flushed to the cache store periodically.

 This attribute configures the maximum number of entries in themodification-queue-size

asynchronous queue. When the queue is full, the store becomes write-through until it can accept new

entries.

 This attribute configures the time-out (in ms) to stop the cache store.shutdown-timeout

 This attribute is used to configure the size of the thread pool whose threads arethread-pool

responsible for applying the modifications to the cache store.

<abstract base-jdbc-store> extends <abstract base-store>
This abstract base element defines the attributes and child elements common to all JDBC-based cache

stores.

 This attribute configures the datasource for the JDBC-based cache store.datasource

 This attribute configures the database table used to store cache entries.entry-table

 This attribute configures the database table used to store binary cache entries.bucket-table

<file-store> extends <abstract base-store>
This child element is used to configure a file-based cache store. This requires specifying the name of the file

to be used as backing storage for the cache store.

 This attribute optionally configures a relative path prefix for the file store path. Can berelative-to

null.

 This attribute configures an absolute path to a file if is null; configures a relative pathpath relative-to

to the file, in relation to the value for , otherwise.relative-to

<remote-store> extends <abstract base-store>
This child element of cache is used to configure a remote cache store. It has a child <remote-servers>.

 This attribute configures the name of the remote cache to use for this remote store.cache

 This attribute configures a TCP_NODELAY value for communication with the remotetcp-nodelay

cache.

 This attribute configures a socket time-out for communication with the remotesocket-timeout

cache.

<remote-servers>
This child element of cache configures a list of remote servers for this cache store.

WildFly 10

JBoss Community Documentation Page of 116 173

<remote-server>
This element configures a remote server. A remote server is defined completely by a locally defined

outbound socket binding, through which communication is made with the server.

 This attribute configures an outbound socket binding for a remoteoutbound-socket-binding

server.

<local-cache> extends <abstract cache>
This element configures a local cache.

<abstract clustered-cache> extends <abstract cache>
This abstract base element defines the attributes and child elements common to all clustered caches. A

clustered cache is a cache which spans multiple nodes in a cluster. It inherits from <cache>, so that all

attributes and elements of <cache> are also defined for <clustered-cache>.

 This attribute configures async marshalling. If enabled, this will causeasync-marshalling

marshalling of entries to be performed asynchronously.

 This attribute configures the clustered cache mode, ASYNC for asynchronous operation, ormode

SYNC for synchronous operation.

 In ASYNC mode, this attribute can be used to trigger flushing of the queue when itqueue-size

reaches a specific threshold.

 In ASYNC mode, this attribute controls how often the asynchronousqueue-flush-interval

thread used to flush the replication queue runs. This should be a positive integer which represents

thread wakeup time in milliseconds.

 In SYNC mode, this attribute (in ms) used to wait for an acknowledgement whenremote-timeout

making a remote call, after which the call is aborted and an exception is thrown.

<invalidation-cache> extends <abstract clustered-cache>
This element configures an invalidation cache.

WildFly 10

JBoss Community Documentation Page of 117 173

<abstract shared-cache> extends <abstract clustered-cache>
This abstract base element defines the attributes and child elements common to all shared caches. A shared

cache is a clustered cache which shares state with its cache peers in the cluster. It inherits from

<clustered-cache>, so that all attributes and elements of <clustered-cache> are also defined for

<shared-cache>.

<state-transfer>

 If enabled, this will cause the cache to ask neighbouring caches for state when it starts up,enabled

so the cache starts 'warm', although it will impact start-up time.

 This attribute configures the maximum amount of time (ms) to wait for state fromtimeout

neighbouring caches, before throwing an exception and aborting start-up.

 This attribute configures the size, in bytes, in which to batch the transfer of cachechunk-size

entries.

<backups>

<backup>

 This attribute configures the backup strategy for this cache. Allowable values are SYNC,strategy

ASYNC.

 This attribute configures the policy to follow when connectivity to the backup sitefailure-policy

fails. Allowable values are IGNORE, WARN, FAIL, CUSTOM.

 This attribute configures whether or not this backup is enabled. If enabled, data will be sentenabled

to the backup site; otherwise, the backup site will be effectively ignored.

 This attribute configures the time-out for replicating to the backup site.timeout

 This attribute configures the number of failures after which this backup site shouldafter-failures

go off-line.

 This attribute configures the minimum time (in milliseconds) to wait after the max numbermin-wait

of failures is reached, after which this backup site should go off-line.

<backup-for>

 This attribute configures the name of the remote cache for which this cache acts as aremote-cache

backup.

 This attribute configures the site of the remote cache for which this cache acts as aremote-site

backup.

<replicated-cache> extends <abstract shared-cache>
This element configures a replicated cache. With a replicated cache, all contents (key-value pairs) of the

cache are replicated on all nodes in the cluster.

WildFly 10

JBoss Community Documentation Page of 118 173

<distributed-cache> extends <abstract shared-cache>
This element configures a distributed cache. With a distributed cache, contents of the cache are selectively

replicated on nodes in the cluster, according to the number of owners specified.

 This attribute configures the number of cluster-wide replicas for each cache entry.owners

 This attribute configures the number of hash space segments which is the granularity forsegments

key distribution in the cluster. Value must be strictly positive.

 This attribute configures the maximum lifespan of an entry placed in the L1 cache.l1-lifespan

Configures the L1 cache behaviour in 'distributed' caches instances. In any other cache modes, this

element is ignored.

WildFly 10

JBoss Community Documentation Page of 119 173

14.1.7 Use Cases

In many cases, cache containers and caches will be configured via XML as in the example above, so that

they will be available upon server start-up. However, cache containers and caches may also be added,

removed or have their configurations changed in a running server by making use of the Wildfly management

API command-line interface (CLI). In this section, we present some key use cases for the Infinispan

management API.

The key use cases covered are:

adding a cache container

adding a cache to an existing cache container

configuring the transaction subsystem of a cache

The Wildfly management API command-line interface (CLI) can be used to provide

extensive information on the attributes and commands available in the Infinispan subsystem

interface used in these examples.

Add a cache container

/subsystem=infinispan/cache-container=mycontainer:add(default-cache=<default-cache-name>)

/subsystem=infinispan/cache-container=mycontainer/transport=TRANSPORT:add(lock-timeout=<timeout>)

Add a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache:add()

Configure the transaction component of a cache

/subsystem=infinispan/cache-container=mycontainer/local-cache=mylocalcache/transaction=TRANSACTION:add(mode=<transaction-mode>)

14.2 Clustered Web Sessions

14.3 Clustered SSO

WildFly 10

JBoss Community Documentation Page of 120 173

14.4 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

14.5 Load balancing with Apache + mod_jk

Describe load balancing with Apache using mod_jk.

14.6 Load balancing with Apache + mod_cluster

Describe load balancing with Apache using mod_cluster.

14.6.1 mod_cluster Subsystem

The mod_cluster integration is done via the it requires mod_cluster-1.1.x.ormodcluster subsystem

mod_cluster-1.2.x (since 7.1.0)

The modcluster subsystem supports several operations:

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

WildFly 10

JBoss Community Documentation Page of 121 173

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

WildFly 10

JBoss Community Documentation Page of 122 173

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

WildFly 10

JBoss Community Documentation Page of 123 173

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

WildFly 10

JBoss Community Documentation Page of 124 173

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "jfcpc:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 125 173

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

WildFly 10

JBoss Community Documentation Page of 126 173

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric
Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric
Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 127 173

custom-metric / remove-custom-metric
like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

JVMRoute configuration
If you want to use your own JVM route instead of automatically generated one you can insert the following

property:

...

