
Debugging

Interactive debugging

• Based on a source code, statement-level debugger

• Allows to discover values of variables by using their names in the source program, tracing their execution one
statement at a time

• The C files are compiled with the -g flag in effect

– Allows the inclusion of extra symbol table information in the binary files

∗ Names and locations of all variables

∗ Names of all functions and their arguments

∗ Data types of all objects declared in the program

∗ Path names of the source code files used to compile the program

• xxgdb debugger

– Provides a windows-oriented graphical user interface to gdb under the X window system

– Provides mouse selection for various text commands

– Allows user to control program execution through breakpoints

– Consists of the following windows

∗ File window
· Displays the full pathname of the file displayed in the source window

· Also displays the line number of the caret

∗ Source window
· Contents of a source file

∗ Message window
· Execution status and error messages of xxgdb

∗ Command window
· List of common gdb commands

· Commands invoked by clicking the left mouse button in the box

∗ Dialog window
· Typing interface to gdb

∗ Display window
· Window to display variable values

∗ Popup windows
· Windows for displaying variables

– Text selection

∗ C expression selected by clicking on the left mouse button

∗ Based on the resource delimiters to determine the set of characters that delimit a C expression

∗ Also possible to select text by holding down the left mouse button and dragging

∗ Pressing shift key with left mouse button click displays the value of the variable

– Scrollbar

∗ Press left mouse button to scroll text forward

∗ Press right mouse button to scroll text backward

∗ Drag the middle mouse button to change the thumb position of the text



Debugging 2

– Command buttons

∗ run

· Begin program execution

∗ cont

· Continue execution from where it stopped

∗ next

· Execute one source line, without stepping into any function call

∗ step

· Execute one source line, stepping into a function if the source line contains a call to a function

∗ finish

· Continue execution until the selected function returns

· Use current function if none is selected

∗ break

· Stop program execution at the line or in the function selected

· Place the caret at the start of source line or on the function name

· Click the break button

· A stop sign appears next to the source line

∗ tbreak

· Set a breakpoint enabled for only one stop

· Same as the break button except that the breakpoint is automatically disabled after the first time
it is hit

∗ delete

· Remove the breakpoint on the source line selected, or the breakpoint number selected

∗ show brkpts

· Show the current breakpoints (both active and inactive)

∗ stack

· Show a stack trace of functions called

∗ up

· Move up one level on the call stack

∗ down

· Move down one level on the call stack

∗ print

· Print the value of a selected expression

∗ print *

· Print the value of the object the selected expression is pointing to

∗ display

· Display the value of a selected expression in the display window, updating it every time execution
stops

∗ undisplay

· Stop displaying the value of the variable in the display window

· If the selected expression is a constant, it refers to the display number associated with an expression
in the display window

∗ args

· Print the arguments of the selected frame

∗ show display

· Show the names of currently displayed expressions



Debugging 3

∗ locals

· Print the local variables of the selected frames

∗ stack

· Print a backtrace of the entire stack


