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1 Derivation of an Expression to Estimate Instantaneous Minute Ven-
tilation

Minute ventilation (Ψ) is defined as the maximum change in lung volume during a given respiratory cycle
∆Vmax multiplied by the respiratory frequency ω:

Ψ = ∆Vmax · ω. (1)

Here we derive expressions to estimate a time-varying index related to minute ventilation. To do so, we
will obtain instantaneous, time-varying estimates of ∆Vmax and ω in terms of the chest and abdominal RIP
measurements yc(t) and ya(t), respectively.

1.1 An Approximate Expression for Changes in Lung Volume as a function of
Chest or Abdomen Circumference

We represent lung volume as a cylinder with time dependent radius (r) and height (d):

V (t) = πr(t)2d(t). (2)

Both the radius and height can be further characterized as the sum of a constant component and an
oscillatory component represented by cosines,

r(t) = r0 + r̃(t) where r̃(t) = rm cosωt ,
rm
r0

≪ 1 (3)

d(t) = d0 + d̃(t) where d̃(t) = dm cosωt ,
dm
d0

≪ 1 (4)

where r0, rm, d0, and dm are real-valued.
We note that the maximal and minimal values of r(t) and d(t) are:

max(r(t))) = r0 + rm, min(r(t)) = r0 − rm (5)
max(d(t)) = d0 + dm, min(d(t)) = d0 − dm. (6)

1.2 Estimating Vmax

To derive an expression for ∆Vmax in terms of r0, rm, d0, and dm, we have

V (t) = πr(t)2d(t) (7)
= π(r0 + r̃)2 · (d0 + d̃) (8)
= π(r20 + 2r0r̃ + r̃2) · (d0 + d̃) (9)
= π(r20d0 + 2r0d0r̃ + r̃2d0 + r20d̃+ 2r0r̃d̃+ r̃2d̃). (10)

Since rm/r0 ≪ 1 and dm/d0 ≪ 1, we may discard the terms containing r̃2 or r̃d̃:

V (t) ≈ π(r20d0 + 2r0d0r̃ + r20d̃). (11)

Then ∆Vmax is given by:

∆Vmax = max(V (t))−min(V (t)) (12)
≈ 2π(2r0d0rm + r20dm). (13)
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1.3 Deriving an expression for dm
We imagine a cylindrical abdominal compartment beneath the lung compartment with the diaphragm serving
as a shared wall. We imagine that the vertical displacement of the diaphragm d̃A(t) = −d̃(t) will increase the
radius of the abdomen rA(t). We therefore derive an expression to infer diaphragm displacement d̃(t) from
the abdominal radius rA(t).

We can define the abdominal volume in a similar fashion as above,

VA(t) = πrA(t)
2dA(t). (14)

with the important distinction that VA(t) is considered constant in time (i.e., no compression of abdominal
volume).

Both the radius and height can be characterized in a similar fashion as above (eqns: 3 and 4):

rA(t) = rA0 + r̃A(t), r̃A(t) = rAm cosωt,
rAm

rA0
≪ 1 (15)

dA(t) = dA0 + d̃A(t), d̃A(t) = −dm cosωt,
dm
dA0

≪ 1 (16)

Here the negative sign in front of d̃(t) reflects the compression of the abdomen.

1.4 Estimating dm

Since VA is constant,

dVA

dt
= 0 (17)

= π(2rA(t)dA(t)r
′
A(t) + rA(t)

2d′A(t)) (18)
= π(2rA(t)dA(t)(−rAm sinωt) + rA(t)

2(dm sinωt)) (19)
⇒ 2rA(t)rAm(dA0 − dm cosωt) = rA(t)

2dm (20)
⇒ 2rA(t)rAmdA0 = (2rA(t)rAm cosωt+ rA(t)

2)dm. (21)

We set aside the time-dependence for clarity and solve for dm:

dm =
2rAdA0rAm

(2rAr̃A + r2A)
(22)

=
2dA0rAm

(2r̃A + rA)
(23)

=
2dA0rAm

(3r̃A + rA0)
(24)

=
2dA0

rAm

rA0

(3r̃A+rA0)
rA0

(25)

≈ 2dA0
rAm

rA0
since

rAm

rA0
≪ 1. (26)

1.5 Estimating Minute Ventilation

Now that we have expressions for dm and Vmax, we can write Vmax in terms of rm and rAm:

∆Vmax ≈ 2π(2r0d0rm + r20dm) (27)

≈ 2π(2r0d0rm +
2r20dA0

rA0
rAm). (28)

And we can now estimate minute ventilation as:

Ψ = ∆Vmax · ω ≈ (Kcrm +KarAm) · ω. (29)
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where

Kc = 4πr0d0 (30)

Ka =
4πr20dA0

rA0
. (31)

As we will show below, it is possible to obtain time-varying estimates of rm, rAm, and ω, which can be
used in the above formula to obtain a time-varying estimate of minute ventilation:

Ψ(t) = ∆Vmax(t) · ω(t) ≈ (Kcrm(t) +KarAm(t)) · ω(t). (32)

1.6 Estimating an Instantaneous Respiratory Amplitude and Frequency using a
State Space Oscillator Model.

We use the state space oscillator model described in Matsuda and Komaki (2) in a multivariable form to
represent thoracic and abdominal respiratory waveforms xc(t) and xa(t), respectively:

xc(t) =

[
x
(1)
c (t)

x
(2)
c (t)