</extensions>

<system-properties>

 <property name="jboss.mod_cluster.jvmRoute" value="myJvmRoute"/>

</system-properties>

<management>

...

14.7 Clustered Web Sessions

14.8 Clustered SSO

14.9 Load Balancing

This section describes load balancing via Apache + mod_jk and Apache + mod_cluster.

WildFly 10

JBoss Community Documentation Page of 128 173

14.9.1 Load balancing with Apache + mod_jk

Describe load balancing with Apache using mod_jk.

14.9.2 Load balancing with Apache + mod_cluster

Describe load balancing with Apache using mod_cluster.

mod_cluster Subsystem
The mod_cluster integration is done via the it requires mod_cluster-1.1.x.ormodcluster subsystem

mod_cluster-1.2.x (since 7.1.0)

The modcluster subsystem supports several operations:

[standalone@localhost:9999 subsystem=modcluster] :read-operation-names

{

 "outcome" => "success",

 "result" => [

 "add",

 "add-custom-metric",

 "add-metric",

 "add-proxy",

 "disable",

 "disable-context",

 "enable",

 "enable-context",

 "list-proxies",

 "read-attribute",

 "read-children-names",

 "read-children-resources",

 "read-children-types",

 "read-operation-description",

 "read-operation-names",

 "read-proxies-configuration",

 "read-proxies-info",

 "read-resource",

 "read-resource-description",

 "refresh",

 "remove-custom-metric",

 "remove-metric",

 "remove-proxy",

 "reset",

 "stop",

 "stop-context",

 "validate-address",

 "write-attribute"

]

}

http://docs.jboss.org/mod_cluster/1.1.0/html/java.AS7config.html

WildFly 10

JBoss Community Documentation Page of 129 173

The operations specific to the modcluster subsystem are divided in 3 categories the ones that affects the

configuration and require a restart of the subsystem, the one that just modify the behaviour temporarily and

the ones that display information from the httpd part.

operations displaying httpd informations
There are 2 operations that display how Apache httpd sees the node:

read-proxies-configuration
Send a DUMP message to all Apache httpd the node is connected to and display the message received

from Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-configuration

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 Maxtry: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Domain: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [example.com] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [default-host] vhost: 1 node: 1

context: 1 [/myapp] vhost: 1 node: 1 status: 1

context: 2 [/] vhost: 1 node: 1 status: 1

",

 "jfcpc:6666",

 "balancer: [1] Name: mycluster Sticky: 1 [JSESSIONID]/[jsessionid] remove: 0 force: 1

Timeout: 0 maxAttempts: 1

node: [1:1],Balancer: mycluster,JVMRoute: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,LBGroup: [],Host:

127.0.0.1,Port: 8080,Type: http,flushpackets: 0,flushwait: 10,ping: 10,smax: 26,ttl: 60,timeout:

0

host: 1 [default-host] vhost: 1 node: 1

host: 2 [localhost] vhost: 1 node: 1

host: 3 [example.com] vhost: 1 node: 1

context: 1 [/] vhost: 1 node: 1 status: 1

context: 2 [/myapp] vhost: 1 node: 1 status: 1

"

]

}

WildFly 10

JBoss Community Documentation Page of 130 173

read-proxies-info
Send a INFO message to all Apache httpd the node is connected to and display the message received from

Apache httpd.

[standalone@localhost:9999 subsystem=modcluster] :read-proxies-info

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,Domain: ,Host:

127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10000,Ping: 10000000,Smax: 26,Ttl:

60000000,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: -1

Vhost: [1:1:1], Alias: example.com

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: default-host

Context: [1:1:1], Context: /myapp, Status: ENABLED

Context: [1:1:2], Context: /, Status: ENABLED

",

 "jfcpc:6666",

 "Node: [1],Name: 498bb1f0-00d9-3436-a341-7f012bc2e7ec,Balancer: mycluster,LBGroup:

,Host: 127.0.0.1,Port: 8080,Type: http,Flushpackets: Off,Flushwait: 10,Ping: 10,Smax: 26,Ttl:

60,Elected: 0,Read: 0,Transfered: 0,Connected: 0,Load: 1

Vhost: [1:1:1], Alias: default-host

Vhost: [1:1:2], Alias: localhost

Vhost: [1:1:3], Alias: example.com

Context: [1:1:1], Context: /, Status: ENABLED

Context: [1:1:2], Context: /myapp, Status: ENABLED

"

]

}

WildFly 10

JBoss Community Documentation Page of 131 173

operations that handle the proxies the node is connected too
there are 3 operation that could be used to manipulate the list of Apache httpd the node is connected too.

list-proxies:
Displays the httpd that are connected to the node. The httpd could be discovered via the Advertise protocol

or via the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :list-proxies

{

 "outcome" => "success",

 "result" => [

 "neo3:6666",

 "jfcpc:6666"

]

}

remove-proxy
Remove a proxy from the discovered proxies or temporarily from the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :remove-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

proxy
Add a proxy to the discovered proxies or temporarily to the proxy-list attribute.

[standalone@localhost:9999 subsystem=modcluster] :add-proxy(host=jfcpc, port=6666)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 132 173

Context related operations
Those operations allow to send context related commands to Apache httpd. They are send automatically

when deploying or undeploying webapps.

enable-context
Tell Apache httpd that the context is ready receive requests.

[standalone@localhost:9999 subsystem=modcluster] :enable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

disable-context
Tell Apache httpd that it shouldn't send new session requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :disable-context(context=/myapp,

virtualhost=default-host)

{"outcome" => "success"}

stop-context
Tell Apache httpd that it shouldn't send requests to the context of the virtualhost.

[standalone@localhost:9999 subsystem=modcluster] :stop-context(context=/myapp,

virtualhost=default-host, waittime=50)

{"outcome" => "success"}

Node related operations
Those operations are like the context operation but they apply to all webapps running on the node and

operation that affect the whole node.

refresh
Refresh the node by sending a new CONFIG message to Apache httpd.

reset
reset the connection between Apache httpd and the node

Configuration

Metric configuration
There are 4 metric operations corresponding to add and remove load metrics to the dynamic-load-provider.

Note that when nothing is defined a simple-load-provider is use with a fixed load factor of one.

WildFly 10

JBoss Community Documentation Page of 133 173

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {"simple-load-provider" => {"factor" => "1"}}

}

that corresponds to the following configuration:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <simple-load-provider factor="1"/>

 </mod-cluster-config>

 </subsystem>

metric

Add a metric to the dynamic-load-provider, the dynamic-load-provider in configuration is created if needed.

[standalone@localhost:9999 subsystem=modcluster] :add-metric(type=cpu)

{"outcome" => "success"}

[standalone@localhost:9999 subsystem=modcluster] :read-resource(name=mod-cluster-config)

{

 "outcome" => "success",

 "result" => {

 "dynamic-load-provider" => {

 "history" => 9,

 "decay" => 2,

 "load-metric" => [{

 "type" => "cpu"

 }]

 }

 }

}

remove-metric

Remove a metric from the dynamic-load-provider.

