{ XML Schemas

-



'! XML Schemas

= “Schemas” is a general term--DTDs are a form of XML
schemas

= According to the dictionary, a schema 1s ““a structured
framework or plan”

= When we say “XML Schemas,” we usually mean the
W3C XML Schema Language

= This 1s also known as “XML Schema Definition” language, or
XSD

= [’ll use “XSD” frequently, because it’s short

= DTDs, XML Schemas, and RELAX NG are all XML
schema languages



'! Why XML Schemas?

= DTDs provide a very weak specification language
= You can’t put any restrictions on text content

= You have very little control over mixed content (text plus
elements)

= You have little control over ordering of elements
= DTDs are written in a strange (non-XML) format
= You need separate parsers for DTDs and XML
= The XML Schema Definition language solves these
problems
= XSD gives you much more control over structure and content
= XSD is written in XML



'! Why not XML schemas?

= DTDs have been around longer than XSD
= Therefore they are more widely used
= Also, more tools support them

= XSD Is very verbose, even by XML standards

= More advanced XML Schema instructions can be non-
Intuitive and confusing

= Nevertheless, XSD is not likely to go away quickly



Referring to a schema

= Torefertoa DTD in an XML document, the reference goes before the root
element:
= <?xml version="1.0"7?>

<IDOCTYPE rootElement SYSTEM "url">
<rootElement> ... </rootElement>

= To refer to an XML Schema in an XML document, the reference goes in the
root element:

= <2xml version="1.0"?>
<rootElement
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
(The XML Schema Instance reference is required)
xsi:noNamespaceSchemalocation="url.xsd">
(This is where your XML Schema definition can be found)

</rootElement>



The XSD document

Since the XSD is written in XML, it can get confusing which
we are talking about

Except for the additions to the root element of our XML data
document, the rest of this lecture 1s about the XSD schema
document

The file extension is .xsd
The root element is <schema>
The XSD starts like this:

s <?xml version="1.0"7>
<xs:schema xmlns:xs="http://www.w3.rg/2001/XMLSchema">



<schema>

= The <schema> element may have attributes:

= xmlns:xs="http://www.w3.0org/2001/XMLSchema”
= This is necessary to specify where all our XSD tags are defined
= elementFormDefault="qualified"

= This means that all XML elements must be qualified (use a
namespace)

= Itis highly desirable to qualify all elements, or problems will arise
when another schema is added



“Simple” and “complex” elements

= A “simple” element 1s one that contains text and
nothing else

= Asimple element cannot have attributes
= Asimple element cannot contain other elements
= Asimple element cannot be empty

= However, the text can be of many different types, and may
have various restrictions applied to it

= If an element 1sn’t simple, 1t’s “complex”
= A complex element may have attributes

= A complex element may be empty, or it may contain text,
other elements, or both text and other elements



Defining a simple element

= Asimple element is defined as
<xs.element name="name" type="type" />
where:
= Nname Is the name of the element
= the most common values for type are

xs:boolean xs:integer
xs:date xs:string
xs:decimal xs:time

= Other attributes a simple element may have:
= default="default value” if no other value is specified
= fixed="value” no other value may be specified



V!L Defining an attribute

= Attributes themselves are always declared as simple
types
= An attribute is defined as
<xs:attribute name="name" type="type" />
where:

= name and type are the same as for xs:element
= Other attributes a simple element may have:
= default="default value” if no other value is specified
= fixed="value” no other value may be specified

= use="optional” the attribute is not required (default)
= use="required” the attribute must be present

10



Restrictions, or “facets”™

= The general form for putting a restriction on a text
value Is:

= <xs:element name="name"> (or xs:attribute)

<xs:restriction base="type">
... the restrictions ...
</xs:restriction>
</xs:element>

= For example:

= <xs:element name="age">

<xs:restriction base="xs:integer">
<xs:minlnclusive value="0">
<xs:maxInclusive value="140">
</xs:restriction>
</xs:element>

11



{ Restrictions on numbers

mininclusive -- number must be > the given value
minExclusive -- number must be > the given value
maxInclusive -- number must be < the given value
maxExclusive -- number must be < the given value
totalDigits -- number must have exactly value digits

fractionDigits -- number must have no more than value
digits after the decimal point

12



Restrictions on strings

length -- the string must contain exactly value characters
minLength -- the string must contain at least value characters

maxLength -- the string must contain no more than value
characters

pattern -- the value Is a regular expression that the string must
match

whiteSpace -- not really a “restriction”--tells what to do with
whitespace

= value="preserve" Keep all whitespace
= value="replace” Change all whitespace characters to spaces

= value="collapse” Remove leading and trailing whitespace, and
replace all sequences of whitespace with a single space

13



Enumeration

= An enumeration restricts the value to be one of a fixed set
of values

= Example:

= <Xs:element name="season">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Spring"/>
<xs:enumeration value="Summer"/>
<xs:enumeration value="Autumn"/>
<xs:enumeration value="Fall"/>
<xs:enumeration value="Winter"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

14



Complex elements

= Acomplex element is defined as
<xs:element name="name">
<xs:complexType>
... information about the complex type...
</xs:complexType>
</xs:element>

= Example:
<xs:element name="person”>
<xs:complexType>
<Xs:sequence>
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

= <XS:sequence> says that elements must occur in this order

= Remember that attributes are always simple types
15



Global and local definitions

= Elements declared at the “top level” of a <schema> are available for
use throughout the schema

= Elements declared within a xs:complexType are local to that type
= Thus, In
<xs.element name="person”>
<xs:complexType>
<xs.sequence>

<xs.element name="firstName" type="xs:string" />

<xs:element name="lastName" type="xs:string" />
</Xs:sequence>

</xs:complexType>
</xs:element>
the elements firstName and lastName are only locally declared

= The order of declarations at the “top level” of a <schema> do not
specify the order in the XML data document

16



'! Declaration and use

= So far we’ve been talking about how to declare
types, not how to use them

= To use a type we have declared, use It as the
value of type="..."
= Examples:

= <xS:element name="student” type="person"/>
= <xS:element name="professor” type="person"/>

= Scope IS important: you cannot use a type if is local
to some other type

17



!| Xs.sequence

= We’ve already seen an example of a complex
type whose elements must occur in a specific
order:

= <xs:element name="person">
<xs:complexType>
<Xs:sequence>
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
</Xs:sequence>
</xs:complexType>
</xs:element>

18



xs:all

= Xs:all allows elements to appear in any order

= <xs:element name="person”>
<xs:complexType>

<xs:all>
<xs:element name="firstName" type="xs:string" />

<xs:element name="lastName" type="xs:string” />

</xs:all>
</xs:complexType>
</xs:element>

= Despite the name, the members of an xs:all group can
occur once or not at all
= YOU can use minOccurs="0" t0 specify that an element is

optional (default value is 1)
= In this context, maxOccurs is always 1

19



{L Referencing

= Once you have defined an element or attribute
(with name="..."), you can refer to it with
ref="..."

= Example:

= <xs:element name="person”>
<xs:complexType>
<xs:all>
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string” />
</xs:all>
</xs:complexType>
</xs:element>

= <xs:element name="student” ref="person”>
= Or just: <xs:element ref="person”>

20



{L Text element with attributes

= |f a text element has attributes, It is no longer a
simple type
= <xs:element name="population”>
<xs:complexType>
<xs:simpleContent>
<xs.extension base="xs:integer">
<xs:attribute name="year”
type="xs:integer”>
</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

21



{L Empty elements

= Empty elements are (ridiculously) complex

= <xs:complexType name="counter”>
<xs:complexContent>
<xs.extension base="xs:anyType"/>
<xs:attribute name="count” type="xs:integer"/>
</xs:complexContent>
</xs:complexType>

22



{ Mixed elements

= Mixed elements may contain both text and elements
= We add mixed="true" to the xs:complexType element

= [ he text itself 1s not mentioned In the element, and
may go anywhere (it Is basically ignored)

= <xs:complexType name="paragraph” mixed="true">
<Xs.sequence>
<xs:element name="someName”
type="xs:anyType"/>
</Xs:sequence>
</xs:complexType>

23



{L Extensions

= You can base a complex type on another complex type

= <xs:complexType name="newType">
<xs:complexContent>
<xs:extension base="otherType">
...new stuff...
</xs:extension>
</xs:complexContent>
</xs:complexType>

24



Predefined string types

= Recall that a simple element is defined as:
<xs.element name="name" type="type" />

= Here are a few of the possible string types:
= Xs:string -- astring

= XSs:normalizedString -- a string that doesn’t contain tabs,
newlines, or carriage returns

= XS:token -- a string that doesn’t contain any whitespace other than
single spaces

= Allowable restrictions on strings:

= enumeration, length, maxLength, minLength, pattern,
whiteSpace

25



{L Predefined date and time types

xs:date -- A date in the format CCYY-MM-DD, for
example, 2002-11-05

xs:time -- A date in the format hh:mm:ss (hours,
minutes, seconds)

xs:dateTime -- Format is CCYY-MM-DDThh:mm:ss
= The T is part of the syntax

Allowable restrictions on dates and times:

= enumeration, mininclusive, minExclusive, maxinclusive,
maxExclusive, pattern, whiteSpace

26



Predefined numeric types

= Here are some of the predefined numeric types:

xs:decimal xs:positivelnteger
xs:byte Xxs:negativelnteger
xs:short xs:nonPositivelnteger
Xs:int xs:nonNegativelnteger
xs:long

= Allowable restrictions on numeric types:

= enumeration, mininclusive, minExclusive, maxInclusive,
maxExclusive, fractionDigits, totalDigits, pattern, whiteSpace

27



28