]
, xa(t) =

[
x
(1)
a (t)

x
(2)
a (t)

]
(33)[

xc(t)
xa(t)

]
=

[
acR 0
0 aaR

] [
xc(t− 1)
xa(t− 1)

]
+ vt (34)

y(t) =
[
1 0 1 0

]

x
(1)
c (t)

x
(2)
c (t)

x
(1)
a (t)

x
(2)
a (t)

+ wt (35)

where:

R =

[
cos(ω0∆t) −sin(ω0∆t)
sin(ω0∆t) cos(ω0∆t)

]
, vt ∼ N

(
0,

[
σ2
v,c 0
0 σ2

v,a

])
, wt ∼ N(0, σ2

w),∆t =
1

Fs
. (36)

where Fs is the sampling frequency. We assume that the respiratory waveforms share the same un-
derlying frequency ω0. We used a Von Mises distribution to represent the prior density on the frequency
parameter

f(ω0|µ, κ) =
eκcos(ω0−µ)

2πI0(κ)
(37)

where I0 is a Bessel function of order 0, the concentration parameter was set to κ = 1000, and µ = 0.3
Hz, which corresponds to 18 breathing cycles/minute. We used the EM algorithm to obtain maximum a
posteriori estimates of the parameters ω0, ac, aa, σ2

v,c, σ2
v,a, and σ2

v as well as the hidden states xc(t) and
xa(t) (1; 4; 3).

The instantaneous time-varying respiratory amplitudes can then be calculated as

rm(t) =

√
x
(1)
c (t|n)2 + x

(2)
c (t|n)2 (38)

rAm(t) =

√
x
(1)
a (t|n)2 + x

(2)
a (t|n)2 (39)

where

x
(i)
j (t|n) ≡ E

[
x
(i)
j (t)|y(1), y(2), ..., y(n)

]
. (40)

and n indicates the length of the time series.
To estimate an instantaneous time-varying frequency, we first estimated the phase at each point in time
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Φa(t) = tan−1

(
x
(2)
a (t|n)

x
(1)
a (t|n)

)
. (41)

In general, the instantaneous frequency is defined as the time derivative of the time-varying phase, in this
case Φa(t). However, since we are working with sampled discrete-time data, we could not directly evaluate
the time derivative of the phase. Moreover, because our phase estimates are noisy, a direct approximation
of this time derivative, such as a first difference, might further amplify noise. In addition, we could expect
that the respiratory frequency in this study would vary over a time scale of minutes, tracking the changes in
fentanyl concentration, a time-scale that is much slower than the sampling interval for the respiratory data
(2 msec downsampled to 40 msec). Taking this all into account, we represented the time-varying frequency
as a random walk observed in noise:

ω(t) = ω(t− 1) + η(t) (42)
α(t) = ω(t) + γ(t) (43)

η(t) ∼ N(0, σ2
η), γ(t) ∼ N(0, σ2

γ). (44)

The observed frequency α(t) was obtained by taking the first difference of the instantaneous phase
estmate Φa(t):

α(t) =
Φa(t)− Φa(t− 1)

∆t
. (45)

We then used the EM algorithm to estimate the unknown parameters σ2
η and σ2

γ as well as the instanta-
neous frequency ω(t):

ω(t|n) ≡ E [ω(t)|α(1), α(2), ..., α(n)] . (46)
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2 Supplementary Figures S1 to S3
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Fig. S1: (A) Filtered EEG waveform across the protocol (12 minutes) of a representative subject. The
dashed lines correspond to the times of administration of fentanyl. We took samples of the evolution of this
waveform after baseline (B), administration of the first fentanyl bolus (B), just before the second bolus (C),
after the third bolus (D) and reaching the end of the protocol (E). In (F) we show the multitaper spectrogram.
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Fig. S2: Decline in minute ventilation occurs rapidly after exposure to fentanyl. A 10,000 sample bootstrap
was conducted across subjects during the baseline period and 2 minutes after each bolus of fentanyl admin-
istered to characterize the average minute ventilation index. Subjects displayed a noticeable drop in minute
ventilation even after 1 bolus, with progressive declines after subsequent boluses to the drug.
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Fig. S3: Linear mixed effects models characterizing reaction time changes given changes in: (A) minute
ventilation [Slope: -1.94 (-2.82, -1.06), Marginal R2 = 0.013, Conditional R2 = 0.18], (B) theta power [Slope:
30.11 (13.99, 46.22), Marginal R2 = 0.065, Conditional R2 = 0.313], (C) and Slow/Delta Power [Slope:
17.30 (6.24, 28.35), Marginal R2 = 0.034, Conditional R2 = 0.261]. In addition, we also constructed mixed
effects logistic regressions to characterize changes in probability of consciousness given changes in: (D)
Minute Ventilation Index [Odds Ratio: 0.99 (0.98, 1.00), Marginal R2 = 0.016, Conditional R2 = 0.499],
(E) Theta Power [Odds Ratio: 0.86 (0.75, 0.98), Marginal R2 = 0.059, Conditional R2 = 0.570], (F) and
Slow/Delta Power [Odds Ratio: 0.85 (0.76, 0.96), Marginal R2 = 0.097, Conditional R2 = 0.561]. Changes
in reaction time and probability of consciousness appear to be relatively constant across a wide range of
minute ventilation values and subjects are very likely to maintain consciousness even at dramatically low
ventilation levels. In contrast, theta and slow/delta power appear to track both reaction time and loss of
consciousness with greater sensitivity.
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