[standalone@localhost:9999 subsystem=modcluster] :remove-metric(type=cpu)

{"outcome" => "success"}

WildFly 10

JBoss Community Documentation Page of 134 173

custom-metric / remove-custom-metric

like the add-metric and remove-metric except they require a class parameter instead the type. Usually they

needed additional properties which can be specified

[standalone@localhost:9999 subsystem=modcluster] :add-custom-metric(class=myclass,

property=[("pro1" => "value1"), ("pro2" => "value2")]

{"outcome" => "success"}

which corresponds the following in the xml configuration file:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">

 <mod-cluster-config>

 <dynamic-load-provider history="9" decay="2">

 <custom-load-metric class="myclass">

 <property name="pro1" value="value1"/>

 <property name="pro2" value="value2"/>

 </custom-load-metric>

 </dynamic-load-provider>

 </mod-cluster-config>

</subsystem>

JVMRoute configuration
If you want to use your own JVM route instead of automatically generated one you can insert the following

property:

...

</extensions>

<system-properties>

 <property name="jboss.mod_cluster.jvmRoute" value="myJvmRoute"/>

</system-properties>

<management>

...

WildFly 10

JBoss Community Documentation Page of 135 173

14.9.3 Apache httpd

The recommended front-end module is mod_cluster but mod_jk or mod_proxy could be used as in Tomcat

or other AS version.

To use AJP define a ajp connector in the web subsystem like:

<subsystem xmlns="urn:jboss:domain:web:1.0">

 <connector name="http" protocol="HTTP/1.1" socket-binding="http"/>

 <connector name="ajp" protocol="AJP/1.3" socket-binding="ajp"/>

To the ajp in the in the socket-binding-group like:

<socket-binding-group name="standard-sockets" default-interface="public">

 <socket-binding name="http" port="8080"/>

 <socket-binding name="ajp" port="8009"/>

 <socket-binding name="https" port="8443"/>

WildFly 10

JBoss Community Documentation Page of 136 173

15 EJB Services
This chapter explains how clustering of EJBs works in WildFly 10.

15.1 EJB Subsystem

15.2 EJB Timer

Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

15.2.1 Marking an EJB as clustered

WildFly 10 allows clustering of stateful session beans. A stateful session bean can be marked with

 annotation or be marked as clustered using the@org.jboss.ejb3.annotation.Clustered

jboss-ejb3.xml's element.<clustered>

MyStatefulBean

import org.jboss.ejb3.annotation.Clustered;

import javax.ejb.Stateful;

@Stateful

@Clustered

public class MyStatefulBean {

...

}

jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"

 xmlns:jee="http://java.sun.com/xml/ns/javaee"

 xmlns:c="urn:clustering:1.0">

 <jee:assembly-descriptor>

 <c:clustering>

 <jee:ejb-name>DDBasedClusteredBean</jee:ejb-name>

 <c:clustered>true</c:clustered>

 </c:clustering>

 </jee:assembly-descriptor>

</jboss>

https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers

WildFly 10

JBoss Community Documentation Page of 137 173

15.2.2 Deploying clustered EJBs

Clustering support is available in the HA profiles of WildFly 10. In this chapter we'll be using the standalone

server for explaining the details. However, the same applies to servers in a domain mode. Starting the

standalone server with HA capabilities enabled, involves starting it with the standalone-ha.xml (or even

standalone-full-ha.xml):

./standalone.sh -server-config=standalone-ha.xml

This will start a single instance of the server with HA capabilities. Deploying the EJBs to this instance doesn't

involve anything special and is the same as explained in the .application deployment chapter

Obviously, to be able to see the benefits of clustering, you'll need more than one instance of the server. So

let's start another server with HA capabilities. That another instance of the server can either be on the same

machine or on some other machine. If it's on the same machine, the two things you have to make sure is

that you pass the port offset for the second instance and also make sure that each of the server instances

have a unique system property. You can do that by passing the following two systemjboss.node.name

properties to the startup command:

./standalone.sh -server-config=standalone-ha.xml -Djboss.socket.binding.port-offset=<offset of

your choice> -Djboss.node.name=<unique node name>

Follow whichever approach you feel comfortable with for deploying the EJB deployment to this instance too.

Deploying the application on just one node of a standalone instance of a clustered server does not

mean that it will be automatically deployed to the other clustered instance. You will have to do

deploy it explicitly on the other standalone clustered instance too. Or you can start the servers in

domain mode so that the deployment can be deployed to all the server within a server group. See

the for more details on domain setup.admin guide

Now that you have deployed an application with clustered EJBs on both the instances, the EJBs are now

capable of making use of the clustering features.

15.2.3 Failover for clustered EJBs

Clustered EJBs have failover capability. The state of the @Stateful @Clustered EJBs is replicated across

the cluster nodes so that if one of the nodes in the cluster goes down, some other node will be able to take

over the invocations. Let's see how it's implemented in WildFly 10. In the next few sections we'll see how it

works for remote (standalone) clients and for clients in another remote WildFly server instance. Although,

there isn't a difference in how it works in both these cases, we'll still explain it separately so as to make sure

there aren't any unanswered questions.

https://docs.jboss.org/author/display/AS71/Application+deployment
https://docs.jboss.org/author/display/AS71/Admin+Guide

WildFly 10

JBoss Community Documentation Page of 138 173

Remote standalone clients
In this section we'll consider a remote standalone client (i.e. a client which runs in a separate JVM and isn't

running within another WildFly 10 instance). Let's consider that we have 2 servers, server X and server Y

which we started earlier. Each of these servers has the clustered EJB deployment. A standalone remote

client can use either the or native JBoss EJB client APIs to communicate with the servers.JNDI approach

The important thing to note is that when you are invoking clustered EJB deployments, you do have to listnot

all the servers within the cluster (which obviously wouldn't have been feasible due the dynamic nature of

cluster node additions within a cluster).

The remote client just has to list only one of the servers with the clustering capability. In this case, we can

either list server X (in jboss-ejb-client.properties) server Y. This server will act as the starting point foror

cluster topology communication between the client and the clustered nodes.

Note that you have to configure the cluster in the jboss-ejb-client.properties configuration file, like so:ejb

remote.clusters=ejb

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false

https://docs.jboss.org/author/display/AS71/EJB+invocations+from+a+remote+client+using+JNDI

WildFly 10

JBoss Community Documentation Page of 139 173

Cluster topology communication
When a client connects to a server, the JBoss EJB client implementation (internally) communicates with the

server for cluster topology information, if the server had clustering capability. In our example above, let's

assume we listed server X as the initial server to connect to. When the client connects to server X, the

server will send back an (asynchronous) cluster topology message to the client. This topology message

consists of the cluster name(s) and the information of the nodes that belong to the cluster. The node

information includes the node address and port number to connect to (whenever necessary). So in this

example, the server X will send back the cluster topology consisting of the other server Y which belongs to

the cluster.

In case of stateful (clustered) EJBs, a typical invocation flow involves creating of a session for the stateful

bean, which happens when you do a JNDI lookup for that bean, and then invoking on the returned proxy.

The lookup for stateful bean, internally, triggers a (synchronous) session creation request from the client to

the server. In this case, the session creation request goes to server X since that's the initial connection that

we have configured in our jboss-ejb-client.properties. Since server X is clustered, it will return back a session

id and along with send back an of that session. In case of clustered servers, the affinity equals to"affinity"

the name of the cluster to which the stateful bean belongs on the server side. For non-clustered beans, the

affinity is just the node name on which the session was created. This will later help the EJB client toaffinity

route the invocations on the proxy, appropriately to either a node within a cluster (for clustered beans) or to a

specific node (for non-clustered beans). While this session creation request is going on, the server X will

also send back an asynchronous message which contains the cluster topology. The JBoss EJB client

implementation will take note of this topology information and will later use it for connection creation to nodes

within the cluster and routing invocations to those nodes, whenever necessary.

Now that we know how the cluster topology information is communicated from the server to the client, let see

how failover works. Let's continue with the example of server X being our starting point and a client

application looking up a stateful bean and invoking on it. During these invocations, the client side will have

collected the cluster topology information from the server. Now let's assume for some reason, server X goes

down and the client application subsequent invokes on the proxy. The JBoss EJB client implementation, at

this stage will be aware of the affinity and in this case it's a cluster affinity. Because of the cluster topology

information it has, it knows that the cluster has two nodes server X and server Y. When the invocation now

arrives, it sees that the server X is down. So it uses a selector to fetch a suitable node from among the

cluster nodes. The selector itself is configurable, but we'll leave it from discussion for now. When the selector

returns a node from among the cluster, the JBoss EJB client implementation creates a connection to that

node (if not already created earlier) and creates a EJB receiver out of it. Since in our example, the only other

node in the cluster is server Y, the selector will return that node and the JBoss EJB client implementation will

use it to create a EJB receiver out of it and use that receiver to pass on the invocation on the proxy.

Effectively, the invocation has now failed over to a different node within the cluster.

WildFly 10

JBoss Community Documentation Page of 140 173

Remote clients on another instance of WildFly 10
So far we discussed remote standalone clients which typically use either the EJB client API or the

jboss-ejb-client.properties based approach to configure and communicate with the servers where the

clustered beans are deployed. Now let's consider the case where the client is an application deployed

another AS7 instance and it wants to invoke on a clustered stateful bean which is deployed on another

instance of WildFly 10. In this example let's consider a case where we have 3 servers involved. Server X

and Server Y both belong to a cluster and have clustered EJB deployed on them. Let's consider another

server instance Server C (which may or may have clustering capability) which acts as a client on whichnot

there's a deployment which wants to invoke on the clustered beans deployed on server X and Y and achieve

failover.

The configurations required to achieve this are explained in . As you can see the configurationsthis chapter

are done in a jboss-ejb-client.xml which points to a remote outbound connection to the other server. This

jboss-ejb-client.xml goes in the deployment of server C (since that's our client). As explained eariler, the

client configuration need point to all clustered nodes. Instead it just has to point to one of them which willnot

act as a start point for communication. So in this case, we can create a remote outbound connection on

server C to server X and use server X as our starting point for communication. Just like in the case of remote

standalone clients, when the application on server C (client) looks up a stateful bean, a session creation

request will be sent to server X which will send back a session id and the cluster affinity for it. Furthermore,

server X asynchronously send back a message to server C (client) containing the cluster topology. This

topology information will include the node information of server Y (since that belongs to the cluster along with

server X). Subsequent invocations on the proxy will be routed appropriately to the nodes in the cluster. If

server X goes down, as explained earlier, a different node from the cluster will be selected and the

invocation will be forwarded to that node.

As can be seen both remote standalone client and remote clients on another WildFly 10 instance act similar

in terms of failover.

Testcases for failover of stateful beans
We have testcases in WildFly 10 testsuite which test that whatever is explained above works as expected.

The tests the case where a stateful EJB uses @ClusteredRemoteEJBClientStatefulBeanFailoverTestCase

annotation to mark itself as clustered. We also have RemoteEJBClientDDBasedSFSBFailoverTestCase

which uses jboss-ejb3.xml to mark a stateful EJB as clustered. Both these testcases test that when a node

goes down in a cluster, the client invocation is routed to a different node in the cluster.

15.3 EJB Timer

Wildfly now supports clustered database backed timers. For details have a look to the EJB3 reference

section

https://docs.jboss.org/author/display/WFLY8/EJB+invocations+from+a+remote+server+instance
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/RemoteEJBClientStatefulBeanFailoverTestCase.java
https://github.com/wildfly/wildfly/blob/master/testsuite/integration/clust/src/test/java/org/jboss/as/test/clustering/cluster/ejb3/stateful/remote/failover/dd/RemoteEJBClientDDBasedSFSBFailoverTestCase.java
https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers
https://docs.jboss.org/author/display/WFLY9/EJB3+Clustered+Database+Timers

WildFly 10

JBoss Community Documentation Page of 141 173

1.

2.

3.

4.

16 HA Singleton Features
In general, an HA or clustered singleton is a service that exists on multiple nodes in a cluster, but is active on

just a single node at any given time. If the node providing the service fails or is shut down, a new singleton

provider is chosen and started. Thus, other than a brief interval when one provider has stopped and another

has yet to start, the service is always running on one node.

16.1 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

16.1.1 Configuration

The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

WildFly 10

JBoss Community Documentation Page of 142 173

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

WildFly 10

JBoss Community Documentation Page of 143 173

16.1.2 HA environments

The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

16.2 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

16.2.1 Usage

A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

16.3 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220

WildFly 10

JBoss Community Documentation Page of 144 173

16.3.1 Installing an MSC service using an existing singleton

policy

While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 145 173

16.3.2 Installing an MSC service using dynamic singleton

policy

Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

16.4 Singleton subsystem

WildFly 10 introduces a “singleton” subsystem, which defines a set of policies that define how an HA

singleton should behave. A singleton policy can be used to instrument singleton deployments or to create

singleton MSC services.

16.4.1 Configuration

The from WildFly’s ha and full-ha profile looks like:default subsystem configuration

https://github.com/wildfly/wildfly/blob/10.0.0.Final/clustering/singleton/extension/src/main/resources/schema/wildfly-singleton_1_0.xsd

WildFly 10

JBoss Community Documentation Page of 146 173

1.

2.

3.

4.

<subsystem xmlns="urn:jboss:domain:singleton:1.0">

 <singleton-policies default="default">

 <singleton-policy name="default" cache-container="server">

 <simple-election-policy/>

 </singleton-policy>

 </singleton-policies>

</subsystem>

A singleton policy defines:

A unique name

A cache container and cache with which to register singleton provider candidates

An election policy

A quorum (optional)

One can add a new singleton policy via the following management operation:

/subsystem=singleton/singleton-policy=foo:add(cache-container=server)

Cache configuration
The cache-container and cache attributes of a singleton policy must reference a valid cache from the

Infinispan subsystem. If no specific cache is defined, the default cache of the cache container is assumed.

This cache is used as a registry of which nodes can provide a given service and will typically use a

replicated-cache configuration.

WildFly 10

JBoss Community Documentation Page of 147 173

Election policies
WildFly 10 includes 2 singleton election policy implementations:

simple

Elects the provider (a.k.a. master) of a singleton service based on a specified position in a circular

linked list of eligible nodes sorted by descending age. Position=0, the default value, refers to the

oldest node, 1 is second oldest, etc. ; while position=-1 refers to the youngest node, -2 to the second

youngest, etc.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:add(position=-1)

random

Elects a random member to be the provider of a singleton service

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=random:add()

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a cluster.

Preferences may be defined either via node name or via outbound socket binding name. Node preferences

always take precedent over the results of an election policy.

e.g.

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-add(name=name-preferences,

value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-add(name=socket-binding-preferences,

value=nodeA)

Quorum
Network partitions are particularly problematic for singleton services, since they can trigger multiple singleton

providers for the same service to run at the same time. To defend against this scenario, a singleton policy

may define a quorum that requires a minimum number of nodes to be present before a singleton provider

election can take place. A typical deployment scenario uses a quorum of N/2 + 1, where N is the anticipated

cluster size. This value can be updated at runtime, and will immediately affect any active singleton services.

e.g.

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum, value=3)

WildFly 10

JBoss Community Documentation Page of 148 173

16.4.2 HA environments

The singleton subsystem can be used in a non-HA profile, so long as the cache that it references uses a

local-cache configuration. In this manner, an application leveraging singleton functionality (via the singleton

API or using a singleton deployment descriptor) will continue function as if the server was a sole member of

a cluster. For obvious reasons, the use of a quorum does not make sense in such a configuration.

16.5 Singleton deployments

WildFly 10 resurrects the ability to start a given deployment on a single node in the cluster at any given time.

If that node shuts down, or fails, the application will automatically start on another node on which the given

deployment exists. Long time users of JBoss AS will recognize this functionality as being akin to the

, a.k.a. “ ”, feature of AS6 and earlier.HASingletonDeployer deploy-hasingleton

16.5.1 Usage

A deployment indicates that it should be deployed as a singleton via a deployment descriptor. This can either

be a standalone “/META-INF/singleton-deployment.xml” file or embedded within an existing jboss-all.xml

descriptor. This descriptor may be applied to any deployment type, e.g. JAR, WAR, EAR, etc., with the

exception of a subdeployment within an EAR.

e.g.

<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0" policy="foo"/>

The singleton deployment descriptor defines which should be used to deploy the application.singleton policy

If undefined, the default singleton policy is used, as defined by the singleton subsystem.

Using a standalone descriptor is often preferable, since it may be overlaid onto an existing deployment

archive.

e.g.

deployment-overlay add --name=singleton-policy-foo

--content=/META-INF/singleton-deployment.xml=/path/to/singleton-deployment.xml

--deployments=my-app.jar --redeploy-affected

16.6 Singleton MSC services

WildFly allows any user MSC service to be installed as a singleton MSC service via a public API. Once

installed, the service will only ever start on 1 node in the cluster at a time. If the node providing the service is

shutdown, or fails, another node on which the service was installed will start automatically.

https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220
https://docs.jboss.org/jbossclustering/cluster_guide/5.1/html/deployment.chapt.html#d0e1220

WildFly 10

JBoss Community Documentation Page of 149 173

16.6.1 Installing an MSC service using an existing singleton

policy

While singleton MSC services have been around since AS7, WildFly 10 adds the ability to leverage the

singleton subsystem to create singleton MSC services from existing singleton policies.

The singleton subsystem exposes capabilities for each singleton policy it defines. These policies,

represented via the interface, can beorg.wildfly.clustering.singleton.SingletonPolicy

referenced via the following name: “org.wildfly.clustering.singleton.policy”

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonPolicy policy = (SingletonPolicy)

context.getServiceRegistry().getRequiredService(ServiceName.parse(SingletonPolicy.CAPABILITY_NAME)).awaitValue();

policy.createSingletonServiceBuilder(name, service).build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 150 173

16.6.2 Installing an MSC service using dynamic singleton

policy

Alternatively, you can build singleton policy dynamically, which is particularly useful if you want to use a

custom singleton election policy. Specifically, is a generalization of the SingletonPolicy

 interface, whichorg.wildfly.clustering.singleton.SingletonServiceBuilderFactory

includes support for specifying an election policy and, optionally, a quorum.

e.g.

public class MyServiceActivator implements ServiceActivator {

 @Override

 public void activate(ServiceActivatorContext context) {

 String containerName = “server”;

 ElectionPolicy policy = new MySingletonElectionPolicy();

 int quorum = 3;

 ServiceName name = ServiceName.parse(“my.service.name”);

 Service<?> service = new MyService();

 try {

 SingletonServiceBuilderFactory factory = (SingletonServiceBuilderFactory)

context.getServiceRegistry().getRequiredService(SingletonServiceName.BUILDER.getServiceName(containerName))).awaitValue();

factory.createSingletonServiceBuilder(name, service)

 .electionPolicy(policy)

 .quorum(quorum)

 .build(context.getServiceTarget()).install();

 } catch (InterruptedException e) {

 throw new ServiceRegistryException(e);

 }

 }

}

WildFly 10

JBoss Community Documentation Page of 151 173

17 Hibernate

WildFly 10

JBoss Community Documentation Page of 152 173

18 Clustering and Domain Setup Walkthrough
In this article, I'd like to show you how to setup WildFly 9 in domain mode and enable clustering so we could

get HA and session replication among the nodes. It's a step to step guide so you can follow the instructions

in this article and build the sandbox by yourself

18.1 Preparation & Scenario

18.1.1 Preparation

We need to prepare two hosts (or virtual hosts) to do the experiment. We will use these two hosts as

following:

Install Fedora 16 on them (Other linux version may also fine but I'll use Fedora 16 in this article)

Make sure that they are in same local network

Make sure that they can access each other via different TCP/UDP ports(better turn off firewall and

disable SELinux during the experiment or they will cause network problems).

18.1.2 Scenario

Here are some details on what we are going to do:

Let's call one host as 'master', the other one as 'slave'.

Both master and slave will run WildFly 9, and master will run as domain controller, slave will under the

domain management of master.

Apache httpd will be run on master, and in httpd we will enable the mod_cluster module. The WildFly

9 on master and slave will form a cluster and discovered by httpd.

WildFly 10

JBoss Community Documentation Page of 153 173

We will deploy a demo project into domain, and verify that the project is deployed into both master

and slave by domain controller. Thus we could see that domain management provide us a single

point to manage the deployments across multiple hosts in a single domain.

We will access the cluster URL and verify that httpd has distributed the request to one of the WildFly

host. So we could see the cluster is working properly.

We will try to make a request on cluster, and if the request is forwarded to master, we then kill the

WildFly process on master. After that we will go on requesting cluster and we should see the request

is forwarded to slave, but the session is not lost. Our goal is to verify the HA is working and sessions

are replicated.

After previous step finished, we reconnect the master by restarting it. We should see the master is

registered back into cluster, also we should see slave sees master as domain controller again and

connect to it.

Please don't worry if you cannot digest so many details currently. Let's move on and you will get the points

step by step.

WildFly 10

JBoss Community Documentation Page of 154 173

18.2 Download WildFly 9

First we should download WildFly 9 from the website:

http://wildfly.org/downloads/

The version I downloaded is WildFly 9.0.0.Final.

After download finished, I got the zip file:

wildfly-9.0.0.Final.zip

Note: The name of your archive will differ slightly due to version naming conventions.

Then I unzipped the package to master and try to make a test run:

unzip wildfly-9.0.0.Final.zip

cd wildfly-9.0.0.Final/bin

./domain.sh

If everything ok we should see WildFly successfully startup in domain mode:

wildfly-9.0.0.Final/bin$./domain.sh

===

 JBoss Bootstrap Environment

 JBOSS_HOME: /Users/weli/Downloads/wildfly-9.0.0.Final

 JAVA: /Library/Java/Home/bin/java

 JAVA_OPTS: -Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true

-Dorg.jboss.resolver.warning=true -Dsun.rmi.dgc.client.gcInterval=3600000

-Dsun.rmi.dgc.server.gcInterval=3600000 -Djboss.modules.system.pkgs=org.jboss.byteman

-Djava.awt.headless=true

===

...

[Server:server-two] 14:46:12,375 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:

WildFly 9.0.0.Final "Kenny" started in 8860ms - Started 210 of 258 services (89 services are

lazy, passive or on-demand)

Now exit master and let's repeat the same steps on slave host. Finally we get WildFly 9 run on both master

and slave, then we could move on to next step.

WildFly 10

JBoss Community Documentation Page of 155 173

18.3 Domain Configuration

18.3.1 Interface config on master

In this section we'll setup both master and slave for them to run in domain mode. And we will configure

master to be the domain controller.

First open the host.xml in master for editing:

vi domain/configuration/host.xml

The default settings for interface in this file is like:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:127.0.0.1}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="127.0.0.1" />

 </interface>

</interfaces>

We need to change the address to the management interface so slave could connect to master. The public

interface allows the application to be accessed by non-local HTTP, and the unsecured interface allows

remote RMI access. My master's ip address is 10.211.55.7, so I change the config to:

<interfaces>

 <interface name="management"

 <inet-address value="${jboss.bind.address.management:10.211.55.7}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:10.211.55.7}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="10.211.55.7" />

 </interface>

</interfaces>

18.3.2 Interface config on slave

Now we will setup interfaces on slave. Let's edit host.xml. Similar to the steps on master, open host.xml first:

WildFly 10

JBoss Community Documentation Page of 156 173

vi domain/configuration/host.xml

The configuration we'll use on slave is a little bit different, because we need to let slave connect to master.

First we need to set the hostname. We change the name property from:

<host name="master" xmlns="urn:jboss:domain:3.0">

to:

<host name="slave" xmlns="urn:jboss:domain:3.0">

Then we need to modify domain-controller section so slave can connect to master's management port:

<domain-controller>

 <remote protocol="remote" host="10.211.55.7" port="9999" />

</domain-controller>

As we know, 10.211.55.7 is the ip address of master.

You may use discovery options to define multiple mechanisms to connect to the remote domain controller :

<domain-controller>

 <remote security-realm="ManagementRealm" >

 <discovery-options>

 <static-discovery name="master-native" protocol="remote" host="10.211.55.7" port=9999" />

 <static-discovery name="master-https" protocol="https-remoting" host="10.211.55.7"

port="9993" security-realm="ManagementRealm"/>

 <static-discovery name="master-http" protocol="http-remoting" host="10.211.55.7"

port="9990" />

 </discovery-options>

 </remote>

 </domain-controller>

Finally, we also need to configure interfaces section and expose the management ports to public address:

<interfaces>

 <interface name="management">

 <inet-address value="${jboss.bind.address.management:10.211.55.2}"/>

 </interface>

 <interface name="public">

 <inet-address value="${jboss.bind.address:10.211.55.2}"/>

 </interface>

 <interface name="unsecured">

 <inet-address value="10.211.55.2" />

 </interface>

</interfaces>

WildFly 10

JBoss Community Documentation Page of 157 173

10.211.55.2 is the ip address of the slave. Refer to the domain controller configuration above for an

explanation of the management, public, and unsecured interfaces.

It is easier to turn off all firewalls for testing, but in production, you need to enable the firewall and

allow access to the following ports: 9999.

18.3.3 Security Configuration

If you start WildFly on both master and slave now, you will see the slave cannot be started with following

error:

[Host Controller] 20:31:24,575 ERROR [org.jboss.remoting.remote] (Remoting "endpoint" read-1)

JBREM000200: Remote connection failed: javax.security.sasl.SaslException: Authentication failed:

all available authentication mechanisms failed

[Host Controller] 20:31:24,579 WARN [org.jboss.as.host.controller] (Controller Boot Thread)

JBAS010900: Could not connect to remote domain controller 10.211.55.7:9999

[Host Controller] 20:31:24,582 ERROR [org.jboss.as.host.controller] (Controller Boot Thread)

JBAS010901: Could not connect to master. Aborting. Error was: java.lang.IllegalStateException:

JBAS010942: Unable to connect due to authentication failure.

Because we haven't properly set up the authentication between master and slave. Now let's work on it:

Master
In bin directory there is a script called add-user.sh, we'll use it to add new users to the properties file used for

domain management authentication:

WildFly 10

JBoss Community Documentation Page of 158 173

./add-user.sh

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username : admin

Password recommendations are listed below. To modify these restrictions edit the

add-user.properties configuration file.

 - The password should not be one of the following restricted values {root, admin,

administrator}

 - The password should contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1

non-alphanumeric symbol(s)

 - The password should be different from the username

Password : passw0rd!

Re-enter Password : passw0rd!

The username 'admin' is easy to guess

Are you sure you want to add user 'admin' yes/no? yes

About to add user 'admin' for realm 'ManagementRealm'

Is this correct yes/no? yes

Added user 'admin' to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-users.properties'

Added user 'admin' to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-users.properties'

As shown above, we have created a user named 'admin' and its password is 'passw0rd!'. Then we add

another user called 'slave':

WildFly 10

JBoss Community Documentation Page of 159 173

./add-user.sh

Enter the details of the new user to add.

Realm (ManagementRealm) :

Username : slave

Password recommendations are listed below. To modify these restrictions edit the

add-user.properties configuration file.

 - The password should not be one of the following restricted values {root, admin,

administrator}

 - The password should contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1

non-alphanumeric symbol(s)

 - The password should be different from the username

Password : passw0rd!

Re-enter Password : passw0rd!

What groups do you want this user to belong to? (Please enter a comma separated list, or leave

blank for none)[]:

About to add user 'slave' for realm 'ManagementRealm'

Is this correct yes/no? yes

Added user 'slave' to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-users.properties'

Added user 'slave' to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-users.properties'

Added user 'slave' with groups to file

'/home/weli/projs/wildfly-9.0.0.Final/standalone/configuration/mgmt-groups.properties'

Added user 'slave' with groups to file

'/home/weli/projs/wildfly-9.0.0.Final/domain/configuration/mgmt-groups.properties'

Is this new user going to be used for one AS process to connect to another AS process?

e.g. for a slave host controller connecting to the master or for a Remoting connection for

server to server EJB calls.

yes/no? yes

To represent the user add the following to the server-identities definition <secret

value="cGFzc3cwcmQh" />

We will use this user for slave host to connect to master. The add-user.sh will let you choose the type of the

user. Here we need to choose 'Management User' type for both 'admin' and 'slave' account.

WildFly 10

JBoss Community Documentation Page of 160 173

Slave
In slave we need to configure host.xml for authentication. We should change the security-realms section as

following:

<security-realms>

 <security-realm name="ManagementRealm">

 <server-identities>

 <secret value="cGFzc3cwcmQh" />

 <!-- This is required for SSL remoting -->

 <ssl>

 <keystore path="server.keystore" relative-to="jboss.domain.config.dir"

keystore-password="jbossas" alias="jboss" key-password="jbossas"/>

 </ssl>

 </server-identities>

 <authentication>

 <properties path="mgmt-users.properties" relative-to="jboss.domain.config.dir"/>

 </authentication>

 </security-realm>

</security-realms>

We've added server-identities into security-realm, which is used for authentication host when slave tries to

connect to master. In secret value property we have 'cGFzc3cwcmQh', which is the base64 code for

'passw0rd!'. You can generate this value by using a base64 calculator such as the one at

.http://www.webutils.pl/index.php?idx=base64

Then in domain controller section we also need to add security-realm property:

<domain-controller>

 <remote protocol="remote" host="10.211.55.7" port="9999" username="slave"

security-realm="ManagementRealm" />

</domain-controller>

So the slave host could use the authentication information we provided in 'ManagementRealm'.

Dry Run
Now everything is set for the two hosts to run in domain mode. Let's start them by running domain.sh on

both hosts. If everything goes fine, we could see from the log on master:

[Host Controller] 21:30:52,042 INFO [org.jboss.as.domain] (management-handler-threads - 1)

JBAS010918: Registered remote slave host slave

That means all the configurations are correct and two hosts are run in domain mode now as expected.

Hurrah!

http://www.webutils.pl/index.php?idx=base64

WildFly 10

JBoss Community Documentation Page of 161 173

18.4 Deployment

Now we can deploy a demo project into the domain. I have created a simple project located at:

https://github.com/liweinan/cluster-demo

We can use git command to fetch a copy of the demo:

git clone git://github.com/liweinan/cluster-demo.git

In this demo project we have a very simple web application. In web.xml we've enabled session replication by

adding following entry:

<distributable/>

And it contains a jsp page called put.jsp which will put current time to a session entry called 'current.time':

<%

 session.setAttribute("current.time", new java.util.Date());

%>

Then we could fetch this value from get.jsp:

The time is <%= session.getAttribute("current.time") %>

It's an extremely simple project but it could help us to test the cluster later: We will access put.jsp from

cluster and see the request are distributed to master, then we disconnect master and access get.jsp. We

should see the request is forwarded to slave but the 'current.time' value is held by session replication. We'll

cover more details on this one later.

Let's go back to this demo project. Now we need to create a war from it. In the project directory, run the

following command to get the war:

mvn package

It will generate cluster-demo.war. Then we need to deploy the war into domain. First we should access the

http management console on master(Because master is acting as domain controller):

http://10.211.55.7:9990

WildFly 10

JBoss Community Documentation Page of 162 173

It will popup a windows ask you to input account name and password, we can use the 'admin' account we've

added just now. After logging in we could see the 'Server Instances' window. By default there are three

servers listed, which are:

server-one

server-two

server-three

We could see server-one and server-two are in running status and they belong to main-server-group;

server-three is in idle status, and it belongs to other-server-group.

All these servers and server groups are set in domain.xml on master as7. What we are interested in is the

'other-server-group' in domain.xml:

<server-group name="other-server-group" profile="ha">

 <jvm name="default">

 <heap size="64m" max-size="512m"/>

 </jvm>

 <socket-binding-group ref="ha-sockets"/>

</server-group>

We could see this server-group is using 'ha' profile, which then uses 'ha-sockets' socket binding group. It

enable all the modules we need to establish cluster later(including infinispan, jgroup and mod_cluster

modules). So we will deploy our demo project into a server that belongs to 'other-server-group', so

'server-three' is our choice.

In newer version of WildFly, the profile 'ha' changes to 'full-ha':

<server-group name="other-server-group" profile="full-ha">

Let's go back to domain controller's management console:

http://10.211.55.7:9990

Now server-three is not running, so let's click on 'server-three' and then click the 'start' button at bottom right

of the server list. Wait a moment and server-three should start now.

Now we should also enable 'server-three' on slave: From the top of menu list on left side of the page, we

could see now we are managing master currently. Click on the list, and click 'slave', then choose

'server-three', and we are in slave host management page now.

Then repeat the steps we've done on master to start 'server-three' on slave.

WildFly 10

JBoss Community Documentation Page of 163 173

server-three on master and slave are two different hosts, their names can be different.

After server-three on both master and slave are started, we will add our cluster-demo.war for deployment.

Click on the 'Manage Deployments' link at the bottom of left menu list.

(We should ensure the server-three should be started on both master and slave)

After enter 'Manage Deployments' page, click 'Add Content' at top right corner. Then we should choose our

cluster-demo.war, and follow the instruction to add it into our content repository.

Now we can see cluster-demo.war is added. Next we click 'Add to Groups' button and add the war to

'other-server-group' and then click 'save'.

Wait a few seconds, management console will tell you that the project is deployed into 'other-server-group'.

WildFly 10

JBoss Community Documentation Page of 164 173

Please note we have two hosts participate in this server group, so the project should be deployed in both

master and slave now - that's the power of domain management.

Now let's verify this, trying to access cluster-demo from both master and slave, and they should all work

now:

http://10.211.55.7:8330/cluster-demo/

WildFly 10

JBoss Community Documentation Page of 165 173

http://10.211.55.2:8330/cluster-demo/

Now that we have finished the project deployment and see the usages of domain controller, we will then

head up for using these two hosts to establish a cluster

WildFly 10

JBoss Community Documentation Page of 166 173

Why is the port number 8330 instead of 8080? Please check the settings in host.xml on both

master and slave:

<server name="server-three" group="other-server-group" auto-start="false">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

The port-offset is set to 250, so 8080 + 250 = 8330

Now we quit the WildFly process on both master and slave. We have some work left on host.xml

configurations. Open the host.xml of master, and do some modifications the servers section from:

<server name="server-three" group="other-server-group" auto-start="false">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

to:

<server name="server-three" group="other-server-group" auto-start="true">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

We've set auto-start to true so we don't need to enable it in management console each time WildFly restart.

Now open slave's host.xml, and modify the server-three section:

<server name="server-three-slave" group="other-server-group" auto-start="true">

 <!-- server-three avoids port conflicts by incrementing the ports in

 the default socket-group declared in the server-group -->

 <socket-bindings port-offset="250"/>

</server>

Besides setting auto-start to true, we've renamed the 'server-three' to 'server-three-slave'. We need to do

this because mod_cluster will fail to register the hosts with same name in a single server group. It will cause

name conflict.

After finishing the above configuration, let's restart two as7 hosts and go on cluster configuration.

WildFly 10

JBoss Community Documentation Page of 167 173

18.5 Cluster Configuration

We will use mod_cluster + apache httpd on master as our cluster controller here. Because WildFly 8 has

been configured to support mod_cluster out of box so it's the easiest way.

The WildFly 8 domain controller and httpd are not necessary to be on same host. But in this article

I just install them all on master for convenience.

First we need to ensure that httpd is installed:

sudo yum install httpd

And then we need to download newer version of mod_cluster from its website:

http://www.jboss.org/mod_cluster/downloads

The version I downloaded is:

http://downloads.jboss.org/mod_cluster/1.1.3.Final/mod_cluster-1.1.3.Final-linux2-x86-so.tar.gz

Jean-Frederic has suggested to use mod_cluster 1.2.x. Because 1.1.x it is affected by

CVE-2011-4608

With mod_cluster-1.2.0 you need to add EnableMCPMReceive in the VirtualHost.

Then we extract it into:

/etc/httpd/modules

Then we edit httpd.conf:

sudo vi /etc/httpd/conf/httpd.conf

We should add the modules:

LoadModule slotmem_module modules/mod_slotmem.so

LoadModule manager_module modules/mod_manager.so

LoadModule proxy_cluster_module modules/mod_proxy_cluster.so

LoadModule advertise_module modules/mod_advertise.so

WildFly 10

JBoss Community Documentation Page of 168 173

Please note we should comment out:

#LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

This is conflicted with cluster module. And then we need to make httpd to listen to public address so we

could do the testing. Because we installed httpd on master host so we know the ip address of it:

Listen 10.211.55.7:80

Then we do the necessary configuration at the bottom of httpd.conf:

This Listen port is for the mod_cluster-manager, where you can see the status of mod_cluster.

Port 10001 is not a reserved port, so this prevents problems with SELinux.

Listen 10.211.55.7:10001

This directive only applies to Red Hat Enterprise Linux. It prevents the temmporary

files from being written to /etc/httpd/logs/ which is not an appropriate location.

MemManagerFile /var/cache/httpd

<VirtualHost 10.211.55.7:10001>

 <Directory />

 Order deny,allow

 Deny from all

 Allow from 10.211.55.

 </Directory>

 # This directive allows you to view mod_cluster status at URL

http://10.211.55.4:10001/mod_cluster-manager

 <Location /mod_cluster-manager>

 SetHandler mod_cluster-manager

 Order deny,allow

 Deny from all

 Allow from 10.211.55.

 </Location>

 KeepAliveTimeout 60

 MaxKeepAliveRequests 0

 ManagerBalancerName other-server-group

 AdvertiseFrequency 5

</VirtualHost>

For more details on mod_cluster configurations please see this document:

http://docs.jboss.org/mod_cluster/1.1.0/html/Quick_Start_Guide.html

WildFly 10

JBoss Community Documentation Page of 169 173

18.6 Testing

If everything goes fine we can start httpd service now:

service httpd start

Now we access the cluster:

http://10.211.55.7/cluster-demo/put.jsp

We should see the request is distributed to one of the hosts(master or slave) from the WildFly log. For me

the request is sent to master:

[Server:server-three] 16:06:22,256 INFO [stdout] (http-10.211.55.7-10.211.55.7-8330-4) Putting

date now

Now I disconnect master by using the management interface. Select 'runtime' and the server 'master' in the

upper corners.

Select 'server-three' and kick the stop button, the active-icon should change.

Killing the server by using system commands will have the effect that the Host-Controller restart the instance

imediately!

WildFly 10

JBoss Community Documentation Page of 170 173

Then wait for a few seconds and access cluster:

http://10.211.55.7/cluster-demo/get.jsp

Now the request should be served by slave and we should see the log from slave:

[Server:server-three-slave] 16:08:29,860 INFO [stdout] (http-10.211.55.2-10.211.55.2-8330-1)

Getting date now

And from the get.jsp we should see that the time we get is the same we've put by 'put.jsp'. Thus it's proven

that the session is correctly replicated to slave.

Now we restart master and should see the host is registered back to cluster.

It doesn't matter if you found the request is distributed to slave at first time. Then just disconnect

slave and do the testing, the request should be sent to master instead. The point is we should see

the request is redirect from one host to another and the session is held.

WildFly 10

JBoss Community Documentation Page of 171 173

18.7 Special Thanks

 has contributed the updated add-user.sh usages and configs in host.xml from 7.1.0.Final.Wolf-Dieter Fink

 provided the mod_cluster 1.2.0 usages.Jean-Frederic Clere

Misty Stanley-Jones has given a lot of suggestions and helps to make this document readable.

https://community.jboss.org/people/wdfink
https://community.jboss.org/people/jfclere

WildFly 10

JBoss Community Documentation Page of 172 173

19 Changes From Previous Versions
Describe here key changes between releases.

19.1 Key changes

19.2 Migration to Wildfly

WildFly 10

JBoss Community Documentation Page of 173 173

20 Related Topics
This section describes additional issues related to the clustering subsystems.

20.1 Modularity And Class Loading

Describe classloading and monitoring framework as it affects clustering applications.

20.2 Monitoring

Describe resources available for monitoring clustered applications.

	Introduction to High Availability Services
	What are High Availability services?
	High Availability through fail-over
	High Availability through load balancing
	Aims of the guide
	Organization of the guide

	HTTP Services
	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	JVMRoute configuration

	EJB Services
	EJB Subsystem

	EJB Timer
	Marking an EJB as clustered
	Deploying clustered EJBs
	Failover for clustered EJBs
	Remote standalone clients
	Cluster topology communication
	Remote clients on another instance of WildFly 10
	Testcases for failover of stateful beans

	Hibernate
	HA Singleton Features
	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Related Issues
	Changes From Previous Versions
	Key changes
	Migration to Wildfly

	WildFly 8 Cluster Howto
	References
	All WildFly 8 documentation
	Introduction To High Availability Services
	What are High Availability services?
	High Availability through fail-over
	High Availability through load balancing
	Aims of the guide
	Organization of the guide

	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol

	Infinispan Subsystem
	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	mod_cluster Subsystem
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	JVMRoute configuration

	HTTP Services
	Subsystem Support
	JGroups Subsystem
	Purpose
	Configuration example
	<subsystem>
	<stack>
	<transport>
	<property>

	<protocol>
	<property>

	<relay>
	<remote-site>

	Use Cases
	Add a stack
	Add a protocol to a stack
	Add a property to a protocol
	Infinispan Subsystem

	Purpose
	Configuration Example
	<cache-container>
	<transport>
	<abstract cache>
	<indexing-properties>
	<locking>
	<transaction>
	<eviction>
	<expiration>
	<abstract base-store>
	<write-behind>
	<abstract base-jdbc-store> extends <abstract base-store>
	<file-store> extends <abstract base-store>
	<remote-store> extends <abstract base-store>
	<remote-servers>
	<remote-server>

	
	<local-cache> extends <abstract cache>
	<abstract clustered-cache> extends <abstract cache>
	
	<invalidation-cache> extends <abstract clustered-cache>
	<abstract shared-cache> extends <abstract clustered-cache>
	<state-transfer>
	<backups>
	<backup>
	<backup-for>

	<replicated-cache> extends <abstract shared-cache>
	<distributed-cache> extends <abstract shared-cache>

	Use Cases
	Add a cache container
	Add a cache
	Configure the transaction component of a cache

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	JVMRoute configuration

	Clustered Web Sessions
	Clustered SSO
	Load Balancing
	Load balancing with Apache + mod_jk
	Load balancing with Apache + mod_cluster
	mod_cluster Subsystem
	operations displaying httpd informations
	read-proxies-configuration
	read-proxies-info

	
	operations that handle the proxies the node is connected too
	list-proxies:
	remove-proxy
	add-proxy

	Context related operations
	enable-context
	disable-context
	stop-context

	Node related operations
	refresh
	reset

	Configuration
	Metric configuration
	add-metric
	remove-metric
	add-custom-metric / remove-custom-metric

	JVMRoute configuration

	Apache httpd

	EJB Services
	EJB Subsystem
	EJB Timer
	Marking an EJB as clustered
	Deploying clustered EJBs
	Failover for clustered EJBs
	Remote standalone clients
	Cluster topology communication
	Remote clients on another instance of WildFly 10
	Testcases for failover of stateful beans

	EJB Timer

	HA Singleton Features
	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Singleton subsystem
	Configuration
	Cache configuration
	Election policies
	Preferences

	Quorum

	Non-HA environments

	Singleton deployments
	Usage

	Singleton MSC services
	Installing an MSC service using an existing singleton policy
	Installing an MSC service using dynamic singleton policy

	Hibernate
	Clustering and Domain Setup Walkthrough
	Preparation & Scenario
	Preparation
	Scenario

	Download WildFly 9
	Domain Configuration
	Interface config on master
	Interface config on slave
	Security Configuration
	Master
	Slave
	Dry Run

	Deployment
	Cluster Configuration
	Testing
	Special Thanks

	Changes From Previous Versions
	Key changes
	Migration to Wildfly

	Related Topics
	Modularity And Class Loading
	Monitoring

